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SYNOPSIS

Owing to difficulties in considering fixed and time-varying operating costs at the same time, the
optimization of groundwater remediation is a challenging task. The difficulties are caused by the
combinatorial nature of assigning discrete well locations and the large computational burden required
for time-varying operating costs. This study presents a novel algoﬁthm that integrates Genetic
Algorithm (GA) and Constrained Differential Dynamic Programming (CDDP) to solve the two
interesting problems of groundwater remediation problem. GA can easily incorporate the fixed costs
associated with the installation of wells. CDDP is used to handle the problem of time-varying
operating costs. A case study that incorporates fixed anditime-varyin g operating costs is presented to
demonstrate the effectiveness of the proposed algorithm. Simulation results indicate that the fixed
costs can significantly influence the number and locations of wells, and that a notable total cost saving
can be realized by applying the novel algorithm.

INTRODUCTION

In groundwater remediation problems, the pump-and-treat (P&T) method is a practical
technology for large plume problems, and no alternative technology has yet been proven superior (1).
The feasibility of coupling optimization techniques with groundwater flow and transport simulation to
design P&T systems has been extensively studied (8,1,2,22,18,13,20,15). Chang et al. (4) employed
an optimal control method, called the Successive Approximation Linear Quadratic Regulator
(SALQR), to design a pumping system for the remediation of contaminated aquifers. None of the
other methods is designed for time-varying optimization and none has been demonstrated to ‘be more
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efficient than SALQR for solving time-varying problems (14). Although SALQR is superior in
dealing with the time-varying problems, it fails to cope with the problems of fixed costs.

The P&T system design is important because well locations and pumping rates can markedly
affect system performance. Generally, the decision variables involve determining the values of
pumping rates from extraction wells and selecting the locations of wells. Owing to the discontinuous
nature of well location selection, mathematical programming is often simplified by neglecting the
fixed costs of well installation. The optimal network normally consists of those wells whose final
optimized pumping rates are nonzero. However, this simplification can lead to designs that rely on
numerous wells pumping at small rates over long periods (13). Recently, researchers have investigated
various methodologies for incorporating these fixed costs. McKinney and Lin (12,13) used a genetic
algorithm (GA) and mixed-integer nonlinear programming (MINLP) methods to solve groundwater

* management problems comprised of both fixed and operating costs. Meanwhile, Zheng and Wang (23)
integrated tabu search and linear programming to solve the design of groundwater remediation with an
objective function that also involved the fixed costs and operating costs. However, their model only
considered groundwater flow as a steady state. Finally, Watkins and McKinney (21) applied
generalized Benders decomposition (GBD) and outer approximation (OA) to water resource problems
involving cost functions with both discrete and nonlinear terms. Although the two algorithms are
effective ways of solving the mixed integer nonlinear programming, the computational bottleneck
creates difficulties for large MINLP problems. k

Related investigations have demonstrated that dynamic policies are more cost-effective than the
best static policies because pumping policies are allowed to change as the contaminant plume moves
(4,5). Owing to dynamic optimal control algorithms requiring a separable objective function for each
stage ¢, they face difficulties in solving a problem with an objective function that contains fixed costs.
Culver and Shoemaker (7) used QNDDP in groundwater reclamation with treatment capital cost
assumed to be linearly related to extraction rate. However, their investigation did not incorporate the
fixed costs of well installation. Meanwhile, Huang and Mayer (9) used GA to search for the optimal
pumping rates and the discrete space of well locations in dynamic groundwater remediation
management. Their results showed that the moving-well model is less expensive than solutions
obtained using a comparable fixed-well model. Because of the properties of GA, their model requires
considerable computational effort to obtain the optimal solution. Aly and Peralta (3) used the L,
norm as a global measure of aquifer contamination instead of the traditional control locations for
contaminant concentrations, and compared the performance of GA and MINLP. Although their model
can be applied to a dynamic system and involves fixed costs and operating costs, the multi-period
planning problem must be approximated by a series of single-period problems. Therefore, their
approach is not a fully dynamic optimization method.

As far as we know, no investigation has simultaneously considered the fixed costs of well,
installation and operating costs of time-varying pumping rates. The genetic algorithm is attractive
because it does not require the differentiability of the objective function. Hence, the genetic algorithm
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can easily incorporate the fixed costs associated with the groundwater remediation problem.
However, applying this technique to solve time-varying policies could dramatically increase the
computational resources required. Therefore, this study proposes a novel approach for resolving this
optimization problem by effectively combining Genetic Algorithm (GA) with Constrained Differential
Dynamic Programming (CDDP).

~ FORMULATION OF THE MANAGEMENT MODEL
The management model attempts to minimize the total cost of remediation, composed of the

 fixed costs of well installation and operating costs of the pumping and treatment system. The problem
can be formulated as
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where € is an index set that defines all candidate well locations in the aquifer; and I is a
potential network alternative (design) and is a subset of Q. The upper index i denotes a well in the
network design (I ). J() represents total cost of I; x, =[h:c,] e R™*"" are the state

continuous variables representing heads (#,) and concentrations (c,), n, and n, denote total
number of hydraulic heads and concentrations, respectively; u (I)e R™ represent the vector of
control variables whose dimension depends on I, m is the number of control variables;
T(x,,u,(I),t) represents the transition equation; @ is the set of observation wells; a,, a,, and a,
are factors used to convert the well installation cost, treatment cost, and operating cost, respectively,
into monetary values ($); L.(J)e R™" are the distance from the ground surface to the lower datum
of the aquifer for wells; h,,,(7) denote hydraulic head for nodes at time t+1; y(I) are the depth
of wells, and u,,, represent the maximum allowable total pumping rates from all extraction wells.
Equation (5) specifies the capacity constraints for each well. The transition equation, T, in (2) is
solved with ISOQUAD (Pinder, 1978), a finite element groundwater flow and transport model for a
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confined two-dimensional aquifer. The transport model includes changes in head due to pumping as
well as changes in the contaminant concentration owing to advection, diffusion, dispersion, and linear
equilibrium sorption.

The first component in Eqn. (1) refers to the costs of well installation, and are incurred if a well
is installed for pumping. The costs of well installation are a discrete operation and require the use of
binary variables in the optimization model. The second component in Eqn. (1) expresses the operating
costs, involving pumping and treatment costs. These costs are continuous functions of the state and
control variables -and are separable functions for each stage ¢. Therefore, the groundwater
remediation model defined by Equs. (1) to (5) is a mixed integer time-varying optimization problem.
Because of the discrete nature of the installation cost, the problem, defined by Egns. (1) to (5), is
difficult to solve by using CDDP alone (4,5). Meanwhile, the near global optimization techniques,
such as simulated annealing (17), genetic algorithm (9), or tabu search (23), do not require the
objective function to be continuous, convex, or differentiable. Hence, these techniques have the
potential to solve an optimization problem containing fixed costs. However, applying these techniques
to solve time-varying policies could dramatically increase the computational resources required (7,23).
Therefore, the above techniques are inappropriate for time-varying optimization.

INTEGRATION OF GA AND CDDP

This investigation integrates GA and CDDP (GCDDP) to solve the problem defined by Eqns. (1)
to (5). In this integrated approach, GA, a near global optimization algorithm, is used to locate the
optimal well sites, while CDDP is employed to calculate the optimal pumping rates. Figure (1)
illustrates the procedure of the algorithm. In this figure, the algorithm is a GA with CDDP embedded
to compute the optimal operation costs for a potential network alternative (represented by a
chromosome). The total cost for each network alternative (chromosome) is the sum of the optimal
operation costs and its fixed costs. A higher total cost implies a lower fitness value for a chromosome.
In this investigation, time-varying pumping rates are measured while evaluating the optimal operation
costs by using CDDP. These procedures can be clarified by using the following step by step
procedure:

Step 0: Initialization ,

Encode the network alternatives as chromosomes and randomly generaté an initial
population. A conventional encoding scheme in GA is binary encoding, which a highly efficient
means of resolving network design problems. Hence, this study uses a binary indicator to
represent the status of the well installation on a candidate site, thus on a chromosome,
represented by a binary string, defines a network alternative. Each bit in a chromosome is
associated with a candidate site, and the length of the chromosome is equal to the total number of
candidate sites available for well installation. If the value of a bit equals one, the associated
candidate site will install a well, otherwise the value of a bit equals zero and the associated
candidate site will not install a well. ‘
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To demonstrate the operation of chromosome encoding, a hypothetical, homogeneous,
isotropic confined aquifer with dimensions of 600 m by 1200 m serves as an example. Figure 2
- presents the finite element mesh, the associated boundary conditions for both hydraulic head and
contaminant concentration, the location of candidate sites for extraction wells, and the location
of observation wells. There are ninety-one finite element nodes, as well as twenty-four candidate
well sites, and seventeen observation wells. :

Because the hydraulic head, the initial concentration, locations of observation wells and
candidate sites for pumping wells are symmetrical in Fig. 2, this study assumes that the optimal
network is also symmetrical. Base on this assumption, the combination of network
configurations will decrease in GA and the computational effort will decrease. The chromosome
contains sixteen bits, where the first eight bits représent the sites along the centerline and the last
eight bits represent candidate sites in the upper region. When a bit among the last eight bits has a
value, it represents two wells placed symmetrically to the centerline. The chromosome in Fig. 3
represents a network design and selects only four wells. These wells are located at nodes 32, 67,
45 and 47. Since the well selection is binary, encoding and decoding the chromosome is
straightforward. :

Parameter Encoding

Generate Initial Population of
Strings

¥

Total Cost Evalution for each
chromosome

® Obtain Configuration of
well setup

® Calculate Fixed costs

o Determine nominal trajectory
for CDDP

@ Calculate Operating Costs
using CDDP

Calculate Fitnesses
for chromosome

® Reproduction

@ Crossover

® Mutation

Has Stopping
Criterion Been Met?

Figure 1. Flowchart of GCDDP groundwater remediation model
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Figure 2. Finite element mesh, Boundary Conditions, Initial Plume, and Locations of Numbered
Observation and Potential Extraction Wells for all Runs of the Groundwater Reclamation
Example .
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Figure 3. Chromosome representation

Step 1: Evaluation of the total cost and fitness value of each chromosome.

For each chromosome, the well locations are selected and the fixed costs in Eqn. (1) are
ready for evaluation before calculating the optimal operating costs. The sum of the fixed costs
and associated optimal operation costs is the optimal total cost of each chromosome. The
chromosome can be represented as a binary string in the form o, = x;, X, ..., Xg, Xg 5. X35, Where
o, denotes a chromosome in the population. Each digit x, has a value of 1 or 0. The number of

wells for the chromosome can be calculated as follows:

N well; =ixi + Zi X ) )
= )

For each chromosome, remediation design attempts to minimize the operating costs. The
optimization model can then be rewritten as follows:

N :
i 0= 3 S a0 LD K, O+ %
U iel r=l,..) el =1
subject to
Eqns. (2), 3), 4), () ®

where C is a constant representing the fixed costs. Because C is a constant, it does not affect
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the determination of the operating costs. Therefore, the CDDP can be used to solve the model
defined in Eqns (7) - (8).

The CDDP used herein is a modification of SALQR (4). Using a penalty function to
incorporate the water quality and extraction constraints (Eqns. (3)-(5) into (7)), SALQR solves
the optimization problem as an unconstrained problem. This study adopts the penalty function to
resolve the water quality constraints that are represented in Eqn. 3. The Quadratic Programming
(11) is applied at each stage in the backward and forward sweep of CDDP to handle the control
constraints in Eqns. (4) and (5). The penalty function that is usedy in this study has the following
form (10):

Pi(f;):gi éigl

p(f)=all +bE"* +¢ & >1
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where w, is the weighting coefficient of the ith constraint, g, is a shape parameter of the
hyperbolic function &, and a, b, and ¢ are constant coefficients. Chang et al. (4)
demonstrated that this hyperbolic penalty function, &,, is numerically efficient; it was later used
by Culver and Shoemaker (5,6,7) as well as Mansfield and Shoemaker (15). In all cases, weights
on the penalty function increased until an optimal solution that did not significantly violate the
constraints was found.

The GCDDP requires recalculation of the problem defined by Eqns. (7)-(8), dramatically
increasing the total computational effort. If the computational effort in CDDP can be decreased,
the total CPU requirement will decrease significantly. Therefore, this study applies the sparsity
structure of the derivative equations on state transition, developed by Mansfield, et al. (14), to
reduce the computational effort of the CDDP. Using the sparsity structure, the CPU time falls to
about 12% of an algorithm that neglects sparsity. Furthermore, each CDDP calculation requires
an initial nominal policy to get started. Therefore, a systematic procedure to obtain an initial
nominal policy associated with each chromosome is required. This study uses a “do-nothing”
policy (all zero pumping rates) as an initial nominal policy for all the chromosomes.

Step 2: Reproduction ‘

This study carries out reproduction by tournament selection (19). The selection mechanism
plays a prominent role in driving the search towards superior individuals and maintaining high
genotypic diversity in the population. In each tournament selection, a group of individuals are
randomly chosen from the population, and the fittest individual is selected for reproduction. This
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procedure is repeated until the number of chromosomes required for crossover is fulfilled.
Therefore, strings with above average objective function will have an above average probability
of being selected as parents. The algorithm can converge to a set of chromosomes with high
fitness values.

Step 3: Crossover
Crossover involves randomly coupling the newly reproduced strings, with each pair of
strings partially exchanging information. Crossover aims to exchange gene information so as to
produce new offspring strings that preserve the best material from both parent strings. Generally,
the crossover is performed with a certain probability ( p,,,, ) to ensure it is performed on most of
the population. Herein, one point crossover is selected, as shown in Fig. 4, where p_ ranges

from 0.8 — 1.0.

parent 1 (IIA I OTIATITETLL0Y]

parent 2 [pJofofolo]olofo]o oo o olo]o]

aitd 1 [A[IATAAI[o]8]a]a]

chitd 2 [ofofofofofo o o ofofofi I I]1]
One-point crossover

Figure 4. Crossover operator

Step 4: Mutation

Mutation restores lost or unexplored genetic material to the population, preventing the GA
from prematurely converging to a local minimum. A mutation probability ( p,,....) 18 specified so
that individual genes can be mutated randomly. The value of p,,,, normally ranges from 0.01 -
0.05. Before implementing a mutation, a random number with a uniform distribution is generated.
If this number is smaller than the mutation probability, the mutation is performed; otherwise, it is
skipped. Notably, mutation changes a specific gene (0— 1 or 1-0) according to the specified
probability in the offspring string that is produced by the crossover operation. An example of
mutation is displayed in Fig. 5, and is displayed as the block is changed from O in the old string
to 1 in the new string. ‘

coffspring [T 11 ol ifa a1 f1]1]1]

f

offspring 1 [0]o[ofo[1]ofofoolo[ololola]0]

Figure 5. Mutation operator

Step 5: Termination ,
After steps 1 to 4, a new population is formed. The new population necessitates evaluating
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the total cost of the groundwater remediation problem as in step 1. Meanwhile, total cost
evaluation is used to calculate the fitness and to assess the stopping criterion. The stopping
criterion is based on the change of either objective function value (total cost) or optimized
parameters. If the best design does not improve over a preselected number of generations
(roughly 10), or the maximum number of generations is exceeded the algorithm will terminate,
otherwise, the cycle repeats itself (another generation).

NUMERICAL RESULTS

A groundwater reclamation test problem, which is a modification of the example from Chang et
al. (4) and Culver and Shoemaker (7), is adopted to verify the effectiveness of the methodology
discussed in the preceding section. Figure 2 displays the aquifer. The hydraulic head distribution prior
to pumping is assumed to be steady, the initial peak concentration within the aquifer is 150 mg/L, and
the water quality goal at the end of five years must be less than or equal to 0.5 mg/L at all the
observation wells. The total pumpage for all the wells at each stage must be less than 2.0 m’ /sec,
and the maximum and minimum capacities of each well must be 0.5 and 0 m’ /sec , respectively. The
simulation period between each stage in the management model is 91.25 days. Table 1 lists the
properties of the aquifer. The crossover and mutation probabilities in the GA algorithm are 0.8 and
0.01, respectively.

TABLE 1. Aquifer properties of the example application

Parameter Value
Hydraulic conductivity 4.31x10™"m/s
Longitudinal dispersivity 70 m
Transverse dispersivity 3m
Diffusion coefficient 1107 m* /s
Storage coefficient 0.001 ‘
Porosity 02
Sorption partitioning coefficient 0245cm*/ g
Media bulk density 212g/cm®
Aquifer thickness, b ; 10m
L. 120 m

Case without fixed costs

The problem considering operating costs only is solved independently by both CDDP and
GCDDRP to illustrate the advantages of GCDDP. This case contains twenty-four potential installation
sites for pumping wells that remove the contaminant plume as depicted in Fig. 2. This case attempts to
minimize the operating costs of the pump and treatment system. The cost function of the CDDP
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algorithm is expressed as follows:

min_ J(u,)zg{azﬂu, rag (L ~h,]) ©)

g t=l...,

where @, and @, are constants as provided in Table 2. 1" is an m row vector with value of

1’s. Figures 6, 7, and 8 illustrate the solutions of these cases. Figures 6 and 7 display the optimal total
pumping volume of each well obtained by CDDP and GCDDP for the total planning horizon.
According to Fig. 6, although eighteen wells have pumpage, seven of these have a very small total
pumping volume (less than 1 (L/ s:simulation period y The possibility of obtaining a network design
with many wells which have small pumping rates is the disadvantage of applying a gradient-base
algorithm such as CDDP or other nonlinear programming on the groundwater remediation planning as
indicated by McKinney and Lin (13).
TABLE 2. The values of the Cost Function Coefficient in the Example Problem

Coefficient Value
a, $0 m™ to$240m™
a, $ 40000/(m* / s -simulation period )
a, $ 1000/(m” / s -m-simulation period )

Figure 6. The optimal total pumping volumes of each well solved by CDDP.
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TABLE 3. Optimal solutions without fixed cost

Algorithms No. of Total
wells operating cost

CDDP 18 71938

GCDDP 7 56341

The same problem is solved again by GCDDP. The algorithm converges after sixteen
generations and the number of chromosomes in each generation is one hundred twenty. Table 3
provides evidence that both the total optimal operation cost and well numbers obtained by GCDDP
-are less than that determined by CDDP. The results can be explained as follows: the design of
twenty-four potential pumping wells should have the minimum operation costs since it has the largest
degree of freedom to manipulate the pumping rates. However, a single run of CDDP can only derive
the local optimal solution since groundwater remediation problems are nonlinear non-convex
problems. On the other hand, each chromosome (network alternative) in the GCDDP algorithm
requires a CDDP computation. Hence, a multiplicity of CDDP solutions are produced and compared
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before the GCDDP algorithm is finished. Although each CDDP solution may only generate the
local optimum, some of the local solutions may be less expensive than that of the previous case with
twenty-four potential wells and solved by CDDP only. Therefore, the GCDDP can derive a better
solution than the CDDP because the GA procedure within the GCDDP selects an optimal design
among the provided alternatives. Figure 8 illustrates the histogram of the optimal operating costs for
457 distinct chromosomes within the sixteen generations. Nearly 60% of optimal total operating costs
are approximately $65,000 to $85,000. A small percentage of optimal total operating costs are
between $55,000 to $635,000, which is less than the optimal total operating cost of the previous
twenty-four potential wells design. Thus, the proposed GCDDP algorithm can attain a better solution
than a CDDP algorithm even for a non-fixed cost remediation problem.

Figures 9 and 10 illustrate the optimal network design and distribution of the pollutant

concentration at the end of the planning period with respect to the CDDP and GCDDP solutions. Only
eleven wells in Fig. 9 have a total pumping volume more than 1 (L/s-simulation period ). The

concentration distribution in the two figures is very similar, and both are within the specified water
quality standard.
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Figure 9. The optimal number of wells and concentration distribution for CDDP (only 11 wells
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Cases with fixed costs

This subsection deals with several cases with distinct unit fixed costs to investigate the impact
of fixed costs. All the cases are solved by GCDDP and the objective function includes both the fixed
and operating costs. The coefficients of the cost function are listed in Table 2, while Table 4
summarizes the number of strings (chromosomes, network alternatives), CPU times and generations
calculated in each case. Each generation contains one hundred twenty chromosomes (binary strings)
in all cases. The case where a, equals zero has been described in the previous subsection. Table 5
summarizes the results of various unit fixed costs including the optimal number of wells, optimal total
operating cost, minimum and maximum total pumping volume of the wells for the planning horizon,
Table 5 includes the previous case with no fixed costs to facilitate the comparison. The varying unit
fixed cost case in Table 5 has varying fixed unit costs for each well, whereas the fixed unit costs of the
other cases are the same for all wells. Table 5 reveals that the number of wells with various fixed unit
costs decreased when the fixed unit cost is increased from 0 m™ to $ 240 m™. Alternatively, the
operating cost is increased. The optimal design requires only one well when the unit fixed cost is $
240 m™. The minimum total pumping volume for the case with no fixed cost is- only 4.37
(L/s-simulation period ) Which is far less than that of other cases. This confirmed that an optimal design
tends to have wells pumping at small rates if the fixed cost is not considered. Figure 11 depicts the
optimal concentration distribution and locations of well setup with a fixed unit cost of $ 120 m™.

Previously, the unit fixed cost (a,) and hydraulic conductivity was assumed constant in the
study area. However, this is unlikely to be true due to typical heterogeneous geological conditions.
Therefore, in this study, the value of a, is spatially varied to simulate the consequence of geological
heterogeneity. The location of the wells in an optimal network should be diverse from that in which a
constant unit fixed cost is assumed. Figure 12 presents two geological zones and their associated fixed
unit costs as well as the optimal concentration distribution, number and location of wells. For the
previous cases illustrated in Figs. 9, 10 and 11, the designed pumping wells are concentrated in the
west region of the aquifer because the higher hydraulic head in that region requires less pumping.
Nevertheless, when the unit fixed cost in the east region is lower than the west region, the well sites
are relocated to the east region as illustrated in Fig. 12. Owing to the boundary condition, the well
placed in the east region require a larger operating cost than that placed in the west region. Therefore,
the total operating costs for the case in Fig. 12 are larger than those for the case in Fig. 11. Comparing
Figs. 11 and 12 reveals that the high fixed costs may compensate for the low pumping cost.
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Table 4 Computational summaries for GCDDP

Fixed unit costs | Total strings | Total Generations| CPU time (sec)
$0 (m™) 1920 16 108668
$120 (m™) 2040 17 121484
$240 (m™) 2040 17- 114339

Varying fixed unit cost 2040 17 111545

Runs were implemented on a PC with AMD Athlon™ 750 MHZ CPU.

TABLE 5. Optimal solutions for the GCDDP

Fixed unit costs No. of well| Total operating cost ($)| Min | Max
$0  (m™) 7 56341 | 437 | 19329
$120 (m™) -2 59909 179.15| 218.92
$240 (m™) 1 75690 502.59| 502.59

varying fixed unit cost 2 65230 25.63 | 406.10

Min: Minimum total pumping volume ( L/ s - simulation period )

Max: Maximum total pumping volume ( L/ s - simulation period )
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Figure 11. The optimal concentration distribution for GCDDP with fixed unit cost is § 120 m™
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Total cost comparison

This subsection compares the total cost between the optimal design of CDDP and that of
GCDDP to demonstrate the advantage of applying GCDDP, and to compare the fixed costs in the
design process. The CDDP determines the optimal network based only on the operating costs. Table 6
summarizes the total cost of the network designs. The total cost of the CDDP design can be estimated

by adding the calculated operating costs with the fixed costs and the fixed costs can be estimated by
multiplying the well depth by the unit fixed cost. The number of wells in the CDDP designs remains
the same for varying fixed unit costs since this method does not consider the fixed cost. On the
contrary, the number of wells in the GCDDP designs varies according to the unit fixed cost.

Table 6: Total cost comparison with fixed costs and no fixed costs in an optimization model

Coefficient a, $120.0m™ $240m™
Total cost for the network 331138 590338
designed by CDDP (18 wells) (18 wells) (18 wells)
Total cost for the networks 88709 104499
designed by GCDDP (2 wells) (1 well)
Ratio of difference (%) 73.21% 82.30%

Table 6 provides evidence that the total cost of the network designed by CDDP is 82.30 % more
than that designed by GCDDP, when the value of coefficient @, is $240.0 m™ . Therefore, a
significant total cost saving can be achieved by applying the novel GCDDP algorithm and by

considering the fixed costs in the design process.
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Other computational issues

Some computational issues are discussed .in this subsection since each chromosome in the
GCDDP algorithm requires a CDDP computation. Figure 13 depicts the distribution of the iteration
numbers in CDDP for all 457 chromosome evaluated in the case with no fixed cost. Although a total
of 1920 chromosomes must be evaluated for the case with no fixed cost as indicated in Table 4, only
457 of them are different. 77% of the 457 chromosomes have CDDP iterations less than 100 and the
average iteration number is 66. The CDDP calculates the optimal operating cost of each chromosome.
Figure 14 reveals more about the CDDP convergence rates within the GCDDP algorithm by
presenting the evolution of the total operating cost (the progress of the CDDP computations) with
respect to the four selected chromosomes that are the optimal designs of the four cases in Table 5.
Figure 14 demonstrates that the proposed CDDP algorithm is computationally efficient for the
remediation problem since the four CDDP’s computations are all converging within 50 iterations. A
highly efficient CDDP algorithm increases significantly the computational power of the GCDDP since
a GCCDP calculation requires many CDDP computations.
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Figure 13. The distribution of the numbers of required iterations for CDDP of all 457 chromosomes.

The GCDDP computation generates one superlative design (chromosome) among the population
(120 chromosomes in this study) for each generation and the best design is improved from generation
to generation. Figure 15 demonstrates the evolution of the best design versus generation for the case
when a, =$ 120 m™. Figuré 15 also illustrates the change in the value of the objective function and
the number of wells for the best chromosome in each generation. Although the operating costs
increase during the 3™ and 4™ generation, the total costs always decrease in each generation and the

solutions converged after the 7™ generation.
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Figure 15. The objective function values and the number of wells versus the number of kgenerations.
CONCLUSION

A GCDDP (an integration of GA with CDDP) groundwater remediation planning model was
developed to minimize the total cost of a pump-and-treat aquifer remediation system. Although the
total cost including the fixed and operating costs should be the objective function of a groundwater
remediation problem, previous studies have not considered this since the problem contains discrete
nature of the fixed cost and dynamic characteristics of the operating cost.

The proposed GCDDP algorithm calculates the minimum total cost while simultaneously
considering the fixed and time-varying operating costs. A numerical study based on a homogeneous,
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isotropic confined aquifer revealed several salient facts. A CDDP algorithm consistenily designs a

remediation plan with many wells pumping at small rates since it only considers the operating cost.
However, the GCDDP algorithm can overcome the problem by considering the fixed cost in the
design process. The total cost of a CDDP design can be significantly higher than that of a GCDDP
design for a high unmit fixed cost. Several case studies also indicated that the fixed cost can
significantly influence the number of wells and the locations of the optimal remediation design. Thus,
the GCDDP algorithm is a feasible groundwater remediation planning method. In conclusion, the
novel GCDDP algorithm can consider the fixed cost, which is a significant factor in the process of
groundwater remediation planning, and in the design process of providing a more realistic solution.
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