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SYNOPSIS

First and second-order flux-difference splitting schemes for free-surface flow simulations are combined
with the Preissmann slot to simulate flows in a closed conduit, wherein the flow may change from free-
surface to pressurized flow and vice versa. The models can simulate conduits with uniform cross-sections of
arbitrary shape as well as with bed slope and bed friction. The models are verified with available
experimental data on free-surface-pressurized flows for pipes and rectangular conduits. Thereafter, the
models are tested against some exacting sample problems. It is demonstrated that the models yield very
reasonable results in all the cases considered. A sensitivity analysis is performed for the size of the slot and
useful conclusions are drawn from the study for the simulation of free-surface-pressurized flows.

INTRODUCTION

Flow in a closed conduit can be fred-surface, pressurized or free-surface in some reaches while
pressurized in others. Flows in a conduit with transitions from free-surface to pressurized flow, and vice
versa, are called free-surface-pressurized flows. Such flows may occur in sewers, tailrace tunnel of a
hydropower plant, tunnels of morning glory spillway, diversion tunnels, etc. Since free-surface and
pressurized flows are governed by different equations, the simulation of free-surface-pressurized flows
becomes problematic. However, a comparison of the governing equations for free-surface and pressurized
flows reveals that the equations are identical if the depth of flow in the equation for free-surface flows is
assumed equal to piezometric head in the case of pressurized flows (1).

Following this similarity, Priessmann developed a technique wherein a very narrow slot is assumed at
the top of the conduit in such a way that it does not add to the wetted perimeter and its contribution to the
flow area is negligible. This interesting concept facilitates computation of free-surface-pressurized flows by
the shallow water equation alone.

Wiggert (2) computed free-surface-pressurized flow by a shock-fitting model and verified the numerical
results with his experimental data. Baines et al.(3) did some preliminary works on the application of Roe’s
upwind TVD scheme to flows with steep waves in plant channels. They computed only one case of free-
surface-pressurized flows and termed their outcome as inconclusive. Capart et al.(4) used the Pavia Flux
Predictor scheme to compute the flow in sewer pipes and verified their model with experimental and field
data. The model was found to accurately compute the considered cases. Garcia-Navarro et al.(5) presented
an implicit method for computing the flow in channels and pipes. The model was reported to yield
reasonable results for transient flows, particularly the flows with continuous or discontinuous steady states.

In this paper, flux-difference splitting schemes of Roe(6) and Lax-Wendroff, which have been well
studied and found accurate in case of free-surface flow simulations (7,8), are combined with the Preissmann
slot to simulate free-surface-pressurized flows. The models inclide bed slope and bed friction. The models
are successfully verified against the experimental data of Capart et al.(4) and Wiggert (2). The models’
applicability is tested with the problems of surge propagation in rectangular conduits. Finally, a sensitivity
analysis is performed for the width of the slot with respect to the width of the conduit. ‘
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GOVERNING EQUATIONS
The governing equations for one-dimensional free-surface flows can be written as

WU E o o )
ot Ox

where U = vector of unknowns; E = flux vector; and § = vector containing source and sink terms. The vectors
are given by

U=(A uA)  (2a)
E=(A u?A+gF,) (2b)
$=(0 -gAS,-Sp)" (20)

where A = flow area; u = flow velocity; g = acceleration due to gravity; S, and S; = bed and friction slopes;
and F, = hydrostatic pressure term defined as the first moment of the flow area about the free surface. The
flux vector E is related to U through it’s Jacobian J as
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where W(n) = conduit width at a distance 1 from the conduit bottom. The governing equations are known to
be hyperbolic, which means that J has a complete set of independent and real eigenvectors expressed as

1
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where ¢ = celerity. The eigenvalues of J are given by

N2 =uzxc (6)

Roe (6) constructed an approximate Jacobian in place of J, which makes the resulting scheme
conservative. The approximate Jacobian uses following average value of velocities
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and with the following definition of operators
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the average celerity is given as
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FIRST-ORDER SCHEME

Roe’s first-order accurate flux difference splitting scheme for one-dimensional transient free surface
_flows can be written as

Ut =ut -Y[Fiiuz - i{m] o

where i and t = space and time indices, respectively; y = At/Ax; At = time increment; and Ax = finite
difference grid size in space. The treatment for the source term will be discussed later in the paper. All
variables are computed at a known time level ¢, if not indicated otherwise. Fiip and Fi .y, are called
numerical fluxes and are expressed as
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The superscript of F indicates numerical flux for Roe’s first-order scheme. The wave strength, o is
defined as k

12 _ - _
%itin =eiz1pAUip : (12)

AU =Ujy - U ‘ ‘ , (13)

Roe’s scheme is conservative and consistent with the governing equations. However, it violates energy
inequality condition in case of a rarefaction wave. The most common remedy for this problem is to replace
the modulus of A in Eq.11 by a small positive quantity & whenever the modulus of A is less than . The value
of & can be set by trial but this paper uses the formula suggested by Harten and Hyman (9).

SECOND-ORDER SCHEME
The second-order accurate scheme is obtained by using the Lax-Wendroff numerical flux in Eq.10.

Using the approximate Jacobian of Roe(6), the Lax-Wendroff numerical flux can be written as

2
FY =05(E, + Ei)- O‘SZ M
k=1
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where ¢ = flux limiter, designed to prevent numerical oscillations due to the second-order of accuracy. The
flux limiter is a non-linear function of

ko=l gk ko
Tivif2,j = [ai+1/2—sign(7~»li(+l i / a‘“’“] (13)
We use the Van Albada limiter (10), which is expressed as
2 2
P=(@+r)(1+r%) (16)
SOURCE TERM

The source term in the present study includes bed friction as well as bed slopes. The bed friction is
computed by the Manning’s formula as

amn
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where n = Manning’s roughness coefficient; Q= flow discharge; and R = hydraulic mean radius defined as
R=A/P wherein P = wetted perimeter. In case of pressurized pipe flows, the following formulas can be used
to compute flow depth/piezometric level, hydrostatic pressure term, and wetted perimeter. Let A¢= full cross-
section area of the conduit, P= wetted perimeter at full flow, he= maximum height (diameter, d in case of a
circular pipe) of the conduit, and by = width of the slot.

h:hf+A‘Af (18)
bs
2
F, :A{O.Shf + A‘Af} (A-A) , (19)
b, 2b,
P=P (20

The bed slope term contains the derivative of bed level with respect to the independent variable x.
Following Roe (11), the bed slope term should be upwinded in the same way as the flux term E, the details of
which are referred to Jha et al.(12).

NUMERICAL STABILITY

The scheme presented herein must satisfy the well known CFL condition for stability. Therefore, the
new time increment is computed at the end of each calculation step by the following formula

min(Ax)

ALC —F—%
= " max(u +c)
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where C,= the Courant number.
NUMERICAL RESULTS

The models are first verified against available experimental data for free-surface-pressurized flows in
circular pipes and in rectangular conduits. The case with a circular pipe is taken from Capart et al.(4). The
experiments were conducted in a 12.74m long closed conduit of circular cross-sections connecting two tanks.
The pipe had constant inside diameter of 0.145m but had three different longitudinal slopes in three sections
as given below;

00m < x< 3.48m 0.01954 m/m
348m< x< 9.23m 0.01704 m/m
923m< x< 12.74m 0.01225 m/m

A constant discharge of 0.0042 m’/s was provided from the upstream end throughout the experiment.
This resulted in a supercritical flow throughout the pipe. The water level in the downstream tank was then
raised by means of an outflow control weir, and a jump was eventually formed which traveled upstream in the
pipe leaving pressurized flow behind. Just before the jump could reach the upstream end of the pipe, the
water level in the downstream tank was drastically reduced which allowed the flow to return to its initial free-
surface flow. The measured water level in the downstream tank is used as the downstream boundary
condition in the numerical computations. The water/piezometric levels were recorded at seven points along
the pipe: at x-0.325m, 1.135m, 3.06m, 5.505m, 6.835m and 7.6m. Other details of the experiment may be
referred to Capart et al.(4).

The computations are carried out with Ax = 0.1m and the Courant number = 0.6. The slot width is
specified as 10% of the pipe diameter. Figs.1 and 2 show the computed and recorded water surface profiles at
25s, 45s, 65, 85s, 105s, 125s and 145s by Roe and Lax-Wendroff schemes, respectively. During these times, -
the jump forced by the raising of water fevel in the downstream tank advances upstream. Soon after 65s, the
flow in the lower parts of the pipe becomes pressurized while in the rest of the pipe free-surface flow prevails.
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Fig.1 Surge moving upstream in a closed pipe by Roe Scheme.
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Fig.2 Surge moving upstream in a closed pipe by Lax-Wendroff Scheme.
Line — Computed, Symbol — Observed (Capart et al.(1997))

It can be seen from the figures that the models correctly compute the surge height and the celerity, both in the
free-surface flow and in the pressurized flow regions. There is no noticeable difference between the results
obtained by the Roe and the Lax-Wendroff schemes. :

The water level in the downstream tank rises till 162s, when the surge is close to the inlet but yet to
cause drowning of the inlet. Then the downstream water level is lowered suddenly. The surge begins to
recede towards the downstream end and eventually the initial flow is restored. The water surface profiles
during this depressurization phase are shown in Figs.3 and 4. The profile at 169s returns to fully free-surface
flow and at 200s the initial flow profile has been fully restored. The computed profiles again compare very
well with the observed data and there are again no significant differences between the results by the Roe and
the Lax-Wendroff schemes. It may be noted that the experimental data used in this figure are different from
Capart et al.(4). It has been confirmed through personal communications that the data given in Capart et
al.(4) is partly in error. We have obtained the correct data from the first author for use in this paper.
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Fig.5 compares the computed and observed depth hydrographs at three locations along the pipe. The
observed depth hydrographs were obtained by piezometers. The figure shows the computed results only by
the Roe scheme for clarity. The model results compare reasonably with the recorded data in this figure as

well.

The models are next verified with experimental data for a free-surface-pressurized flow in a rectangular
conduit. The experimental data is taken from Wiggert (2). The data is measured for the flow in a 10 m long
horizontal conduit of 0.51 m width and 0.148 m depth and Manning’s roughness coefficient equals 0.012.
The initial condition is 0.128 m deep still water throughout. The upstream boundary condition is specified by
a depth hydrograph and the downstream boundary condition is a fixed water level. The recorded piezometric
level at 3.5 m from the upstream end is used for comparison. The computations are carried out with Ax = 0.1
m and Courant number = 0.6. The results are shown in Fig.6. It can be seen that the computed results agree
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Fig.3 Surge receding downstream on lowering of water level in the downstream tank by
Roe Scheme. Line — Computed, Symbol — Observed (Capart et al.(1997))
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Fig.4 Surge receding downstream on lowering of water level in the downstream tank by
Lax-Wendroff Scheme. Line — Computed, Symbol — Observed (Capart et al.(1997))

reasonably well with the observed data.
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It is understood from these figures that the accuracy of results obtained by Roe’s first-order accurate and
Lax-Wendroff’s second-order accurate schemes are almost identical. Hence, Roe’s scheme may be preferred
on the basis of its simplicity and less computation time. Therefore, the results by only Roe’s scheme are
presented in the following.

The model is now applied to conduits of rectangular cross-sections. The computations are carried out for
the conduit of length 100m; the base width is assumed to be Im. The Ax is 1m. The conduit lies horizontal
and is frictionless. The computations for these cases are also carried out with a slot width equal to 10% of the
conduit width.

In the first case, a uniform flow with the depth of 1m and the velocity 2 m/s flows through the conduit. At
the start of the computation, a zero outflow condition, which simulates sudden closure of the conduit, is
imposed at the downstream end. A surge is formed which travels upstream leaving still water behind. For the
first run, it is assumed that the conduit is open at the top, so that the flow is never pressurized. Thereafter, the
conduit is closed at a height of 1.5m. This causes the conduit to be pressurized from the downstream end as
the surge is formed. The water surface profiles, for an open as well as a closed conduit, at 5s, 10s, 15s and
20s are shown in Fig.7.
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Fig.8 Surge entry and pressurization from upstream

It may be noted that for an open conduit, the analytical solution is also available. The numerical results
perfectly agree with analytical solutions but the analytical solutions are not shown in the figure for the sake of
clarity. As can be seen from Fig.4, the piezometric level rises higher than the case of a fully open conduit,
which is expected. It is also noticed that at the interface between free-surface and pressurized flow zones,
there are some oscillations.

In the second case, the conduit has 1m deep still water in the beginning and is closed at the downstream
end. A constant discharge of 2.0 m’/s is imposed at the upstream end, which creates a surge that travels
downstream. As in the previous case, the result for open conduit is obtained first. Thereafter, the conduit is
closed at a height of Im. This generates pressurized flow with larger piezometric heads and faster celerity.
The results are shown in Fig.8. It can be seen that the pressurized flow reaches the downstream end much
faster than the case of fully free-surface flow, and at 10s and 15s the pressurized flow is travelling upstream
after being reflected from the downstream end. The analytical solution for fully free-surface flow case is -
again not shown in the figure for the sake of clarity, but it is noted that the computed results very well agree
with analytical solution for this case. The model reasonably computes pressurized flow and its reflection.



83

S, =0.01,/0.05,0.1,0.25, 0.5, 1.0

Piezometric Level (m)
—
; o

b .
—
-

A
-

y
I

y
3
——

0 20 40 60 80 100

Distance (m)
Fig.9 Sensitivity analysis for slot width

Finally, a sensitivity analysis is carried out to examine the effect of the slot size on the solution. The
conduit is 1m wide and 1.5m high with 1m deep water flowing at 2 m/s as initial condition. . The propagation
of reflected surge following sudden closure at the downstream end is simulated with different ratio S, of slot
width b to conduit width b. Five values of the ratio of slot width to conduit width, S; = 1.0, 0.5, 0.25, 0.1,
0.05, and 0.01, are used. The computed results at 20s are shown in Fig.9. It is seen from the figure that the
piezometric levels do not change much when S, is reduced further from 0.1 and the celerity also becomes only
slightly faster. On the other hand, it is seen that the oscillations originating at the interface between free-
surface and pressurized flow propagate throughout the surge and their amplitude increases considerably.

CONCLUSIONS

Roe and Lax-Wendroff flux-difference splitting schemes have been applied to free-surface-pressurized
flows utilizing the concept of the Preissmann slot. The resulting models have been verified with experimental
data for flows in pipes and rectangular conduits. The models’ applicability has been tested with the
applications to propagation and reflection of surge in rectangular conduits. The slot size used in the models is
10% of the width of the conduit. This value, besides giving accurate results, has been found to be most
reasonable through a sensitivity analysis. This work shows that the first and second-order FDS schemes, with

all their good features ascertained in case of free-surface flows, can also be a very good tool for simulating
free-surface-pressurized flows.
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APPENDIX - NOTATION
The following symbols are used in this paper :

A = cross-sectional area of flow;

= conduit width;

= width of slot;

= Courant number;

= celerity;

= flux matrix;

= matrix of eigenvectors of J;

= numerical flux;

= hydrostatic pressure force;

= acceleration due to gravity;

= flow depth;

= Jacobina of E;

= wave number;

= Manning’s roughness coefficient;

= flow discharge;

= hydraulic mean radius;

= ratio of wave strength for flux limiter;

= matrix containing source terms;

= friction slope;

= bed slope

- ratio of slot width, by to conduit width, b;

= vyector for flow variables;

= flow velocity;

= channel width at distance 1 from channel bottom;
= time increment;

Ax = grid size in x-direction;

o = wave strength;

8 = small positive quantity;
¢ = flux limiter;
Y
n
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o o
@

=
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fl?

= At/Ax;
= integration variable indicating distance from channel bottom; and
= eigenvalues of J.
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