107

Journal of Hydroscience and Hydraulic Engineering
Vol. 19, No.1 May, 2001, 107-116

TURBULENT STRUCTURES IN OPEN-CHANNEL FLOWS WITH ADVERSE PRESSURE GRADIENTS
By

Iehisa Nezu
Professor, Department of Civil and Global Environment Engineering

Kouki Onitsuka
Research Associate, Department of Civil and Global Environment Engineering
Kyoto University, Kyoto 606-8501, Japan

and

Masaki FUJITA
Kinki Nippon Railway Co., Ltd,.Ue-Honmachi, Tennoji-ku, Osaka, 543-8585, Japan

SYNOPSIS

Turbulence measurements in open-channel flow with adverse pressure gradients were conducted by making use of a
laser Doppler anemometer. The friction velocity was evaluated by the linear law in the viscous sublayer. As the results, .
it was found that the von Karman constant in the log-law is an universal constant in open-channel flow with adverse
pressure gradients. In contrast, the integration constant in the log-law and van Driest’s damping factor are affected by
the adverse pressure gradients. A new relationship formula between the wake strength parameter in the log-wake law
and the pressure gradient parameter, based on the friction velocity and the flow depth, is proposed in this study.

INTRODUCTION

Nezu & Rodi(1986) thoroughly investigated on uniform open-channel flows. However, the channel width in natural
rivers increases and decreases in the main-flow direction. Investigations on boundary layers with adverse pressure
gradient were carried out by several researchers. Clauser(1954) could set-up the equilibrium boundary layers, i.c., the
velocity profile is self-similar at all streamwise positions, and indicated that the velocity profiles are controlled by the
pressure gradient parameter which is based on the pressure gradient, the friction velocity and the displacement
thickness. Mellor & Gibson(1966) measured the equilibrium boundary layers and indicated that the velocity profiles
are described by the log-wake law. Coles & Hirst(1968) pointed out that the wake strength parameter depends on the
pressure gradient parameter. The empirical formula which described the relationship between the wake strength
parameter and the pressure gradient parameter was proposed by White(1974). Recently, Nagano et al.(1993) measured
adverse pressure gradient boundary layers in the non-equilibrium condition of and made clear that the integration
constant in the log-law is affected by the pressure gradient. Further, Spalart & Leonard(1987) showed that the von
Karman constant is also affected by the pressure gradient.

Several researches on the adverse pressure gradient open-channel flows were also conducted by a few
researchers. Okabe & Sugio(1981) indicated that the mean velocity profiles are described by the log-wake law by
making use of a pitot tube. Song & Graf(1994) measured the equilibrium open-channel flows with an acoustic Doppler
velocimetry and indicated that the wake-strength parameter depends on the pressure gradient parameter based on the
friction velocity and the flow depth. Nezu et al.(1994) also presented the relationship between the wake strength
parameter and the pressure gradient parameter over a wide range in non-equilibrium open-channel flows. Recently,
investigations were carried out not only on mean flow structures, but also on turbulence structures. Song & Graf(1994)
and Nezu et al.(1994) found experimentally that the Reynolds stress distributions in adverse pressure-gradient
open-channel flows take a maximum value at near-half depth. The reason why the Reynolds stress distributions take
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Table 1 Hydraulic Condition

x=-10(cm) x=L{cm)

case | L{cm) | Q(¥/s) | sin@' sinﬂ -
hem) | Fr, Re,X10°| hyem) | Fr, |ReX10

D135-1 "16 | 1/8000 4304 | 0.14 4.1 7.11 0.067 4.1

D135-2| 135 32 /6000 | 145 | 4212 | 030 8.1 7.07 0.14 8.1

D135-3 48 1/4000 4.151 0.45 12 712 0.20 12

D180-1 1.6 | 1/8000 4317 | 014 4.5 7.08 0.068 g 4.5

D180-2| 180 32 | 1/6000 | 1/60 | 4262 | 0.29 89 7.08 0.14 8.9

D180-3 4.8 | 1/4000 4.02 0.48 14 | 6938 | 021 14

the maximum there was explained by Song &
Graf(1994) by the use of a power law velocity Water Pump
profile under the assumption that the constant in the (
power law is not affected by the pressure gradient.
However, the constant in the power law depends on
the flow conditions. Onitsuka er al.(1997) verified
theoretically that the pressure gradient parameter
based on the friction velocity and the flow depth is a
dominant parameter and that the Reynolds stress
takes the maximum at the near-half depth. In such
studies, however, the friction velocity was evaluated
by making use of the log-law without any detailed
verification. In contrast, Nagano et al.(1993) have
measured the adverse pressure gradient boundary
layer including the viscous sublayer and calculated
the friction velocity by both the linear law in the
viscous sublayer and the log-law in the inner layer.
They pointed out that the evaluation of the friction Fiber Cable
velocity by the use of the viscous sublayer formula is
the most reliable one.

In this study, flow fields in open-channel
flows with adverse pressure gradient were measured

by making use of a high accuracy two-component
fiber-optic LDA.

Figure 1 Experimental Setup

EXPERIMENTAL SETUP

The experiments were conducted in a 10-m-long, 40-cm-wide, and 50-cm-deep tilting flume. The decelerated flows
were generated by the flat plates as shown in Figure 1. In which x is the streamwise coordinate and y is the
coordinate perpendicular to the x direction. L is a length of the deceleration region. The region x <0 is called
here the "uniform region" and the region of x> L is called the "downstream region". siné is the channel slope in
the deceleration region, and sin@' is that in the uniform and downstream regions. Two components of instantaneous
velocities, i.e., the streamwise velocity #(f) and the vertical velocity \7(t), were measured with a four-beam LDA
system. The present LDA system can measure instantaneous velocities very near the bed, i.e., y =0.1mm. The LDA
probe was moved by a computer controlled traversing system. The accuracy of this traversing system was within
1/100mm. All data of the LDA were recorded in a HDD in a personal computer with a sampling frequency with more
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than 100(Hz) and sampling time of 60-180s.

5
Variations of water depth in the downstream ‘ W k r ' ! A
direction were measured by a digital type point U D135-2
gauge. ‘ L (Q=32Vs Re=8.1x10% z _
The experimental conditions are summarized in £
Table 1. In which, Fr=U, /| gh is the Froude L Uteyt

AAgo

number, Re=U_h/v is the Reynolds number,
U, is the bulk mean velocity, g is the
gravitational acceleration, % is the flow depth and
v is the kinematic viscosity. The suffice of "0" 2 A

b e

denotes the value at x =0 and the suffice of "1" g o %L=0074 Fr=030
denotes the valueat x=1. o xL=0.05 Fr=029
A x/L=030 Fr=022
: 1 o xL=0.60 Fr=0.17 =
EXPERIMENTAL RESULTS AND DISCUSSION A = 50 Fr0.15
% xL=090 Fr=0.14
Evaluation of Friction Velocity l \ s x/|L=1.00 !Fr=0.14
. o]
2 3 4 yt s
In general, there are several methods to evaluate the ° ! y
friction velocity U. in non-uniform open channel Figure 2 Velocity Profiles in Viscous Sublayer

flows as follows:
i) from the energy gradient 1,

U =4Jghl, | @

ot
dx| 2g

2
al,, +H) @ -

in which o is the energy correlation coefficient.

ii) from the momentum equation

iii) direct measurements such as a shear plate

iv) from the linear law in the viscous sublayer(Os y* < 5)

Ut = y+ (3)
inwhich U* =U/U., y*=yU./v.
v) from the log-law in the inner region(30s y* =0.2R.)

Ut =%1ny++AS “

in which R. =AU, /v is the Reynolds number based on the friction velocity, x is the von Karman constant and
A; 1is the integration constant.

The accuracy of the methods i) and ii) is not so high, because it is quite difficult to measure the water surface
slope dh/dx with high accuracy. Method iii) can measure the friction velocity, but the measured area is not so small,
thus the accuracy is not so high. In contrast, method iv) can evaluate the friction velocity theoretically. Nagano et
al.(1993) have measured the viscous sublayer in the adverse pressure gradient boundary layers and indicated that the
method iv) is the most reliable one in the case of adverse pressure gradient boundary layers. In spite of the high
accuracy, method iv) has not been used in the adverse pressure gradient open-channel flows except for Nezu ef
al.(1996) and Onitsuka et al.(1999), because the turbulence measurements in such thin layers are almost impossible
with Pitot tubes and hot-film anemometers. The authors have successfully measured the viscous sublayer by making
use of an innovative high-accurate fiber-optic LDA and traversing system.

Figure 2 shows the mean velocity profiles in the viscous sublayer normalized by the friction velocities which
were evaluated by Eq.(3). It can be seen that the velocity distributions in the viscous sublayer are in very good
agreement with Eq.(3) not only in the uniform region (x/L <0) but also in the deceleration region (0 = x/L = 1.0).

Therefore, the evaluation of friction velocities from Eq.(3) is very reliable in the case of adverse pressure gradient
open-channel flows.
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Figure 3 Reynolds Stress Distributions

Reynolds Stress

20 T T T T R ;

—— Dl!35~0 (Q=0.8 Vs, Re=2.1 x 10°) ]

Figure 3 shows the distributions of the Reynolds

. L. . N .x- DI35-1 (Q=1.6Us, Re=4.l x 107)
stress —uv normalized by the fncflon ve.locﬁy B r D2 (Qe32ls Rewdixi0) |
which is calculated by the linear law in the viscous 154 -4~ D135-3  (Q=A3 Vs, Re=1.2 x 10)

. . -0~ D180-0  (Q=0.8 Us, Re=2.2 x 10%)
sublayer(3). In the uniform region, the Reynolds o DI80-1 Eggm v R;j:w:)

stress distribution corresponds to the theoretical % D180-2  (Qs321s Re=89x 10%) |

formula in an uniform open-channel flow which is Tor ,‘"0" DISO3  (Quts s Re=léx 10 7
expressed as follows:

—uv av*

_ﬁz‘i =1-E- 5) 5

U. dy* :

in which & = y/h . Therefore, it can be concluded
that the flow in the uniform region (x/L =-0.056) e R L
is fully developed and that the evaluation of the ) 10 20 30 40
friction velocity by using Eq.(3) is quite accurate.

It can be seen that the flow is re-constructed
from the channel bed in the region of 0= x/L = 0.6.
Finally, the distribution of the Reynolds stress are
similar at all distances in the region of 0.8 = x/L s 1.0. In such region, the Reynolds stress takes a maximum at near
half depth. This results agree with those in adverse pressure gradient (see Mellor & Gibson(1966), Bradshaw(1967)
and so on). The reason why the Reynolds stress takes the maximum was verified by Onitsuka er al(1997)
semi-theoretically.

e Builibrium Region

Figure 4 Pressure Gradient Parameter

Pressure Gradient Parameter

Clauser(1954) used the pressure gradient parameter S, in analyzing adverse pressure gradient boundary layers as
follows:

= pf;;z % ©

in which 6. is the displacement thickness. In the case of adverse pressure gradient open-channel flows, the flow
depth A is used instead of the displacement thickness .. Song & Graf(1994) and Onitsuka et al.(1997) used the
pressure gradient parameter S as follows:

B
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h . dj '
B = Uz(—pgmn@-{-ﬁ) (7) 100_ T =TT T T
P p 0 L D180-3 | (Q=A8Us Re=l4x 109
2, pg——cos8 ®) Ut Ut= Uk sin?
dx dx - — U=k In(y")+As+2IT ¢ sin° (/2 &)
Egs.(6) and (7) mean the characteristics in adverse N K=0412
pressure gradient flows are controlled by the outer 80~ B
variables such as the displacement thickness and the - Utay?
water depth. Figure 4 shows the variations of the - =
pressure parameter S against the flow direction. -
The value of th di ter B i - A
e value of the pressure gradient parameter is X
P & P . 80 fpr—r @Y
—~1 at the entrance of the' decelerated region -
(x/hy=0). This implies that the flows in the region : M?&Qeed"
of x/hy<0 are the uniform flow. This is because the :”M
B =—1 is obtained theoretically in the case of an - xL=08 o
uniform  open-channel flow by using of 40 :___W,,e/eﬂ i
U, =./ghsin@ . The value of B increases - xL=06 o g —_
suddenly at the entrance of the decelerated region :_'“‘*“*”"Mee i "‘”;0 1 ,é o@;}‘f‘?
( x/hy =0) and decreases gradually toward - */L=0.3 0 y ,Ee o° b
downstream. Finally, the value of B becomes 20 @ .-/50°] ewoog;
almost constant before the exit of the deceleration : */L=0.05 &° i ]
- ; Lo ]
region (x/hy>25). Clauser(1954) pointed out that Meaaedgﬁ ,':,./a'b"; h
the flow under the condition that the pressure N %/L=-0.056 ,,o»"b _ﬁ'U*:,l/mn(y*)i.As i
gradient parameter is almost constant is affected only - M ; x=0.412, As=3.29
by the pressure gradient. Therefore, such a flow is 0 ottt ‘“;' —— ul) " At
called the “equilibrium flow”. It will be confirmed ! 3_
later that the region of x/hy>25 is in equilibrium y

from the velocity profiles in Figure 4. . o . .
Figure 5 Distributions of Streamwise Velocity

Mean Velocity Distributions

Figure 5 shows mean velocity distributions, together with the log-law(4) as straight lines and the linear law(3) very
close to the wall as curved lines in this semi-log plot. In the uniform region (x/L <0), the mean velocity distribution in

the inner layer are described well by the log-law(4). In the region of x/L =0.05, however, the values of U”* deviate
upward from the log-law curve. In the region of 0.3 sx/L=0.6, the variations of U* vs. y* change in a

complicated manner as a function of x, while in the region 0.8=x/L < 1.0, those are similar in shape. It can be
thought that the flows in the region x/L =0.60 are affected not only by the pressure gradient but also by the upstream
flow history. In contrast, the flows in the region 0.8 < x/L = 1.0 is controlled only by the pressure gradient. This region.
corresponds to the region in which the pressure gradient parameter is almost constant (x//g >25, see Figure 4).
Therefore, it can be said that the region x/#,>25 is an "equilibrium region”.

It is well known that the mean velocity distributions in the buffer layer (5= y* = 30) in uniform open-channel
flows can be described by the following equation: '

w0y ©
YT 14y1442%7(1-8)

0t =xy'T (10)

I‘=1—exp(—y+/B) an

in which T' is van Driest's damping function, B is the damping factor. Eq.(9) is adopted to present flows. It can be
seen that the velocity profiles in the viscous sublayer are described by the linear law(3) and thosc in the buffer layer
are described well by the Eq.(9) in the equilibrium region. In the outer region (& >0.2), the mean velocity distributions

deviate upward from the log-law. Therefore, these are described well by the log-wake law as follows:
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U =Lyt 44, +—2'-(I—I—sin2(12r-§) 12)

K L s e R RA R A aa s ana n e e —
in which II isthe wake strength parameter. LY K =0.412 5
0.4 Py ° % ) & 2 =

Effects of Pressure Gradient on Various Factors D135.1 (Q=L6 s, Re=t.L x 109

o3 é D135-2 (Q=3.2Vs Re=8.1x 10%

Nagano er l.(1993) investigated on the von Karman o6 DI35-3 (Q=48Vs, Re=1.2x10%

constant in adverse pressure gradient boundary 021 o D180-1 (Q=1.61s Re=45x 109

layers and indicated that the von Karman constant is X DI180-2 (Q=32Vs,Re=89x 10"

not affected by the pressure gradient. In contrast, 4 DI80-3 Q=481s, Re=1.4x104?

Spalart & Leonard(1987) pointed out that the von o0k ,‘ RN
Karman constant is also affected by the pressure ) o 2 4 6 8
gradient in adverse pressure gradient boundary B

layers. However, the von Kaman constant in adverse

pressure gradient open-channel flows has not been

investigated at all. It is needed to obtain the value of PP

0.1

Nagano et al.(1993):Boundary Layer
k. S

b et endccbebecbsedno bbbk

Figure 6 von Karman Constant

the friction velocit.y by a method other than the As ‘ 2 ID 135-1 (:2:1.6 Vs, Re='4A1x103)

log-law for evaluating the von Karman constant. In Ll O DI35-2 (Q=3215Re=8.1x 10%) |

this study, the friction velocity could be evaluated by © DI135-3 (Q=48Us Re=12x10%

the linear law(3). Therefore, the von Karman O DI180-1 (Q=1.6Vs,Re=4.5x 10"

constant in adverse pressure gradient open-channel Clod X D180-2 (Q=32Us Re=89x10%)

flows could be investigated for the first time in the 4 DI§0-3 (Q=48 s Re=l4x 109

present study. Figure 6 shows the variations of the 5l \ i

von Karman constant x against the pressure S %

gradient parameter B in the equilibrium region. — As=5.29 S

Figure 6 also shows Nagano’s data in N As=-0218 + 5.08 \X\D"\ N
. non-equilibrium adverse pressure gradient boundary (-1<B<71) %

layers. The Karman constant does not change C é E— ; e "‘ —— é e A

significantly. In contrast, Nezu & Rodi(1986) made B

clear that the von Karman constant in uniform .

open-channel flows (zero pressure gradient flows) is Figure 7 Integration Constant

not affected by the Reynolds and Froude number.

Therefore, the Karman constant in open-channel 30 ey | I A I A e T

flows is independent not only of the Reynolds and B, B=-0928+ 2508 (-1<B<7.1)

25~ p
Froude number but also of the adverse pressure \4 * — B=26
(Uniform flow)

gradients. 201 . T—x |
Nezu & Rodi(1986) showed that the e . =T
integration constant in the uniform open-channel 15 Non-uniform flow ® .

. . . . .1 (Q=1.6Vs, Re=4.1110°)

flows is unmiversal constant irrespective of the 1ok § g}%gé (&,3 2 11:‘ Re=8.1 i 109
Reynolds and Froude number. In contrast, it was ¢ Di353 (Q=448V5vk°’1‘2“g:) ® N?;gggg)etal

: : : : . © DI80-1  (Q=1.6Us Re=45x10°) R
pointed out tbat the integration consta.nt in adverse 5 % DIs0-2 (=32 Re89x10Y  Boun dary Layer
pressure-gradient open-channel flows is affected by 4 DIs0-3 Q=481 R&:Mxlxo") )
the pressure gradient by Nezu e al.(1994). Figure 7 ° [ 2 4 & 8
shows the variations of the integration constant A, B

in the log-law against in the equilibrium region. . . .
. & . & p d . . & Figure 8 van Driest’s Damping Factor
The integration constant decreases with an increase -

of B . This tendency agrees with that of Nagano’s
data. An empirical relation between A, and B is proposed as follows:

Ay =-0215+508 (-1=$=<71) (13)
The value of A is 5.29 at - B =-1(uniform flow), which coincides with Nezu & Rodi’s data.

In the case of uniform open-channel flows, the damping factor B is constant(=26). Figure 8 shows the
relationship between the damping factor and B in the equilibrium region, together with Nagano’s data. Although
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both of the present and Nagano’s data decrease 14
against f, these do not coincide with each other. I
1.2

D135-1 (Re=4.1x10%)
D135-2 (Re=8.1x10%
D135-3 (Re=1.2x10%

D180-1 (Re=4.5x10%)
DI180-2 (Re=8.9x 10°) A
DI80-3 (Re=1.4x 10% o/

This is because the flow of Nagano’ experiment is
non-equilibrium. Therefore, flow characteristics may 1.0
be affected by not only by pressure gradient but also

PX0O ©o0OM ]

| IEUEUE WAPITIR OO

by the flow history. The line in Figure 8 is a new 08 S T R
experimental formula as follows: 06 g;loéogi 5 g).«ts
B=-0928+2508 (-1sBs71) (14) @ - Grisincral 557

0.4 (-27<B<164)
% --- Song & Graf (1994)
T=0.0880 + 0.33

Eq.(14) also shows the value of uniform flows, i..,
B=26at f=-1.

PO Vo o vor e o e

G TR TR T T T T T T TR

0.2 2
. 7 TI=0.063B+0.263 (45<B<04)
In the case of zero pressure gradient & Cl<B<TD .
boundary layers, the velocity profiles in the inner o0 ) 5 10 15

region are described well by the log-law(4). B
However, those in the outer region deviate from the
log-law. Coles(1956) found that those in the outer
region are described well by the log-wake law(12) in
zero pressure gradient boundary layers. Mellor & Gibson(1966) measured the equilibrium boundary layers and
indicated that the velocity profiles are also described by the log-wake law. Coles & Hirst(1968) pointed out that the
wake strength parameter depends on the pressure gradient parameter. The empirical formula which described the
relationship between the wake strength parameter and the pressure gradient parameter was proposed by White(1974)
as follows:
M =08(8; +05™ , (15)

Song & Graf(1994) pointed out that the log-wake law is also valid in the outer region in adverse pressure
gradient open-channel flows and the wake strength parameter IT depends on the pressure gradient parameter 8 in

Figure 9 Relationship between I1 and S

equilibrium regions:
M=00836+033 (-45=s8=04) (16)
In their experiments, however, all aspect ratios (=channel width / flow depth) are less than 5 (Nezu &
Nakagawa(1993)’s criterion). Therefore, the flow characteristics in their study may be affected not only by the pressure
gradient but also by the secondary currents.
Nezu et al.(1994) also presented the relationship between IT and g in adverse pressure gradient
open-channel flows.
M=0068+045 (-21=p=28) a7n
However, their flow was not in equilibrium.
Onitsuka et a/.(1997) measured equilibrium open-channel flows by making use of X-type hot-film anemometer
and shown the relationship between IT and S.
M=0078+027 (-27=sp8s164) (18)

They could not measure the viscous sublayer. As a result, the friction velocity is evaluated by the log-law. However the
von Karman constant and integration constant were adopted by the values in uniform open-channel flows (x =0.412,
A;=5.29). In contrast, Nagano et a.(1993) and Nezu ef al.(1994) pointed out that the integration constant is affected
by the pressure gradient. Therefore, the Eq.(18) is not valid. It can be said that there is no empirical formula which
describes the relationship between the pressure gradient parameter and the wake strength parameter in equilibrium
open-channel flows.

Figure 9 shows the variations of the wake strength parameter II against the pressure gradient parameter S,
together with the data and empirical formulae (16)-(18). It can be seen that the wake strength parameter II increases
with an increase of the pressure gradient parameter . A new empirical formula is presented here that the flow is in
equilibrium as follows: .

M=0.0638+0263 (-1=p<71) 19
In the Eq.(19), I takes 0.2 when B is —1. This coincides with the value in uniform open-channel flows measured
- by Nezu & Rodi(1986). ‘
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Turbulence Intensity

In the case of wall turbulent flows such as boundary
layer, pope flow and open-channel flow, it is well
known that the turbulence intensity u'/U. in the

viscous sublayer is described by the following
equation:

W

2 =C-y*

u. "
Nezu & Rodi(1986) and Onitsuka & Nezu(1998)
investigated experimentally that the coefficient C
is almost constant irrespective of the Reynolds and
Froude number in uniform open-channel flows.
Figure 10 shows the distributions of turbulence
intensity u' normalized by the friction velocity U

(20

in the viscous sublayer, including Eq.(20) shown by
a straight line. In the uniform region (x/L <0), the
distributions of the turbulence intensity in the
viscous sublayer is described well by Eq.(20). The
values of u'/U. are larger than those of uniform

open-channel flows. However, the shape of the
distributions is almost linear. The coefficient C is
calculated from the Eq.(20) by making use of the
least square method. Figure 11 shows the behavior of
the coefficients C against f considering C =0.3
at B =-1 in uniform flow, we can obtain the

following empirical formula, which is shown in
Figure 11.
C=00118+0311 (-1=Bs=7.1) (21)

Eq.(21) shows that the magnitude of the increase of
the turbulence intensity in adverse pressure gradient
open-channel flows.

Marusic et al(1997) pointed out that the
profiles of turbulence intensity in the buffer and
inner layers normalized by inner variables depend on
the Reynolds number in zero-pressure gradient
boundary layers. In the present flows, the Reynolds
number is constant toward downstream. Therefore,
the Reynolds number effects can be ignored. Figure
12 shows an example of distributions of u'/U.

near the wall. The curved lines are the
semi-theoretical formula which was proposed by
Nakagawa & Nezu(1978) as follows:

1

;]‘ =D, exp(— A, ; )I’ +Cy(1-T) (22

* *

I‘=1-—exp[—; )

@3

ut
D, =226, A,=0.88and B, =10 were obtained by
Nezu & Rodi(1986). The feature of Eq.(22) is to take
the maximum value at y* =17. In the uniform

region ( x/L <0), the turbulence intensity is

2.5 T T T T
, 0 %L=0.056 Fr=0.14
u/Us| o xL=005 Fr=014
A x/L=030 Fr=0.10
2.0 o0 x/L=0.60 Fr=0.084 ~ -1
% x/L=0.80 Fr=0.073
% x/1=090 Fr=0.070 ]
& ¥/L=1.00 Fr=0.068 =] b, 9
1.5~ +
—""'UV/U*=O.3Y
1.0
5 =
¢ D180-1
(Q=1.6 /s Re=4.5x 10%)
0.0 1 1 ]
0 1 2 + 3 4 5
y
Figure 10 Turbulence Intensity in Viscous Sublayer
0.6 [ e e
C : from u/Us = Cy (Viscous Sublayer)
0.5 b -
— C=0.011B + 0.311
(1< B <D
0.4 b
L o3
X DI35-1  (Q=L161Vs, Re=4.1 x 10%) =05
ozk O DI352 (Q=32UsRe=8.1x10% -
’ o D135-3  (Q=4.8 s, Re=12x10%
o4l © Di80-1  (Q=L6ls, Re=4.5 x 10%) |
: x DIB0-2  (Q=321Vs Re=89x10°)
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Figure 12 Distributions of Turbulence Intensity near the Bed
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described well by the Nakagawa & Nezu’s formula.

In contrast, the values of u'/U. increase toward 18 ! T T T .
downstream in the decelerated region. The formula 2 D180-3 (@Q=48Vs,Re=14x10)
of Eq.(22) can described well the experimental data. 8 vL=1.0
! e e 148 ° 0 4 hag
Figure 13 shows the distribution of the ° oo
streamwise turbulence intensity u'/U. in a whole =,
depth, together with the Nezu & Nakagawa’s 12 00000 0 0 o o o */L=0.9
empirical formula: 8 °© 0 o0 4557
u' 228
U =D, exp(— A’u's) (24) 1 g Rc0000 0 o g °o o o x/L.=0.8
o8 -
The turbulence intensity takes the maximum very ° ° oo
clear to the channel bed in every section. This 00
feature is one of the characteristics of the wall -5 8 °9%0 0 o0 o o x/L=0.6
turbulence. In contrast, it can be observed that the ? 1 ° o o oo N
turbulence intensity also takes the maximum a little ), -
far away from the bed in decelerated region. %000 0 o 4
& °o 4 %/L=0.3 S
CONCLUSIONS "‘ &9 _aq
o .
o %94
The turbulence measurements in open-channel flows 4 "o */L=0.05
with adverse pressure gradients were conducted f’.' ° oTTOTe—s oo
accurately with a laser Doppler anemometer. The ° o
main findings in this study are as follows: ‘ 2 Teeao A 4 x/1.=-0.056
1) In the region of x/h,>25, the pressure gradient T 9% o0°
M & ko P g —— U/U.=2.26exp(-0.883/h)
parameter does not change toward the downstream. o ' : i |
Therefore, the flow is in equilibrium. 6.0 0.2 0.4 0.6 0.8 1.0
(2) The profiles of the streamwise velocity y/h

component in the inner- and outer-layers in the

equilibrium region are expressed well by the Figure 13 Distributions of Turbulence Intensity in Whole
log-wake law. The integration constant, van Driest’s Depth

damping factor and wake strength parameter are

affected by the pressure gradient. In contrast, von Karman constant is a truly universal constant.

(3) The shape of the turbulence intensity distributions u'/U- in the viscous sublayer is almost linear. The gradient of
this linear law increases with an increase of the pressure gradient parameter.

(4) The turbulence intensity takes a maximum not only very near the bed but also near half depth.
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