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EDDY CONVECTION VELOCITY AND TAYLOR'S HYPOTHESIS
OF FROZEN' TURBULENCE IN A ROUGH-BED OPEN-CHANNEL FLOW

~ By Vladimir Nikora and Derek Goring
National Institute of Water and Atmospheric Research, Christchurch, New Zealand

SYNOPSIS

An experimental test of Taylor’s hypothesis of ‘frozen’ turbulence, which is implicitly widely
used in open-channel hydraulics, is presented. The test is based on two-point velocity measurements
with acoustic Doppler velocimeters (known as ADV) in a gravel-bed flow, using methods of cross-
correlation functions and time-shift spectra. It is shown that for the flow region z/H > 0.1 the eddy
convection velocity is close to the local mean velocity and the Taylor hypothesis of ‘frozen’ turbulence
is applicable for mean quantities. For the near-bed flow region, z/ H <01, the eddy convection
velocity demonstrates dependence on eddy scale with the existence of three scale regions with different
types of dispersion relations. These relations can be used for converting time/frequency turbulence
characteristics into spatial/wave-number characteristics for the near-bed region. The attached-eddy
hypothesis is used to explain anomalous behaviour of the dispersion relation for the near-bed flow
region.

INTRODUCTION

Hydraulic engineers, particularly those concerned with turbulence in open-channel flows, often
use Taylor’s hypothesis of ‘frozen’ turbulence either implicitly or explicitly and seldom question its
validity. In this paper we address the issue of its validity depending on the location in the water
column using measurements from a rough-bed open-channel flow.

In 1938 G. I Taylor (30) attempted to test his relationship between velocity auto-correlation
function and power spectrum. For his analysis he had a velocity frequency spectrum measured at a
fixed point in grid-generated turbulence in a wind tunnel, and a spatial auto-correlation function R(Ax)
measured at several spatial lags Ax. Thus, the data he had were measured in different domains,
temporal and spatial. To convert R(Ax) into the time domain Taylor (30) suggested that the temporal
change in velocity measured at a fixed point in the flow is identical to spatial change along the line
which crosses this point and is oriented along the mean flow. Taylor (30) hypothesised that
longitudinal eddy transfer at a fixed point occurs with the local mean velocity without appreciable
deformation of eddy structure and, therefore, this suggestion is known as the 'frozen' turbulence
hypothesis. Analytically, this hypothesis is equivalent to R"(z) = R(Ax = U, 1), where U, is the eddy
convection velocity which is assumed to be equal to the local mean velocity %, and 7 is the time lag.
The agreement between R'(7)= R(Ax=ur) and the inverse Fourier transform of the frequency
spectrum in Taylor’s test appeared to be very good (Taylor (30)). Two achievements made Taylor's
(30) paper famous: (/) a new hypothesis related statistical properties of turbulence in the spatial (wave-
number) domain to those in the time (frequency) domain and vice-versa; and (2) the first experimental
test of this hypothesis. Ironically, the initial aim of the paper to test the relationship between the
correlation function and the spectrum using experimental data appeared not to be important since that
relationship had been rigorously justified earlier by Khinchin (11) (thus, the relationship does not
require experimental validation).
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Very soon after Taylor's (30) paper appeared it became extremely popular among
experimentalists, since it gave a method for converting measurements at fixed points into the spatial
domain. Such a conversion is necessary if one is interested in getting information about the spatial
structure of turbulence, as well as to test theoretical developments, as most of them are formulated in
terms of spatial structure. The importance of this problem for turbulence research and engineering has
initiated a number of studies which have mainly been conducted in the atmospheric boundary layer,
wind tunnels, and pipes (Monin and Yaglom (15), Piomelli et al. (27)). There have been some
inconsistencies even for these well studied conditions and the question of the validity of Taylor's
hypothesis remains (Zaman and Hussain (33); Perry and Li (25); Kaimal and Finnigan (10); Pinton and
Labbe (26)). However, many researchers implicitly regard this hypothesis as fully validated and use it
extensively in their experimental work. The applicability of the 'frozen' turbulence hypothesis for river
flows, which in some respects are different from the atmospheric boundary layer and pipes (Monin and
Yaglom (15); Nezu and Nakagawa (16)), was examined in Grinvald and Nikora (6), Nikora and
Ekhnich (18), Nikora (17), and Shteinman et al. (29). These studies were restricted to fixed beds and
the longitudinal velocity component only.

In this paper we extend the previous analyses for river flows, mentioned above, for the case of
weakly-mobile beds. Also, in contrast to these studies, we analyse all three velocity vector
components as well as a passive substance, and consider potential dependence of the eddy transfer
velocity on eddy scale. A theoretical background is presented first, then we outline the methods and
experiments used in our analysis, present the results, compare them with previous studies, discuss their
potential applications in hydraulic engineering, and, finally, summarise our conclusions.

THEORETICAL BACKGROUND

In analytical form, Taylor's hypothesis states that:
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where U, =i, ¢ = flow quantity of interest (velocity components or passive substance §); R(r) and
D(7), R(Ax) and D(Ax) = temporal and spatial correlation and structure functions, respectively;
§,(@) and S, (k,) = frequency (@) and wave-number (%, ) spectra, respectively. Relationships (1)
to (4) may be valid only approximately and only for some special flow conditions. For the case of
homogeneous turbulence with constant (in space) mean velocity U, it can be readily shown (Monin

and Yaglom (15)), using the Navier-Stokes equations, that the mean square of the relative error &7 of
Taylor’s hypothesis in the form of (1) for velocity components can be expressed as:
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where ¥, = velocity vector component (longitudinal u, = u, transverse u, = v, or vertical u, = w); x,

y, and z are the longitudinal, transverse and vertical coordinates, respectively; o, =(u/> )* =
standard deviation of the i-th velocity component, where u; = velocity deviation from the mean value
u;, u; =u;~u,; an overbar defines the operation of time averaging; and «; = some constants of the
order of 10 (Monin and Yaglom (15)). An analogous relationship may be derived, following a similar

procedure as in Monin and Yaglom (15) and using the advection-diffusion equation, for a passive
substance S:
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where K =0.5(;'-2_+;'7+:v_’?) = total turbulence energy; and £ = a constant. We have neglected
effects of viscous diffusion and assumed that (8. 8/8 x)* ~(68/8 y)* ~ (8 §/6 z)* when deriving
(6). The same order is expected for £ as for ¢, in (5). From relationships (5) and (6) it follows that
for homogeneous flows the Taylor hypothesis with U, = U, should be fairly valid if ¢, <<U, or, in

more general form, K°° <<U,. Indeed, experiments in quasi-homogeneous flows with low levels of
turbulence (o, /U, was less than 0.15-0.20) showed good agreement between direct spatial
measurements of velocity components and estimations from (1) to (4) (see Monin and Yaglom (15) for
a review of the atmospheric and laboratory data).

However, when the level of turbulence is high in homogeneous flows the Taylor hypothesis
requires a revision. As an example, from theoretical analyses of Ogura (22) and Gifford (4) it follows
that scaling in the frequency (time) domain is different from that in the wave-number (space) domain,
if o, 2U,. They found that for this special case the structure function D(z)ec 77 has an exponent

¥ ~1>2/3 when D(Ax) o« Ax”?. Some atmospheric measurements (e.g., Hutchings (8)) suggest that
with a decrease in o, /U, the exponent ¥ tends from 1.0 to Kolmogorov's 2/3 for the inertial
subrange. We will discuss these results in relation to ours in Discussion. Another example was
presented by Pinton and Labbe (1995) who studied the applicability of Taylor's hypothesis for swirling
flows and found that for their case study y was less than 2/3 (not larger as in Ogura (22) and Gifford
(4) analyses and in Hutchings (8) observations). Both examples suggest that the eddy convection
velocity U, may potentially depend on eddy scale if g, 2U, .

For turbulent shear (non-homogeneous) flows like open-channel flows the situation is more
complex since measurements at a fixed point may contain eddies which come to the measuring point
from flow regions with different mean velocities (due to velocity shear). This implies that the eddy
convection velocity may be not constant and may also depend on scale. The latter may be due to
various potential scenarios (e.g., small eddies may be transported by large ones, or, alternatively, small
and large eddies may travel independently, but with different speed). As a result of these effects
criteria (5) and (6) should be supplemented by additional criteria. Relations (1) to (4) will be
(approximately) valid for shear flows if the effects of the transverse and vertical velocity shear are not
strong, i.e., the following inequalities are satisfied: :
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Applying Reynolds decomposition for instantaneous flow variables (i.e., ¢ = +¢')in (7) and (8), and
reasonably assuming for open-channel flows that far from the bed and banks the following relations are
acceptable: (1) Au'/dz~du[éx>>0u'[dy; () Ouldz>>3uldy~duldx; (3)
88'|0z~085")6x>>88'|8y; (&) 8S5/0z>>38/y~3S[dx; (5) V~Ww=0, and (6)
u' ~v' ~w >>w, (w, is the settling velocity for suspended sediment if it is considered as a passive
substance), we can derive from (7) and (8): :

B ow >>_ﬁ_.”-: )
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To make relationships (9) and (10) more readable we represent the velocity and substance derivatives
in terms of appropriate velocity and substance concentration scales, as well as their length scales, i.e,,

ou/bx~c,/A, u/dz~U, /H, 38/0x~0cs/Ag, 8816z~8,, |H, where U,,, is
the maximum mean velocity (e.g., surface velocity), o, is the standard deviation of substance
concentration fluctuations, A4, and A are characteristic scales of velocity and substance
fluctuations, S

o 1S the maximum substance concentration, and H is the flow depth. Using these

scales we can rewrite (9) and (10} as:
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where k, =27/A, and k., =27/A
respectively. Relationships (11) and (12) establish approximate upper limits for scales 1, and A,

= critical wave numbers for velocity and substance,

and lower limits for wave-numbers k,, and kg, which should satisfy Taylor's hypothesis fairly well.
Condition (11) should be also applicable for the transverse and vertical velocities. It is worth noting
that for both velocities and substance these scale limits are of the same order of magnitude and
comparable with the flow depth.

An additional conclusion may be extracted from (9) if we assume that the logarithmic law
#=(u/x)In(z/z,) is approximately valid for most of the flow depth (Grinvald and Nikora (6);

Nikora (17)) and so 7 /& z can be represented as:

ou  u.
gr - 13
9z Kz (13)
With (13) relationships (9) and (11) transform to:
A, <«<Biz=zin(Z) or k,>> 2;z{z1n(-z-z~)}" (14)
N z, o )
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where u, = shear velocity; z, = hydrodynamic roughness length; and ¥ = von Karman constant.

Relationship (14) shows that the range of eddy scales, which satisfy Taylor's hypothesis, increases with
the distance from the bed, and also depends on the bed roughness. The size of the largest eddy that
still can be viewed as 'frozen' decreases logarithmically with increase in bed roughness z,. This means

that the biggest eddies which still propagate with convection velocity # will be larger in lowland
rivers than those in gravel-bed rivers.

The condition (14), which accounts for the shear effects, can be compared with (5), which
neglects the shear effects. Indeed, relationship (5) suggests that Taylor’s hypothesis is approximately
valid if the characteristic eddy velocity v, is much smaller than the mean velocity #, i.e., v, <<% .
For the eddies of size A, from the inertial subrange the v, can be expressed as
v? o< [k,S,(k,)] o< ek o< £ 327, where ¢ is the dissipation of the turbulent energy (e.g., Monin
and Yaglom (15)). For the logarithmic layer we can assume ¢ = u. /xz (Grinvald and Nikora (6)),
which gives v} o<[ul / (x2)** 1227, or v, o< [u. / (xz)"*]A"’. Thus, the condition v, << @, which is a
form of condition (5), can be expressed as [u. /(xz)"”]A) <<%, or as A, <<(#@/w.)’xz. A
comparison of 1, << (@ /u,)kz for shear flows, (14), with 1, << (& /u.)’kz for homogeneous flows
shows that the shear effects impose much stronger restrictions on the scales of eddies which can be
considered as ‘frozen’ (as (% / u.)kz << (@ / w.)’ xz).

Relationships (11), (12), and (14) provide qualitative or very approximate quantitative estimates
and must be supplemented by analysis of direct measurements in open-channel flows.

METHOD

In general, two approaches are possible for an experimental study of the applicability of Taylor's
hypothesis. One of them is based on transferring time series of velocity/substance fluctuations into
spatial ones, calculating correlation, structure functions, or spectra for both time and spatial series, and
then testing relationships (1) to (4). Such an approach was used by Pinton and Labbe (26) to test
Taylor's hypothesis for the case of swirling flows. These authors defined this approach as a local
version of the 'frozen' turbulence hypothesis. Another approach is based on a direct test of (1) to (4),
using measurements in both the time and spatial domains (Monin and Yaglom (15)). In this study we
used the second approach. Relationship (4) was used as an analytical expression of Taylor's hypothesis
in our test, i.e., we used the Fourier space rather than the 'yeal' space. The basic relationships of this
technique are:

Splk) = Su(@) 22 15)

0] 1
U, =% or kw-"—'“[}'— (16)
E

where U, = eddy convection velocity which may be viewed as an analog of the phase velocity while
dw/dk, = an analogue of the group velocity, as in wave theory. Relationship (15) connects spectra
obtained from time series, S, (@), and from spatial data, S,(k,). Relationship (16) may be identified
as an analog of wave dispersion relation. If turbulence is 'frozen' enough, one expects that
w=Uy=u)k, and so S,(k,)=U,S,(w), ie., using wave theory terminology we can identify
'frozen' turbulence as 'mon-dispersive' turbulence. However, in general the eddy convection velocity
U, may depend on eddy scale itself, which implies non-linearity of the relationship
o =Ug(w, k,)k,. Therefore, a test of Taylor's hypothesis is equivalent to the test of the relationship
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o=Ug(o, k)k,. If Uy(w, k,)=u the 'frozen' turbulence hypothesis is applicable; if not, a
correction may be developed based on the function k= f(®), or @ = f,(k,). This methodology can

be applied using synchronous two-point measurements with distance & x between sensors 1 and 2
(sensor 1 is upstream, sensor 2 is downstream). Then, the following useful variables may be obtained:

At(w):é%@; and UE(a))=Ai];)

(17)

where Ag (@) is the phase spectrum defined as A (@) = arctg{~Q;,(@)/ C,(@)}; O, (@) and
C,,(®) are sine (quad or imaginary) and cosine (real) parts of the cross-spectrum between points 1 and
2, respectively (Monin and Yaglom (15); Bendat and Piersol (1); Grinvald and Nikora (6)); At(w) is
the time-shift spectrum, i.e., the time interval for a spectral component of frequency @ to travel from
point 1 to point 2. Using (17) we can obtain wave-numbers k,, as:

L CO (18)
Sx
which now can be related to the corresponding frequencies to test the relationship k = f(w@). The
above procedure provides a workable method for testing Taylor's hypothesis using just two-point
measurements. Indeed, it is hardly possible in field conditions to measure velocities synchronously at
enough spatial points to get a sufficiently detailed wave-number spectrum.
To evaluate the bulk eddy convection velocity we used the cross-correlation method:

Upy=—" ‘ 1%

where 7, = time lag in the cross-correlation function R,,(r) between points 1 and 2 corresponding to
the maximum ordinate of R,(7). Relationship (19) provides the same information as (17) if
turbulence is 'non-dispersive’. Otherwise, estimates from (19) will be biased by the largest eddies. In
our analysis we use relationship (19) for comparison purposes as most previous open-channel studies
(e.g., Grinvald and Nikora (6); Nikora and Ekhnich (18); Nikora (17); Shteinman et al. (29)) were
mainly based on this method.

MEASUREMENTS

Field experiments were conducted in the Balmoral Irrigation Canal (North Canterbury, New
Zealand). The experimental section was chosen 585 m downstream of the intake and about 350 m
above the sediment pond. The cross-sectional shape of the channel is close to trapezoidal with top
width of 6.2-7.0 m, bottom width of 3.5-4.5 m, and depth of 1 m. The bed material in the central flat
part of the channel was greywacke gravel with ds;=10 mm. The measurements used in this study were
conducted on 26 of February 1997. During that day the background hydraulic conditions varied
insignificantly (water depth within 2%, flow rate within 4%, and slope within 7%). To minimise side-
wall effects, all measurements were conducted at the central vertical. The main hydraulic parameters
for the experiments were: flow rate Q = 5.14 m’/s; cross-sectional mean velocity U, = 1.05 m/s; cross-

sectional mean depth H,= 0.78 m; hydraulic radius R = 0.70 m; depth at the measuring vertical H =
1.05 m; global Reynolds number Re=U,R/v = 0.74x10°; global Froude number Fr=U,/gR =

0.40; bed particle Reynolds number Re, =u.d;,/ v=694 (at the measuring vertical); shear velocity
u, =694 cm/s (obtained from the Reynolds stress measurements); and w /wu., ~1 where
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u, =(zr,/p)*, t, is the critical bed shear stress for particles of ds=10 mm (at the measuring
vertical). Thus, the measurements were conducted at weak bed-load transport which was close to
critical (i.e., the bed shear stress was close to its critical value for given bed material). Concentration
of suspended particles, 4 to 230 um in diameter with the mean size 50-70 pm, varied from 0.003 to
0.006 g/l. Therefore, the measured suspended sediments may be fairly considered as a passive
substance (Monin and Yaglom (15)).

- The measurements were conducted using Acoustic Doppler Velocimeters (ADV), with the
sampling volume 10 cm away from transducer (Kraus et al. (12); Lohrman et al. (13)). Experimental
design included synchronous measurements of all three velocity components as well as a surrogate of
suspended particle concentration (i.e., the scattered amplitude of the acoustic signal which is provided
as a standard ADV routine) in two points lying on a line parallel to the mean flow with §x= 16 cm, 24
cm, 32 cm, 44 cm, and 52 cm. For each pair the flow variables were measured at 10 distances from the
bed, from z~1lcm to z=88cm (i.e., 001<z/ H<084). The duration of point measurements was 2
min. with a sampling interval of 0.04 s. The spatial counterpart of this temporal sampling interval
(assuming that Taylor’s hypothesis is applicable at this scale; this will be confirmed in RESULTS) is
larger than that where attenuation due to the finite sampling volume becomes appreciable, i.c., 3 cm
(Voulgaris and Trowbridge (32), p. 276). More details about the experimental set-up and equipment
used may be found in Nikora and Goring (20).

The preliminary analysis of the measured data set comprised two stages. First, the data were
extracted from the initial binary files and checked for unreliable records. About 15% of the initial
ADV files were rejected as unreliable because of high level of Doppler noise and spikiness (Nikora
and Goring (19); Voulgaris and Trowbridge (32)). The rejected ADV files had the correlation

coefficient R’ <67 and signal-to-noise ratio SNR <13. Note that R*> and SNR are parameters
characterising uncertainty in ADV measurements (Kraus et al. (12); Lohrman et al. (13)). The

thresholds R? =67 and SNR =13 are slightly lower than those suggested by Sontek/Nortek for
individual samples, i.e., 70 and 15, respectively. We selected these lower thresholds as the calculated
turbulence parameters for records with 67 < R? <70 and 13<SNR<15 showed no anomalous
behaviour compared to those values obtained for R* >70 and SNR >15. The files with R*> <67
and/or SNR <13 showed appreciable deviation from the remaining ‘good’ data, especially the
skewness and kurtosis coefficients, and therefore were rejected. Second, to minimise errors in
turbulence characteristics related to the semsor misalignment (that may cause leakage of the
longitudinal velocity component into other two components), velocity records were corrected. The
correction procedure (Goring et al. (5); Nikora and Goring (20)) was based on an assumption that the
flow well above the bed but still far from the water surface was close to uniform two-dimensional, i.e.,
it satisfied the conditions ¥ =0, w =0, and v'w' = 0. This procedure was applied for 5-6 points far
from the bed and the water surface in each velocity profile, and three misalignment angles were
obtained for each sensor at each poinit. Then, assuming that the sensors kept the same orientation for
all points within the profile and any differences between points were due to statistical variability, the
angles were averaged and used to correct the velocities at all points within each profile. In most cases
the misalignment angles in the data-set used were less than 1.8°.

We used the time series S(2) = 10°’“ as a surrogate for suspended sediment concentration where
I(t) is the scattered amplitude of the acoustic signal provided by the ADV, and p is a coefficient
(Lohrmamn et al. (13)). The correlation between mean values of S and directly measured suspended
sediment concentration appeared to be high enough (7> =0.95) to consider S as an appropriate
surrogate for suspended sediment concentration.

The measurement noise of individual probes is not correlated and, therefore, the noise
contributions to the two-point cross-correlation functions and cross-spectra, used in this study, are
negligible. Thus, the inherent ADV noise does not bias the estimates of At(w), 7,,,, and U (@).

The main sources of errors in U, (w) relate to the errors in §x (which is less than 1%), 7, , and
At(w). The errors in 7, are less than the sampling interval, while the errors in A#(®) depend on the
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sampling interval, the number of freedom degrees in the phase spectra estimates, and/or the coherence
function (Bendat and Piersol (1)). The total random error in U, also depends on the distance between
probes (it increases with decrease in §x), and on eddy scale (or frequency @). Our estimates show
that the relative standard errors in U, were in the range from 4 to 15% in the near-bed region and from
10 to 35% in the near-surface region. All calculations for this study were done using the ADVANS
package (Goring et al. (5)) specially developed by our team for various turbulence analyses of ADV
data.

Details about the turbulence structure and the suspended sediment-turbulence relations for this
case study may be found in Nikora and Goring (20) and in Nikora et. al. (21). Here we present graphs
only for relative turbulence intensities (Fig. 1) which characterise turbulence properties important to
the problem of Taylor's hypothesis applicability (see relations (5) and (6)).
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Fig. 1 Relative turbulence intensities for velocity components and passive substance, from ADV
measurements in the Balmoral Canal.

RESULTS
Bulk eddy convection velocity

The cross-correlation functions between corresponding velocity components at the upstream and
downstream points showed properties similar to those earlier reported for the component for fixed-
bed open-channel flows (e.g., Shteinman et al. (29)). They all have quasi-symmetrical shape with
maxima in the negative range of time lags 7, which means that the signal firstly appears at the
upstream point and then, with time delay (lag) 7, at the downstream point. Also, functions R,(7)
for velocities (Fig. 2) clearly show that characteristic time scales (or correlation lengths) are the largest
for the velocity component , intermediate for the component v, and minimal for the vertical velocity
w. Cross-correlation functions for S appeared to be very similar to those for the vertical velocity w,
i.e., characteristic time scales of § were much smaller than those for the longitudinal and transverse
components of the velocity vector. These features are evident in Fig. 2 which presents an example of
functions R,,(7) for §x=16 cm. In most cases the level of maximum correlation R, (7.,.)
decreased with increase in §x. '

Comparisons between the bulk eddy convection velocities for u, v, w, and S, and the mean local
velocity # are presented in Fig. 3. The vertical distribution of U, can be subdivided into two regions.

The first one is the ~ 10 cm thick near-bed region where U, is larger than % . The difference between
U, and # in this region increases towards the bed. This feature is especially noticeable for u, v, and §

while the vertical velocity component w shows the least deviation from # . The flow region above this
near-bed layer behaves differently: deviations of U, from # in this region are not systematic and are



comparable with errors involved in the
determination of U, (as the estimates of
# are much more accurate). The velocity
gradient d# /& z corresponding to the

boundary between the two regions is in -

the range of 1.7 to 2.3 s'. It increases
towards the bed just as the turbulence
intensity does (Fig. 2). It is worth noting
that similar effects in respect to the
component # were also found for lowland
river reaches with fixed beds (e.g,
Shteinman et al. (29)).

Dispersion relation

Some examples of the functions
At (w) for all the measured variables (i,
v, w, and S§) are shown in Fig. 4. One can
see in this figure that for near-bed
measurements the eddy travel time
At (@) between two measuring points
increases with frequency. However, for
measurements well above the bed At ()
is approximately constant.  Another
typical feature of the functions Af (@) is

the jump at high frequencies which

corresponds to switching from 27 to 0 in
the phase spectra (when Ag (@) exceeds

27). We have not interpreted these high
frequency regions in Ag (@) because in

most cases the coherence between the
two signals in these regions was close to
or below the 95% confidence level
(Bendat and Piersol (1)).

Fig. 3 Comparison between the

local mean velocity # and the eddy
convection velocities U, (for

longitudinal velocity u), U,, (for
transverse velocity v), U, (for
vertical velocity w), and U (for
passive substance). ) '
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Velocity two-point correlation functions
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Fig. 2 Cross-comrelation functions for velocity
components and passive substance at two. points
separated by Ox =16 cm. Thin solid lines define
cross-correlation functions for the intermediate z/H
between 0.02 and 0.83. Note that only lines for
z/H=0.02, 0.46, and 0.83 are highlighted, for clarity.
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Fig. 5 shows an example of the
dispersion relationship (16) obtained from
the time-shift spectra from Fig. 4 using (18).
The dashed lines in the graphs correspond to
the relation between wave number and
frequency, k,=®/u, which would occur if

Taylor's hypothesis were valid (upper lines
correspond to the near-bed measurements,
while low ones to the near-surface
measurements). As one can see on these
graphs, the near-bed measurements clearly
deviate from the predicted relation
k,=w/u, where #, is the near-bed mean
velocity, i.e., #=u,. The degree of this
deviation increases with frequency decrease,
or the eddy scale increase. At the lowest
resolved frequencies (large eddy scales) the
experimental near-bed points lie near the low
dashed lines which correspond to k =@/,
with the near-surface mean velocity & =u,_.
However, at high frequencies (small eddy
scales) the experimental points are fairly
close to the prediction from Taylor's
hypothesis, when the near-bed mean velocity
is used (the upper dashed lines &k =w/u,,
Fig. 5). Between these two extremes the
dispersion relationship for the near-bed flow
region may be approximated, in most cases,
as k =ma * where the exponent g is larger
than 1 and close to 1.2. The largest
deviations of the near bed measurements
(ie., at 2z/H=0.02) from the power
approximation k,, o< @” (thick solid lines in
Fig. 5) are random and do not exceed 30%.
The squared correlation coefficients for this
approximation were in the range from 0.973
to 0.991.

At (o) (s)

o (rad/s)

Fig. 4 Time-shift spectra for longitudinal (),
transverse (v), and vertical (w) velocities, and for
passive scalar (S); Sx=16cm. Thin solid lines
define time-shift spectra for the intermediate z/H
between 0.02 and 0.83. Note that only lines for
2/H=0.02, 0.46, and 0.83 are highlighted, for clarity.

A careful examination of the dispersion graphs in Fig. 5 shows some difference between the
variables which occur for the near-bed measurements. Whereas, the dispersion graphs for u, v, and §
are quite similar to each other, that for the vertical velocity component is slightly different, namely, it
is closer to the Taylor's relation k= /#, than those for u, v, and S. The critical wave numbers
defined by (11) and (12) for the near-bed region, where vertical gradients of # are significant, are also
shown in Fig. 5. As one can see, they agree with direct measurements quite well indicating the wave
number above which Taylor’s hypothesis should apply. The above features of the dispersion relation
for the near-bed region can be summarised as in Fig. 6. The range of scales where the approximation
k,=mo* is valid depends on the difference between the near-bed mean velocity, i#,, and the

propagation velocity for the largest eddies, %, (which in our case may be approximated by the mean

velocity at z/ H=083),1.¢.:



As the distance from the bed
increases, the exponment u quickly
tends to 1. In agreement with the
correlation analysis, the boundary
between flow regions with x >1 and
with g ~1 is located at approximately
10 cm from the bed. The empirical
functions k& = f(w) for the upper flow
region may be fairly well approximated
by Taylor's relation & =(1/%)w (Fig:
5).

A comparison between the two
approaches, (17)-(18), and (19) shows
that the correlation function method,
(19), may help to identify the
difference between U, and u but
provides rather qualitative information
about U,. Indeed, for the near-bed
region the estimates from (19) gave
values for U, which corresponded to
those for eddies of intermediate scales
(where relation &k =mo“ is valid). A
more complete description of U, is

provided by the dispersion relation
k.= f(w) (Figs. 4 and 5).

DISCUSSION

On the applicability of Taylor’s
hypothesis for open-channel flows

In our study we found that Taylor's
hypothesis is applicable for the flow
region away from the bed where the
spatial gradients of the mean velocity
# and the relative turbulence
intensities o©,/% are small. This

agrees with previous studies in rivers
and boundary layers (Monin and
Yaglom (15); Grinvald and Nikora (6))
and with theoretical analyses (Ogura
(22); Gifford (4); Monin and Yaglom
(15)). We also showed that Taylor's
hypothesis works fairly well in this
flow region for a passive substance.
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Fig. 5 Empirical dispersion relations for longitudinal
(1), transverse (v), and vertical (w) velocities, and for
passive scalar (§) (Sx=16cm). Dashed lines
correspond to predictions from Taylor's hypothesis,
k,=(/@)w, i.e., in each figure the upper dashed line
is for the near-bed region while the lower dashed line
is for the near-surface region. The thick solid lines
show power approximations k =me”* for z/H =0.02
while the thin solid lines define empirical dispersion
relationships for the intermediate z/H, between 0.02
and 0.83. Only symbols for z/H=0.02 (crosses) and
z/H=0.83 (circles) are shown, for clarity.
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Figure 6. Sketch for the dispersion relation k,, = f () in the near-bed flow region.

A simple rule of the thumb to define the flow region where Taylor's hypothesis with U, =u may
be used is z/H >0.10. This estimate is based on both the present study and our previous work for
lowland rivers (Grinvald and Nikora (6); Nikora and Ekhnich (18); Nikora (17); Shteinman et al. (29)).
Thus, the flow can be subdivided into two regions: () a near bed region, z/ H <0.10, where the eddy
convection velocity U, depends on the eddy scale and so Taylor's hypothesis requires a correction;
and (2) an upper flow region, z/ H > 010, where Taylor's hypothesis is applicable, and Uy = .

Fig. 5 and the sketch in Fig. 6 suggest that small-scale eddies with length-scales less than 0.15-
0.25 flow depths travel downstream with a speed U, which is close or equal to the local mean velocity
#. This agrees well with criteria (11) and (12) which can be used for preliminary estimates. This
characteristic of small scale eddies is valid for both the near-bed region with relatively high velocity
gradients and turbulence intensities, and for the upper flow region with low velocity gradients and
relatively low level of turbulence (Figs. 1 and 5). The same situation occurs for intermediate and large
scale eddies if z/ H >0.10. However, in the near-bed region the travel speed of eddies with wave-
numbers (or frequencies) smaller than k, (or @, ) (see Fig. 6) increases with eddy scale until U, (k,w)
reaches the bulk flow velocity (in our case it was fairly close to # at z/ H =0.83). Then any further
increase in eddy scale (larger than 3-6 flow depths) does not change the convection velocity. These
features imply that Taylor's hypothesis still can be used for small (k > k, ) and large (k <k,) eddies but
with different convection velocities (see Fig. 6). In the range of intermediate scales, k, >k > k,, this

hypothesis cannot be used as the eddy convection velocity changes with the scale, i.e., k,=me“. In

relation to spectra this problem can be resolved if a modified hypothesis is used, i.e., instead of (4) a
more general relationship (15) is implied with the following dispersion relations: '

kw=«~1-—a) with Up=u for k>k,
U
k. =mao" for ky, >k>k, } @n

kz—l—]l—co with U, =%, for k<k

W
E
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where #, = bulk flow velocity (as a first approximation we would suggest the vertically averaged
velocity as #,). To use (15) together with (21) the wave-numbers &, and k, at the limits need to be
defined. Qur data (e.g., Fig. 5) show that, as the first approximation, these wave-numbers may be
expressed in the non-dimensional form as k,H ~1.4 and &, H ~30. Thus, our results suggest that for
the near-bed region we should use three equations, instead of a single equation (4):

S, (k,=0/7)=uS,(») for w2w, (22)
Sk, =mo") =5 (@)% =L oS (o) for o o<, @3
pi\Tw pi dkw mu pi 4 .
S,(k, =0/%,)=7,S,(@) for oo, 24)

Equations (22) to (24) show that the shape of the frequency spectrum is preserved in the wave
number spectrum at low and high wave numbers, subject to equations (22) and (24). However, in the
range of the intermediate wave numbers the shape of the wave number spectrum will be different from
that of the frequency spectrum, subject to equation (23). Indeed, in the range o, < w £ w, (Fig. 6) the
spectral slope £, in the frequency domain will relate to that £, in the wave number domain as
&, =&, +1)~1. For instance, if @, <@ S w, covers the inertial subrange we have &, =-5/3
which, bearing in mind that =12, gives &, =~ ~18. However, for £, =—1 we have the same slope

in the frequency domain, i.e., £, =—1.

Near-bed effects

What physical mechanisms could cause such behaviour of the dispersion relation for the near-bed
region? This region is characterised by both high turbulence intensities and velocity gradients and so
both features could contribute to such behaviour. Indeed, the existence of the range of scales with
k= ma* supports Ogura (22) and Gifford (4) theoretical analyses for flows with high o, /U, . If the

range k, >k >k, covers the inertial subrange, the exponent p=12 gives y=-£, -1~08>2/3 in

D(r)ect”. This also agrees with earlier Hutchings' (8) observations for the atmospheric boundary
layer (Auckland data, New Zealand). Similar dependence of U, on eddy scale was also found for the
near-surface atmospheric layer in Davison (2) and Kaimal (9) (see also Kaimal and Finnigan (10) for a
review) who reported that large scale eddies (thermal plumes) travel with higher speed than small scale
ones. Such a behaviour was explained by thermal effects rather than dynamic ones. For instance,
Davison (2) suggested that a plume translation speed should be close to the mean wind speed near the
top of the surface shear zone as this provides a lower thermal instability level than any other possible
translation speed. Although the above observations show some qualitative agreement with our data,
they cannot be used directly since our experiments were free of any density driven instabilities.

Another data-set, more suitable for comparison with our results, was obtained in a wind tunnel
and in a pipe by Perry et al. (24) and Perry and Li (25) (measurements were conducted at neutral
conditions). Comparing their experimental spectra for the imnner flow region with theoretically
developed expressions they found that the spread of empirical points in the low wave-number region
was higher than could be expected. Perry et al. (24) and Perry and Li (25) explained this lack of
collapse of data by the possible invalidity of Taylor's hypothesis with U, = for the inner region. To

explain these observations they used Townsend's attached-eddy hypothesis (Townsend (31)) and its
later modifications and developments (Perry and Chong (23); Perry et al. (24); Perry and Li (25)).
Translating this hypothesis to the conditions of open-channel flows, we can imagine the flow as a
hierarchy of eddies growing from the bed (their lower parts are 'attached’ to the bed and therefore this
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hypothesis is known as "the attached-eddy hypothesis"). It is natural to assume that the travel speed
U, of these eddies in the near-bed region depends on their scale (or height). According to this scheme,
the smallest near-bed eddies should travel with the speed which is close to the local mean velocity # .
At the other extreme, the largest eddies with scale (or height) of the flow depth should travel with a
much higher speed than the near-bed mean velocity. Also, any further increase in eddy scale cannot
change their convection velocity, which is of order of the bulk flow velocity (say, the vertically
averaged velocity %, ). The eddy convection velocities for intermediate scales decrease from #, to #

with the decrease in eddy scale (height). Even though this conceptual model simplifies the real
situation, it does allow for the existence of three regions (21) and so explains our results fairly well.
Moreover, according-to the attached-eddy hypothesis, most of the energy in the vertical velocity
component comes from eddies commensurable with the distance from the bed. This implies that for
the vertical velocity both the correlation method (19) and the dispersion relation method (17)-(18)
should show the least deviation (in comparison with u, v, and S) from Taylor's hypothesis predictions
when U, =u isused. Indeed, this effect was noted from both techniques (see Figs. 3 and 5).

Potential applications in hydraulic engineering

Taylor’s ‘frozen’ turbulence hypothesis connects spatial/wave-number measures of turbulence
with temporal/frequency measures. Thus, the main applications of this hypothesis relate to turbulence
measurements and their interpretations, especially for field experiments where spatial turbulence
measurements encounter great difficulties. There are many hydraulic problems whose solutions are
based, implicitly or explicitly, on Taylor’s ‘frozen’ turbulence hypothesis. These problems can be
subdivided into at least four groups. The first group relates to testing and verification of hydraulic
models based on turbulence closures (e.g., Rodi (28)). Indeed, predictions from such models are
usually compared with point-measurements which are used to obtain the turbulent energy dissipation,
mixing length, or eddy viscosity. The methods for their estimation often assume validity of Taylor’s
‘frozen’ turbulence hypothesis (e.g., Monin and Yaglom (15)). This group also includes problems
relating to experimental tests of spectral turbulence models. The second group relates to developments
and tests of turbulence closures based on laboratory and field experiments. For instance, to develop an
empirical or semi-empirical relationship for the mixing length from point measurements, one needs to
convert temporal measurements into the spatial domain, which requires validity of Taylor’s ‘frozen’
turbulence hypothesis. The third group combines sediment transport problems which involve
sediment-turbulence interactions and development of phenomenological and predictive models for
sediment transport. One such problem is that of obtaining information on the spatial extent of bursting
events, regarded as an important mechanism in sediment transport, from point measurements (e.g.,
Drake et al. (3)). Finally, the fourth group of problems refers to measurement methods in fluvial
hydraulics, which are based on the use of Taylor’s “frozen’ turbulence hypothesis. An example is the
inertial dissipation method for estimating bed shear stress from single-point measurements (e.g.,
Huntly (7); Lopez and Garcia (14)). This method is based on Kolmogorov’s relationship for velocity
spectra in the inertial subrange (e.g., Monin and Yaglom (15)):

S,(k,) = T (25)

where subscript i refers to a velocity component u, v, or w, ¢, are Kolmogorov’s constants
(¢, =3/4c, =3/4c,), ¢ is the turbulent energy dissipation rate, and &, is the longitudinal wave-
number. The method assumes that the energy production is equal to the energy dissipation, and the
turbulent shear stress is approximately constant. These assumptions, which are approximately valid in
the near-bed logarithmic region, lead to the relationship &=’ /xz. Then, using &=u] /xz, and
additionally  assuming  validity of Taylor’'s ‘frozen’ turbulence  hypothesis [i.e.,
uS, (w)=38,(k,=w/u), U, =u] one can obtain from (25):
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u2 - [Spi (ac))w ](_’%{)2/3 (26)

*

i

Relationship (26) is often used for estimates of the bed shear stress 7, = pu. from single-point
velocity measurements in the near-bed region, where ¢ =1u. / kz is reasonably valid. However, this
may not be correct because of the lack of validity of Taylor’s ‘frozen’ turbulence hypothesis. In our
open-channel flow study we found deviations from this hypothesis for z/H <010. Thus, if
relationship (26) is used for estimates of the bed shear stress in this flow region, it may give systematic
errors up to 20-30%. Our results suggest that relationship (26) should be used for the region
010<z/H<020 only, where both Taylor’s ‘frozen’ turbulence hypothesis and relationship
&=u. / kz are reasonably valid. Thus, this example shows that an incorrect assumption of the validity
of Taylor’s ‘frozen’ turbulence hypothesis may lead to significant errors in measured flow parameters.

CONCLUSIONS

1. For the flow region z/ H > 0.1 the eddy convection velocity is close to the local mean velocity
and the Taylor hypothesis of ‘frozen’ turbulence is applicable to convert time-structure and time-
correlation functions, and frequency spectra into space-structure and space-correlation functions, and
wave-number spectra.

2. For the near-bed flow region, z/H <01, the eddy convection velocity demonstrates
dependence on eddy scale with the existence of three scale regions with different types of dispersion
relations (21). These relations can be used for converting time/frequency turbulence characteristics
into spatial/wave-number ones and therefore may be identified as a modified Taylor's hypothesis.

3. The attached-eddy hypothesis provides a quite plausible explanation for the anomalous
behaviour of the dispersion relation for the near-bed flow region. This shows that studies of Taylor's
hypothesis are important, not only for resolving the technical problem of frequency-wave-number
conversion, but also for building a physically-based model of turbulence structure in open-channel
flows.

4. Further studies of the Taylor hypothesis based on accurate measurements and more adequate
methods are necessary. One such method is a wavelet based analysis. In comparison with our
techniques of cross-correlation functions and time-shift spectra, which deal with the average behaviour
over the duration of the measurement, wavelets provide the opportunity to track the trajectory of eddies
of various scales with time. This feature of wavelets may help better understand the applicability of
Taylor's hypothesis and give a new insight into the structure of open-channel turbulence.
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APPENDIX - NOTATION

The following symbols are used in this paper:

D(7) = temporal velocity/substance structure function;

D(Ax) = gpatial velocity/substance structure function;

H * = flow depth; '

k, = wave-number;

R(7) = temporal velocity/substance auto-correlation function;

R(Ax) = gpatial velocity/substance auto-correlation function;

R, (1) = temporal velocity/substance cross-correlation function between points 1 and 2;
Ry = instantaneous passive substance concentration;

S = mean passive substance concentration;

S ax = maximum passive substance concentration;

S, (») = frequency auto-spectrum of the i-th velocity component or substance;
S,(k,) = wave-number auto-spectrum of the i-th velocity component or substance;
U, = eddy convection velocity;

U = maximum (surface) velocity;

u = instantaneous longitudinal component of velocity vector;

u = local mean (longitudinal) velocity;

u. = shear velocity;

v = instantaneous transverse component of velocity vector;

w = instantaneous vertical component of velocity vector;

z = distance from the bed;

Sx = distance between sensors;

o, =wh*  =standard deviation of i-t/ velocity component;

oy =(S8")"  =standard deviation of passive substance concentration;

T = time lag;

T e = time lag corresponding to the maximum ordinate of R,(7);

@ = frequency;

At{w) = time-shift spectra; and

Ax = gpatial lag.
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