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SYNOPSIS

The concept of artificial neural networks (ANN) is an advanced topic that provides hydraulic
and environmental engineers with a strong tool for estimating the missing information to be used
for design purposes and management practice. In this study, we demonstrate how neural networks
can be used to estimate sediment discharge in rivers by simple extrapolation of reliable data
collected from other sources. The problems in selecting appropriate data, training algorithms and
neural network structure were addressed using a constructive algorithm called Back-Propagation
Algorithm (BPA). Sensitivity analyses based on flow and sediment parameters were also
performed. The sediment concentrations predicted from the neural networks model were in good
agreement with measured values. Error analysis was used to confirm the accuracy of results from
this novel approach using data with wide ranges from several rivers.  Compared with the other
conventional methods for calculating sediment discharge, the neural networks based model
generally gave better results among the well-known previous published methods for calculating
sediment discharge. :

INTRODUCTION

The movement of sediment in streams and rivers is a complex process that is dependent on the
interplay of several variables and parameters. Several approaches have been proposed to estimate
the sediment discharge by using the similarity principle (5), dimensional analysis (2) and analytic
power models (15), etc. Because of the nature of their discrete formulations, some effective
parameters should be disregarded, and consequently the accuracy of the predicted results will
decrease. Recently, the computer science known as artificial neural network (ANN) has found
many applications in several engineering fields. However, as far as we can assess, this computer-
based technique has not yet been used to study practical fluvial engineering problems such as
sediment transport.

In this study, we have evaluated the applicability of a neural networks approach to examine
the environmental problem of sediment transport utilizing the back propagation algorithm (12). The
water and sediment parameters are decided by using the previous conventional dynamic analysis.
Several trials are conducted to decide the effective input parameters and to design the suitable
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structure of the network. The model is trained by real field data, and its parameters are adjusted to
produce the most accurate results. While our computer-based model did provide a more accurate
prediction of sediment discharge than the conventional models currently in use, this study is more
far reaching in that it spotlights how existing global database systems can be used to study
important hydroinformatic and related engineering issues.

NEURAL NETWORKS MODEL
Network Architecture

An artificial neural network represents a net of simple local memory units called neurons or
nodes. Such units are connected by unidirectional links that carry data. The semilinear feed
forward net (12) has been found to be an effective system for discriminating patterns from a body of
examples. Node outputs from one layer are transferred to nodes in another layer through links that
amplify or inhibit data outputs through weighting factors. Except for the input layer nodes, the net
input to each node is represented by the sum of the weighted node outputs in the previous layer.
Each node is activated in accordance with the node inputs, the node activation function, and the
node bias. '

Figure 1 shows the general feed-forward multilayer net model, including a hidden layer, j.
The input pattern constitutes the inputs to the nodes in the input layer, i, representing a set of
variables (x,,%,,.....,%, ). For the model, node outputs in the layer are taken to be equal to node

inputs. Alternatively, the inputs can be normalized or scaled to fall between the values of 0 and +1.
The output layer, k, in the model generally consists of multiple nodes (o,,0, ,....,0,,), although a
single node is sometimes used. Figure 2 shows the simulated structure of the node. The node sums

the product of outputs from nodes of the previous layer and connection weights, and then limits it
by a nonlinear threshold function.
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Fig. 1 Feed-forward multilayer network. Fig.2 Structure of the node.

The net input to and output from the ;'th node of the layer j are
net ; =Zwﬂ 0, ' 1
0, = f(net;) , )]

where o, = output from the /'th node of the previous layer, i; w,, = connection weight between the
nodes i and j; and f = activation function. In calculating a node output, the activation function
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may be considered as a thréshold function, in which generation of a node output occurs once a
threshold level is reached.

General Delta Rule (GDR)

In the learning phase of training such a net, the pattern, x,, is the input parameter, where p is

the pattern number. The weights in all connecting links are adjusted accordingly. Once this
adjustment has been accomplished, another pair of x, and ¢, is presented, and the net learns that

association too, where ¢, is the target value for x,. In general, actual output, 0, , in the output
layer, k, will differ from the target or desired value, ¢, . For each pattern, square of average error
is taken to be

B, =23 (tn-0p ) ©)

The derivative of the error function, E, with respect to any weight in the network is in
proportional to the incremental weight changes. For general delta rule (GDR), the change of
weight for the pair from j'th to /th nodes can be set as

E =&6,0, ~ 4)

Ji

Aw, =—¢
where & = learning rate; &, =—0E/ 0o, f'(net); and f'(net)=0b; [ thet,;.

The deltas at internal node can be evaluated in terms of the deltas at'the upper layer. In
particular, o, is represented by a sigmoid function (7) as

1
0. =
T l+exp[-a(Y,w,0,-6,)]

)

where o = shaping ratio of function f; and 6, = threshold or bias. Then, the following
expressions may be presented, for output and hidden layers, respectively.

Su=(ty—0y)0, (I-0,)a (©)
8, =o0,(1-0,)ay. 5,w, @)
k

Back-propagation Algerithm

‘Using the back-propagation procedure, the net calculates A4, w, for all w, in the net for the

particular p. This procedure is repeated for all the patterns in the training set to yield the resulting
Aw, for all the weights for that one presentation. The correction to the weights is made and the

outputs are again evaluated in feed-forward manner. Discrepancies between actual and target
output values again result in evaluation of weight changes. After complete presentation of the all
patterns in the training set, a new set of weights is obtained and new outputs are again evaluated in
feed-forward manner. This is repeated until a specific error level is obtained.



ESTIMATION OF SEDIMENT DISCHARGE

The pertinent variables in river hydraulics are the water discharge per unit width, ¢ , water
depth, %, longitudinal bed slope, S, channel width, B, bed shear stress, 7, total sediment
discharge per unit width, ¢,, median diameter, d,,, sediment and fluid densities, p, and p,
kinematic viscosity, v , acceleration gravity, g, and fall velocity, w,. The parameters p, and

p are constants. In previous studies, effective parameters for sediment discharge problems are
often presented in dimensionless forms. The most acceptable and wide-use forms of these
parameters are presented in the following expression as

C. = f(v,¢w,/u,S h/dy, F,R. h/B) ®)

where C, =gq,/q = total sediment concentration parameter; y = hS/sd;, = dimensionless bed
shear stress; 5 = submerged specific weight of sediment (= 1.65); ¢ =u,, /u. = velocity ratio; u,
= mean velocity; u. :,/Eh? = shear velocity; w,/u, = dimensionless suspended sediment
parameter; h/d,, = water depth scale ratio; F, =u,/,/gh = Froude number; R,.=u.d, /v =

shear velocity Reynolds number; and 4/ B = stream width scale ratio. The net is set up with eight
parameters of Eq. 8 as the input pattern and the sediment concentration, C,, as the output pattern.

The network is trained with well-shuffled data. Input layer contains eight neurons, while output
layer contains one. Between them, there is another hidden layer with suitable number of neurons
that are under investigation.

Data for Learning and Verification

Measuring the fotal sediment discharge in rivers is difficult under most natural conditions.
Ideally such measurements should be conducted at some locations with natural or even artificial
contraction in the cross section of the river, where the total load is converted to suspended load.
This is not easy done for natural rivers and streams where a wide range of physical situations is
clearly at play. Therefore, for this study the available data sets for flow and sediments in natural
streams, which comprise wide range of situations and contain the total load discharge, are those of
the Niobrara River (3), the Middle Loup River (6), the Hii River (13), and the small streams (1).

Other published data that are unreliable in bed load are excluded in the analysis. The data
group in this study consists of 161 sets. Half of the data were used for the learning process, while
the other half were used for prediction. Dimensionless parameters and their numerical ranges are
summarized in Table 1.

Table 1 Range of data for learning and verification.

Variables Range Variables Range
Bed shear stress 0.10 ~3.68 Froude number F, 0.15~0.56
Velocity ratio ¢ 410~15.0 Reynolds number R, 4.36~135.5
Suspension parameter W,/ u, 0.13~2.39 Stream width ratioc 4/ B 0.002 ~0.10
Longitudinal bed slope S 00041 ~ .00287 | Sediment concentration C, 10 ~ 3240
Water depth ratio ‘h/d,, 152 ~ 6242 (ppm)

Calibration of Neural Networks Parameters

The model is constructed with 81 shuffled data sets (patterns). The original target output data
are first used during learning process, then discarded. New results are obtained for the 81 data sets.
Number of neurons in the hidden layer, the parameters, @ and ¢, are determined by calibration
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through several computer run tests. The parameter, £, is recommended to be 0.04 to 0.10. The
best fitting is shown in Fig. 3, where number of neurons in the hidden layer is 12, ¢ is 0.075 and o
is 12. After the network is well trained, the weights as well as the bias are adjusted, and the pre-
mentioned parameters are calibrated. Then the other half of 80 patterns is used for prediction
without target outputs, C,. Estimated values for sediment concentration, C,, were compared with

the measured ones. As seen in Fig. 4, the values obtained. from the computer network model
favorably agreed with the measured ones.
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Fig. 3 Comparison between measured and estimated concentrations, C, .
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Fig. 4 Verification of the present model.
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SENSITIVITY ANALYSIS FOR WATER AND SEDIMENT PARAMETERS

Several experiments were conducted to examine the sensitivity of the provided sediment
parameters in each pattern. With fixed model parameters, the first run was carried out with eight
input variables that are mentioned above. Then, each parameter was eliminated by turn from the
group. Statistical analysis was used for determining the accuracy of the results.

A discrepancy ratio, D,=C,/C,, was used for comparison, where C, represents the

calculated total load concentration, and C,, is the measured one. The mean value, D, , and the
standard deviation, o, are expressed as

— N
Dy= T D /N ©)

., ri
i=1

and

o= \/i(D,i -D,) /N—l (10

i=]

Also, the ranges of £25%, +50% and % 75% of the predicted concentrations are presented.
From Table 2, it can be concluded that the most important dimensionless parameters in the
group are the six of w, w,/u. h/d ,F., R,. and h/B. The parameters which have effect less than

10% may be neglected without fear of accuracy, such as, ¢, and S. Then the functional form of
new group is

C =f(w, ,w/u, 6 h/dy F,,R. h/B) (in
The new group of parameters is tested again after eliminating non-effective ones.

Table 2 Effect of flow and sediment parameters on results accuracy.

Inputs of flow and Number Discrepancy Ratio
sediment parameters of data | Mean | Standard Percent of Data in Range
sets Deviation| 0.75~1.25 | 0.5~1.5 | 0.25~1.75

1.The full parameters in Eq. 8 1.03 0.40 65 87 94
2. Eliminating “y 1.30 1.45 58 80 87
3. Eliminating “ ¢“ 1.01 0.60 60 85 92
4. Bliminating “ w, /u.“ 1.57 2.50 53 78 86
5. Eliminating “S“ 161 1.05 0.56 59 81 89
6. Eliminating “ h/d,,“ 1.85 2.40 55 69 78
7. Eliminating “F,« 1.29 1.47 58 78 87
8. Eliminating “ R,.“ 1.20 1.25 63 82 89
9. Eliminating “ h/ B* 1.03 1.74 42 78 87

COMPARISON WITH THE PREVIOUS STUDIES USING TOTAL LOAD DATA

The present model was compared with seven previously published studies; see (14 and 15).
The same numbers of data sets were used for prediction for all tested models. The analysis is
shown in Table 3. Figure 5 shows a comparison between the best fit for results of the present
model and the most acceptable results of Brownlie formula (2). The legitimacy of our model is
therefore fulfilled.
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Table 3 Accuracy of formulas for total sediment concentration, { field data }.

Number : Discrepancy Ratio
Method of data | Mean | Standard Percent of Data in Range
sets Deviation| 0.75~125 | 0.5~1.5 | 0.25~1.75
1. Present ANN model, Eq. 11 1.04 0.42 58 78 93
2. Engelund and Hansen (1967). 2.34 1.69 14 35 45
3. Ackers and White (dsp) (1973) 1.10 1.45 48 75 90
4. Yang (dso) (1973) 80 1.30 0.81 51 69 81
5. Brownlie (1981) 1.04 0.67 56 76 93
6. Shen and Hung (1972) ‘ 126 062 44 70 84
7. Laursen (1958) 0.55 0.89 8 20 60
8. Toffaleti (1968) : ) 0.41 0.46 5 20 66
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Fig. 5 Comparison between the present model and Brownlie formula.

EVALUATION OF THE MODEL USING SUSPENDED SEDIMENT DATA

The ANN model was also verified using suspended sediment data from another group of 485
data sets collected from the Rio Grande River (4, 10 and 11), the Mississippi River (8), and the
Sacramento River (9). While the suspended load for these three rivers have been measured, the bed
load concentration, C,, have not. We, therefore, used the Meyer-Peter and Muller formula (14) to

calculate the bed load of these three rivers. Simple summation of the measured suspended load
concentration, C,,, and the calculated bed load concentration, C, , would then yield a value of the

total concentration, C,. The range of variables is shown in Table 4. However, because some

variables of the Mississippi and the Sacramento Rivers have values with ranges wider than those of
the used in trained pattern, their sediment concentration cannot be extrapolated. Therefore, one half
of the Mississippi River data were used as new training patterns. Training results were used to then
estimate sediment concentration in the other half of the Mississippi River as well as the Sacramento
River. When comparing with the results obtained using other formulas, the ANN model generally
produced the best results. Furthermore, the ANN model’s accuracy has improved significantly
when the training patterns contain data with wider numerical ranges of variables. Table 5 shows
the error analysis for results in all tested rivers using the ANN model. As can be seen, ANN was

better than 5 out of 10 tested formulas (14 and 15) for total sediment discharge. The D, value of
Nordin-Beverage group is rather large because most of sets have variables with extremely larger
values than the trained ones; see Tables 1 and 4.
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Table 4 Hydraulic and sediment data for the tested rivers.

River Rio Grande R. | Rio Grande R. | Rio Grande R. | Mississippi R. | Sacramento R.
Variables (Nordin) (Nordin et al.) | (Culberston) (Jordan) (Nakato)
Num. of data 58 234 139 34 20
v 0.29~2.34 0.08~5.98 0.5~4.46 0.29~2.39 0.25~2.98
W,/ U 0.28~1.06 0.17~2.79 0.16~0.67 0.17~1.36 0.36~1.58
h/d,, 583~4735 107~8388.2 1016~14696 | 10855~56693 | 3220~18770
F, 0.24~0.68 0.11~0.58 0.225~0.79 | 0.084~0.196 0.11~0.21
R. 8.29~33.61 5.9~396.54 6.36~32.67 6.29~94.85 18.6~149
h/B .0017~.042 0.002~0.078 .0014~.066 0.01~0.031 0.017~.078
C, ( ppm) 130~4236 10~9186 285~6773 13~271 23~242
C,/C, 0.50 0.31 0.11 0.093 0.30
Table 5 Accuracy of methods for different rivers data.
Number DISCREPANCY RATIO
Method of data | Mean | Standard Percent of Data in Range
sets deviation [0,75~1.25] 0.5 ~ 1.5 [0.25 ~ 1.75
Rio Grande River Data (by Nordin)
Present ANN model, Eq. 11 0.998 0.46 41 76 88
Engelund and Hansen 0.96 0.44 37 72 91
Ackers and White (d, ) 58 0.80 0.48 33 71 84
Yang (dy,) 057 | 025 26 66 88
Brownlie 0.88 0.48 31 69 85
Shen and Hung 0.74 0.41 31 62 86
Rio Grande River Data (by Nordin and Beverage)
Present ANN model, Eq. 11 234 1.55 6.0 31 67 84
Engelund and Hansen 234 2.9 83 31 39 54
Ackers and White (d, ) 233 0.96 0.8 33 62 82
Yang (ds;) 233 137 | 1.40 35 56 77
Brownlie 234 1.53 1.15 35 64 84
Shen and Hung 234 | 121 | 091 36 62 79
Rio Grande River Data (by Culberston and Dawdy)
Present ANN model, Eq. 11 0.93 0.43 45 76 92
Engelund and Hansen 0.95 0.43 46 75 93
Ackers and White (d;,) 139 137 | 074 32 57 75
Yang (d,) 062 | 028 24 68 93
Brownlie 121 | 056 37 67 84
Shen and Hung 095 | 044 45 77 93
Sacramento River Data (by Nakato)
Present ANN model, Eq. 11 1.01 0.43 40 85 95
Engelund and Hansen  ~ 248 2.01 10 30 40
Ackers and White (d; ) 20 1.0 0.76 35 55 75
Yang (ds) 1.08 | 075 45 75 80
Brownlie 1.62 | 131 35 70 75
Shen and Hung 123 | 1.46 40 55 70
Mississippi River Data (by Jordan)
Present ANN model, Eq. 11 098 | 033 53 88 100
Engelund and Hansen 1.68 0.90 35 44 59
Ackers and White (d; ) 34 1.09 | 0.70 35 50 82
Yang (ds,) 075 | 0.50 35 50 88
Brownlie 140 | 0.59 29 56 68
Shen and Hung 059 | 043 15 53 76
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CONCLUSIONS

The present study illustrates one particular aspect of hydroinformatics as an application of the
neural networks to sediment transport problems. Armed only with river sediment data records
obtained from various sources and ANN, we were able to accurately estimate the sediment
discharge in the several rivers. Several trials were done to determine the appropriate input
parameters (optimized to give accurate results) and network structure (trained by use of real field
data). The sediment discharge obtained from the computer-base method compared favorably with
those obtained using other well-known methods based on sediment concentration determinations.

The main attractiveness of the ANN model is that, unlike other approaches, it can be applied
regardless of the uncertainty or stochastic nature of the sediment movement. Increasing input
patterns for learning with wide range values that come from well-established database system will
increase the accuracy of the model-estimated values. In conclusion, the future implications of
computer generated models for the study of important water- based engineering and environmental
issues are both exciting and far-reaching,
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APPENDIX - NOTATION

The following symbols are used in this paper:

B = channel width;
Cp = bed load concentration;
C. = calculated total load concentration;
Chn = measured total load concentration;
C, = total sediment load concentration;
Cus = suspended load concentration;
dy, = particles median diameter;
D, = statistical discrepancy ratio;
E = error analysis function;
I = getivation function;
F, = Froude number;
g = acceleration gravity;
h = water depth;
/B = stream width scale ratio;
Wdsg = water depth scale ratio;
ij, k = names of network layers, respectively;
N = number of examined data;
0 = yariable representing outputs;
Ok = output for x;
q = water discharge per unit width;
9, = total sediment discharge per unit width;
R+ = shear velocity Reynolds number;
K] = submerged specific weight of sediment = 1.65;
S = Jongitudinal bed slope;
bk = target value for x,;
U = mean velocity of flow;
Uy = ghear velocity;
Wi Wy = weights on the network connections;
Wo = particles fall velocity;
wo/us = dimensionless suspended sediment parameter;
x = variable representing inputs;
a = shaping ratio of function f;
Aw . = correction of the weight;

P = learning rate;
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9, = bias value;

4 = kinematic viscosity;

Ps, P = sediment and fluid densities;

o = statistical standard deviation;

T = bed shear stress;

@ = velociﬁy ratio; and

v = dimensionless bed shear stress.
Subscripts

i, J, k = positive integer indices; and

p = pattern number.
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