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SYNOPSIS

A direct numerical simulation method using a regular grid under a generalized curvilinear coordinate system is
presented which can reproduce flows in complex geometries. In this paper, at first a one-dimensional linear convection
problem was considered to investigate the accuracy. The results showed that defining a grid with certain types of
unequal spacings causes substantial phase errors in numerical solutions due to metric discontinuity. Next, a regular grid
under a generalized coordinate system was used to analyze free surface turbulent flow with a Reynolds number of 150
defined by friction velocity. It was shown that this method resulted in sufficiently stable calculations. In addition, a
comparison with direct numerical simulation of open channel flow using a staggered grid verified that this simulation
gave reasonably satisfactory predicts with respect to high order moments of velocity fluctuations.

INTRODUCTION

Recent advancement in computer technology has offered new insight into the phenomerion of turbulent flows. In
particular, the numerical analysis method called direct numerical simulation (DNS), which is purely based on physical
laws without a turbulence model, is expected to be very useful because of the versatility and reliability of the
Navier-Stokes equations (19).  However, application of DNS to turbulent flows with complicated boundary shapes or
high Reynolds numbers poses a challenge to engineers who are making various efforts to overcome the related difficulties.
While staggered grids have conventionally been used for computation, non-staggered grids are becoming more frequently
used.  For instance, studies on collocated grid systems have advanced rapidly due to their applicability to generalized
coordinate systems (8),(12).

Application of DNS to turbulent channel flow with free surfaces such as rivers and seas was first attempted by Lamn
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& Banerjee (11).  Since then, this approach has provided important information on turbulence structures and mass
transport mechanism near free surfaces (Komori, et al (9); Hundler et al (4); Nagaosa and Saito (13),(14); Nezu and
Yamamoto (17)), which are difficult to investigate experimentally. ~All of these studies have employed either the spectral
or finite difference method using a staggered grid and there have been no attempts to use a regular grid for calculations.

With the aim of applying DNS to complex boundary flow fields, the authors (3) developed a DNS scheme with
good computational accuracy and numerical stability; this was done by using a regular grid in a generalized coordinate
system to allow the application to arbitrary boundary conditions and the reduction of computing loads, and also by
coupling a high-order accuracy upwind finite difference scheme with a high-order temporal discretization method. Asa
first step, the DNS scheme was applied to parallel plate flows to make a comparison with a spectral method. A
reasonable good agreement was demonstrated by turbulence statistics and the budget of Reynolds stress even on a coarse
grid.  Thus, the precision and usefulness of the DNS scheme were verified.

In this study, a one-dimensional convection problem is considered to show that setting an unequally spaced grid
(non-uniformly spaced grid), together with other aspects, is important to ensure solution accuracy in a regular grid
application with a generalized coordinate system. Another aim of this study is to extend the application of DNS using a
regular grid in a generalized coordinate system to open channel turbulence for verification of accuracy and effectiveness.
Also, properties of free surface flows are discussed in comparison with parallel plate flows.

SETTING OF NON-UNIFORMLY SPACED GRID
Outline of Grid System

Computational grids can be classified into regular and staggered grid systems according to the arrangement of
evaluation points of velocity and pressure.  Staggered grids have mostly been used in spatial discretization methods of
flow analysis either in the MAC or SIMPLE method because staggered grids can suppress numerical vibrations.
However, staggered grids require a lot of interpolating operations, and computing loads become tremendous when a -
generalized coordinate system is used.  The selection of a grid system therefore is closely related to the compactness of
turbulent flow calculations. By contrast, regular grids are known to suffer from spatial vibrations in the solution (18).
However, they are convenient for programming because all physical quantities are defined at the same point. Other
benefits of regular grids are suitability for improving the accuracy of the solution and easy conversion into a generalized
coordinate system which is effective in dealing with complex boundary problems. Numerical vibrations can be
removed by adopting a non-uniformly spaced grid (3) so that efficient simulation can be realized by using a coarse grid
over the areas where spatial changes of velocity are small, except a near-wall region. -

Effect of Non-Uniformly Spaced Grid

Since adoption of the non-uniformly spaced grid generally decreases accuracy, the effects of this type grid on the
numerical solution are discussed here for a one-dimensional linear convection problem (7) given by Eq.1.

8
Uyl o (U=1, w<x<wx)
ot dx
1
1-cos(2x-x) =@ k72 M
et 2B Zexs
2 2
u(x,0) = )
0 . otherwise

As shown in Figure 1, three types of grids are used: a uniformly spaced grid, a smooth non-uniformly spaced grid (A)
with continuous metric x ;, and a smooth non-uniformly spaced grid (B) with discontinuities in metric x .. Since the



exact solution of Eq.l is actually identical to the
initial waveform and does not change with time, the
numerical solution after the m-th cycle is compared
with the exact solution by adopting periodic
boundary conditions in the x-direcion.  The
third-order Adams-Bashforth scheme is used for
temporal integration (3).

Figure 2 presents a comparison of waveforms
after 50 cycles of computation for a Courant number i
of 0.1. - Graphs (a) through (c) in the upper part are 0 legheeeet”
based on a central difference scheme, whereas
graphs (d) through (f) in the lower part are based on
an upwind difference scheme. Fig. 1 Coordinate transformation
The non-uniformly spaced grid (A) results in a slightly
greater attenuation error than the uniformly spaced grid.  This is probably caused by the fact that accuracy is diminished
by one order when the grid spacing does not change smoothly in a non-uniformly spaced grid, as can be inferred from the
truncation error of the second-order differential approximation deduced by the Taylor expansion (2),(6). Graphs (c) and
(f) suggest that this accuracy loss can be compensated by adopting a higher-order finite difference approximation.  As for
the non-uniformly spaced grid (B), not only attenuation error but also phase error are generated in all cases.  Because
this grid has the same smoothness as the non-uniformly spaced grid (A), the phase error would appear to be related to
discontinuities in the metric x . ‘ V

Regarding the finite difference scheme of convection terms, upwind difference schemes can be expressed as a sum
of central differences and the numerical viscosity term.  Therefore, the central difference schemes of graphs (a) through
(¢) become the upwind difference schemes of graphs (d) through (f) by adding the second-, fourth-, and sixth-order
differential truncation errors (numerical viscosity), respectively. Accordingly, the effect of numerical viscosity can be
investigated by comparing the graphs in the upper part of Figure 2 with those in the lower part. - ‘While numerical
viscosity has the effect of suppressing vibrating solutions found in the central difference, the effect is more profound in
lower-order upwind differences so that the solution itself becomes skewed. Even third-order upwind differences, which
are often used in practical computations, are not suited for turbulence calculations in which very high accuracy is required.
The fifth-order upwind difference functions as a high-cut filter that removes only high-wavenumber components with
little adverse effect on solutions.  In central diﬁ'erénces,» even in the case of high order accuracy, nonlinear instability is
likely to be triggered by dispersibility caused by odd-numbered differential truncation errors (5). By contrast, the
fifth-order upwind difference is effective in temoving aliasing errors caused by high-wave number components
continuously generated from nonlinear terms and in suppressing numerical vibrations having no physical meaning.
Accordingly, in the present study’s analysis using a regular grid in a generalized coordinate system, a non-uniformly
spaced grid with sufficient smoothness and a continuous metric is generated, and the fifth-order upwind difference
scheme is used for the convection term.
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' NUMERICAL SIMULATION OF OPEN CHANNEL FLOW
Flow Configuration

~ We simulated a fully developed turbulent flow in an open channel with a solid bottom and a free surface, applying
the zero Froude number approximation (1) that permits no deformation, as shown in Figure 3.  Periodic boundary
conditions are given to the streamwise and spanwise directions, so that the flow field is free from the effect of side walls.
The flow is induced by gravity, and correspondingly the x-axis makes an angle 6 with the horizontal. The relationship
between friction velocity and gravity is given by

u, =+/ghsin@ @
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(b) 4th central difference (c) 6th central difference
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Fig.2 Comparison of waveforms for different types of grid spacing (¢ = 0.1, x/2 7= 50)

‘When reference pressure is defined by equilibrium between gravity and static pressure, and the relationship between
friction velocity and average pressure gradient is used, non-dimensional gravity is equivalent to setting the average
pressure gradient to -1, Therefore, the effect of gravity can be incorporated into the computation by including the
average pressure gradient in the x-direction.  As a result, Reynolds number becomes the only variable parameter in the
present computation.  To make a comparison with the results of Nagaosa (19) obtained with a staggered grid, the
computational domain was set to have a water depth 4, streamwise length 2 74 and spanwise width 7/  in the case of a
Reynolds number of 2280 defined by the mean velocity and depth. This figure corresponds to a Reynolds number
defined by friction velocity of about 150, and the computational domain can be indicated by inner variables as x'= 942,
Y = 150,and ' 471, Afine grid of 96X 97X96 and a coarse grid of 64 X 65 X 64 were used to investigate
the effect of grid spacing on upwind finite differences. Taking the discussion on grid generation in the previous chapter
into account, a hyperbolic tangent (tanh) that is smooth with a continuous metric x , was used. ~ Figure 4 shows a
longitudinal section of the coarse grid, where the simulation was efficiently intended in accordance with flow properties; a
sufficient number of grid points were arranged to enhance the spatial resolution in the free surface region and the wall
region (spanning from the viscous sublayer to the buffer layer) where the wall turbulence is active.  Grid points were less
densely arranged in the infermediate region. ~ As a result, spatial resolution was about 4x"=9.8, 4 Yy =0.1-2.8, and



Fig. 3 Flow geometry and axes system
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Fig. 4~ Coarse grid generation (x-y section)

A4z =49 in the fine grid, and ‘Ax* =147, Ay"=0.1-67,and Az"=7.4 in the coarse end.

Computational Method

The continuity and Navier-Stokes equations were the basic formulas to be solved, and the MAC method was
adopted for the solution of pressure. Because the flow field is an open channel between a flat bottom and a free-slip top
surface, coordinate axes are perpendicular to each other Therefore, the variable conversion is a one-dimensional

coordinate transformation given by

x=x(5), y=ym, z=z() 3)

Applying the chain rule to the above equation, and expressing the first- and second-order differential in the computationial
plane, the Navier-Stokes equation becomes
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Likewise, the Poisson equation for pressure corresponding to the continuity equation is expressed in the computational

plane by
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Using the above basic equations, the analysis was conducted by a fractional step algorithm shown below. In an
evolution equation to deduce an intermediate velocity field, the explicit third-order Adams-Bashforth method was used for
the nonlinear term, and the implicit second-order Crank-Nicolson method was used for the viscous term.  These features
simultaneously allow removal of temporal phase erors (3), compactness by the explicit solution method, good
convergence and numerical stability by the implicit solution method, and reduction of the overall volume of the solution
by separating velocity and pressure as expressed by,
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where, H represents the convection term and » expresses the time level.  Fourth-order discretization of the Poisson
equation for pressure was performed, and the velocity field of a new step was calculated by applying the Euler's backward
scheme to pressure.  The plane Gauss-Seidel method was used for an iterative solution of (6) and (7). The non-slip
boundary condition was applied to the bottom surface. On the free surface, the slip condition was applied to velocity
components #,w and v was set to zefo.

RESULTS AND DISCUSSION

Since a DNS database on free surface turbulent flows has not been established, the accuracy in the present study
was verified by making comparisons with the results obtained by Nagaosa (15) and a representative database of parallel
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plate flows (10) obtained by Kuroda et al. Turbulence statistics were calculated from a time average of 100,000 steps
( 4t=2/1000%h /u ). ) ]

Figure 5 shows mean velocity distributions.  The results of our computation are generally in good agreement with
Nagaosa's data, and little difference was found between the fine and coarse grids when turbulence was fully developed.
However, the coarse grid resulted in slightly greater velocity than the fine grid in the logarithmic law region. When
spatial resolution was low, the mean velocity distribution became similar to the distribution of laminar flow as with
fow-order upwind differences with significant numerical viscosity (3). While a ‘velocity-dip” phenomenon of the
maximum velocity below the free surface is often observed in open channel flows, this phenomenon was not observed in
this study.  This is probably because side wall effects were eliminated by assuming the span to be infinite.

Figure 6 shows turbulence intensity distributions. The results of the fine and coarse grids, in comparison with
Nagaosa's data, are somewhat different; ' s Was overestimated while V' and w' s Were underestimated on the coarse
grid.  Compared with the case of a closed channel, disturbances near the free surface were restricted in the depth
direction and enhanced in the mean stream and span directions; this enhanced anisotropy of turbulence by redistribution is
a characteristic of free surface turbulence. In comparison with parallel plate flows, a significant difference between closed
channel and open channel flows was observed only in the free surface region corresponding to the outer layer (16) (0.6
< £<10). However, no difference was observed between parallel plate and open channel flows in the near-wall region,
where the effect of the free surface is negligible.

Figure 7 shows distributions of Reynolds stress and total shear stress. The results of the fine and coarse grids are
in good agreement with the Nagaosa's data, and there is not much difference between the two types of grids when
turbulence is fully developed.  There is no difference in Reynolds stress or total shear stress between closed channel flow
and open channel flow. ;

Figures 8 and 9 show skewness and flatness factors, which correspond to the third- and fourth-order moments of
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velocity fluctuations, respectively. While our results generally agree with Nagaosa's results, the skewness and flatness of
the fluctuation of v exhibit different trends near the free surface.  While the skewness of the fluctuation of v increases
monotonously toward the free surface in Nagaosa's data, our data show a marked decrease beyond " =140. Our data
also show a prominent peak in the flatness of the fluctuation of v near ¥ =140. 1t should be noted, however, that our
data could not be directly compared with Nagaosa's data, which were obtained by coupling scalar transport equations.
Additional accurate experimental measurements of turbulence statistics near the free surface are required.

Closed channel flows are similar to open channel flows in which the distributions of mean velocity and Reynolds
stress are little affected by the free surface, and any difference in turbulence intensity is restricted to the free surface region.
On the other hand, difference in skewness is prominent even in the intermediate region.  This may be related to boils that
are not observed in closed channel flow, and more detailed investigations are required in this regard. Because free
surface fluctuations and the Froude number were small for the Reynolds number used in this study (1), and the effect of
the free surface was restricted, as discussed above, to the area near the surface, the zero Froude approximation without
taking deformation into account as a boundary condition is considered to be a reasonable approach. k

CONCLUSIONS

We first investigated the effect of a non-uniformly spaced grid on the accuracy of solution by dealing with a
one~dimensional linear convection problem. DNS of open channel turbulent flow was then conducted using a regular
grid in a generalized coordinate system to compare mean flow characteristics and turbulence statistics with existing data.
The following conclusions were obtained from the results :

1) When mapping is conducted by coordinate transformation, large phase errors may occur when there are
discontinuities in metric x,. With generation of a non-uniformly spaced grid, therefore, smoothness and metric
continuity should be ensured to avoid loss of accuracy caused by spatial discretization.

2) Evenif grid points for computing are based on a regular grid in a generalized coordinate system, computation can be
perfectly conducted without instability or spatial vibration by using an appropriate non-tmiformly spaced grid.

3) Numerical results with high accuracy were obtained from a test computation for an open channel turbulent flow,
although some dependence on grid spacing was observed. Considering the ease of handling and reduction in
computing loads, a regular grid can be very useful for spatial discretization.

The computational method developed in this study can be executed with a commercial personal computer and is
considered to be very useful for engineering purposes. The computing time per step on a coarse grid was about 7 sec
using Visual Technology's VT-Alpha 600 .
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APPENDIX - NOTATION

The folldwing symbols are used in this paper :

F =flatness factor ;
H = convection term ;
14 = pressure ;
Re = Reynolds number ;
S = skewness factor ;
t =time ;
u, = friction velocity ;
uw = instantaneous velocities in the x, y and z direction ;

-u'y = Reynolds stress
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UVW = mean velocities in the x, y and z direction ;
1 = intermediate velocity ;
Xz = coordinates in the physical plane ;
XNz . coordinates of streamwise,vertical and spanwise direction ;
At = time increment ;
Ax, 4y, Az = spatial increment in the x , y and z direction ;
Ax', 4y', Az = dimensionless spatial increment in the coordinate x , y and z direction ;
4 = channel half-width ;
Ny = coordinates in the computational plane ; and
v = kinematic viscosity of fluid.
The superscript
+ = non-dimensional coordinate normalized by the viscous length.
The subscript
rm.s =root mean square value.
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