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SYNOPSIS

The inner region including the viscous sublayer in unsteady smooth open channel flows with strong unsteadiness
was measured accurately by making use of an innovative two-component laser Doppler anemometer(LDA). The von
Karman constant x was evaluated by making use of the friction velocity which was calculated from a linear formula in
the viscous sublayer. The von Karman constant decreases slightly in the rising stage and increases in the falling stage in
comparison with the value of steady uniform open-channel flows(x =0.41). The turbulence intensity distributions in the
buffer layer can be described well by a van Driest’s damping function, in which the van Driest’s damping factors are almost
constant irrespective of the unsteadiness. The third order moments of turbulence agree well with those of steady uniform
channel flows.

INTRODUCTION

One of the most dangerous natural disasters is flood flows. If the land is flooded, a great deal of damage occurs.
Rivers in flood are characterized by unsteadiness of the flow. It is necessary to investigate hydrodynamic characteristics in
unsteady open-channel flows. Many researchers have observed and measured these flooded flows in rivers. It was often
observed that a peak discharge appears before a time of peak depth and the concentration of suspended sediment in the
rising stage is larger than that in the falling stage.

Open-channel flows consist of an inner region and an outer region. Further, the inner region consists of the viscous
sublayer, buffer layer and log layer. Turbulence measurements not only in the outer layer but also in the inner layer have
been conducted in the case of uniform open-channel flows. The characteristics of the inner region in steady open channel
flows were investigated completely by Nezu & Rodi(1986) and Onitsuka & Nezu(1998) by making use of a laser Doppler
anemometer(LDA). They found that the von Karman constant and the integral constant are universal ones, irrespective of
the Reynolds and Froude numbers and also that the friction velocities evaluated from both the linear formula in the viscous
sublayer and the log-law were in a good agreement with each other.

In contrast, turbulence measurements of only the outer region were conducted in the case of unsteady open-channel
flows. Hayashi ez al.(1988) have suggested that the turbulence in the outer region becomes stronger in the rising stage than
in the falling stage by making use of a hot-film anemometer. Tu & Graf (1992) and Song & Graf(1996) have measured
unsteady open channel flows over gravel beds by making use of a micro-propeller flow-meter and an acoustic Doppler
velocity profiler, respectively. They have examined the unsteadiness effects on turbulent structures by making use of
Clauser’s equilibrium pressure gradient parameter and pointed out that the Reynolds stress distributions can be predicted
semi-theoretically under the assumption that the mean velocity distributions are expressed by a power law and the flows are
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in equilibrium. Nezu & Nakagawa(1991) have measured unsteady smooth and rough open-channel flows by making use of
a two component laser Doppler anemometer(LDA) with high accuracy, and have indicated that a peak discharge appears
before a time of peak depth in proportion to the unsteadiness. Further more, they pointed out that mean velocity
distributions up to the free surface can be described by the log-law in the case of low Reynolds numbers and also can be
described by the log-wake law in the case of high Reynolds numbers.

Until recently, turbulence measurements in the viscous sublayer have been almost impossible by making use of
conventional velocimetries such as pitot tube, propeller flow meter, electromagnetic flow meter, hot-film anemometer and
acoustic Doppler verlocimetry(ADV). This is because a thickness of the viscous sublayer is much smaller than the sensor
scales of these anemometers. Nezu, Kadota & Nakagawa (1997) firstly measured the viscous sublayer successfully in
unsteady depth-varying open-channel flows which have a hydrograph of sine curve, and they have pointed out that the von
Karman constant is an almost universal constant although it may change slightly and complicatedly against the duration
time. However, their experimental conditions for measurements of viscous sublayer include only one unsteadiness case for
both monotonically increasing and decreasing flows.

In the present study, turbulence measurements of unsteady open-channel flows including the stronger unsteadiness
were conducted by making use of an innovative two-component laser depler anemometer(LDA). The effects of
unsteadiness upon the von Karman constant and the integration constant of the log law were investigated intensively.
Further more, the third-order moments of the turbulence were firstly investigated with high accuracy.

THEORETICAL CONSIDERATIONS

The shear stress distribution of 2-D steady open-channel flows can be obtained from the equation of motion, as
follows:
+
T uv+dU A O
pU*Z U,.Z dy* R. :

in which, U is the mean velocity component in the streamwise direction, x, U. is the friction velocity, ~uv is the

Reynolds stress and 7 is the total shear stress. U* U /U., R.=hU./v and y* =yU./v is the vertical coordinate
normalized by the inner variables, in which y is the vertical coordinate and v is the kinematic viscosity. Eliminating the
Reynolds stress with the aid of Prandtl’s mixing length model, Eq.(1) reads:

ar_ 2-§) ®

B 14\1+407(1-8)
in which, = y/h is the coordinate normalized by the outer variables, ¢ = £U, /v is the mixing length normalized by

inner variables. In the near wall-region, the linear mixing length is modified by the van Driest’s damping function I, as
follows:

¢ =xy*T 3)
y#
F=1- - 4
ox| B) @
in which, x is the von Karman constant and B is the damping factor. In the viscous sublayer (0< y* s5), Eq.(2) can be
reduced to:
U'=y* &

In the log layer ( B < y*), Eq.(2) can be reduced to:
U*-ilny*+A ©)
'y

~ The normalized turbulence intensities w'/U. and v'/U. are described by Nezu’s empirical formulae, as follows (see

Nezu & Nakagawa, 1993):
uf

T D, exp(- 4,&) ‘ )
=-=D, expl- 1) ®

in which, D, =226, D, =123, A, =0.88 and A, =0.67 are empirical constants which were obtained by Nezu &
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Rodi(1986) in 2-D open-channel flows with LDA system. In the buffer layer (5 < y* < B), Egs.(7) and (8) are modified
due to the viscous effects, in the followings:

u' * ;
o =D, exp(— A, %:)r +Cyt-1) ©)
+
b4
I'=1-exp| —2— 10
%) |
inwhich, C is the empirical coefficient. In the viscous sublayer, Eq.(9) can be reduced to:

u' :

=Cy* 11
v~ an

Nezu & Rodi(1986) found experimentally that C is constant value(=0.3) in 2-D open-channel flows, irrespective of the
Reynolds and Froude numbers. :

EXPERIMENTAL EQUIPMENT AND DATA PROCESSING

The present experiments were conducted in a 10-m-long, 40-cm-wide, and 50-cm-deep tilting flume. In this water
flume, the discharge @ can be automatically controlled by a personal computer in which the rotation speed of a

water-pomp motor involving an inverter transistor is controiled by the feedback from the signals of an electromagnetic flow
meter.

Two components of instantaneous velocities, i.c., the streamwise velocity ﬁ(t) and the vertical velocity V(t),
were measured with a four-beam fiber-optic LDA system (DANTEC-made). The present LDA system can measure
instantaneous velocities very near the wall. The LDA was located 8m downstream of the channel entrance so that, the
turbulent flow was fully developed. The water-wave gauge was located 10cm downstream of the velocity measuring points.
The LDA fiber probe was moved by three-dimensional traversing mechanism. The accuracy of this traversing mechanism
was within 1/100mm. The measurements very near the wal, i.e., up to y =0.1mm, were successfully conducted accurately.
All of output signals of the LDA and water-wave gauge were recorded in a digital form with a sampling frequency more
than f =100(Hz) into a HDD of the personal computer. After experiments, all of the experimental data were transferred to
the workstation through the LAN.

It is very important for investigation of unsteady flow to determine the time-dependent mean velocity component
U (t) from the instantaneous velocity component # (t) =U (t)+ u(t). In general, there are three kind of methods, as
followings:

a) Ensemble-average method, b) Moving time-average method, c) Fourier-component method. )

Method a) is often used in the investigations on oscillatory pipe flows, closed-channel flows, and unsteady boundary layers.
Nezu & Nakagawa(1991) and Song & Graf(1996) pointed out that the method c) is the most reasonable for unsteady open
channel flows. In this study, the method c) was, therefore, adopted. The Fourier component m was adopted as seven,

which were used by Nezu & Nakagawa(1991). More detailed information is available in Nezu, Kadota & Nakagawa(1997).
Experimental conditions are shown in Table 1. In which, U,, is the bulk mean velocity, ResU, h/v is the Reynolds

number based on the bulk mean velocity U,,, R. =U.h/v is the Reynolds number based on the friction velocity and

FreU, /Jg—h is the Froude number. T, is the duration time from the base discharge to the peak discharge in flood. The
suffix b means the value before the flood, i.e, in "base" flow and suffix p means the value at the "peak" depth. « is
the unsteadiness parameter proposed by Nezu & Nakagawa(1991), as follows:

2 h, - b,

12
Upy +Up, Ty

a=

Table 1 Hydraulic Conditions
Case a T hb hp U U,,,p R, | Ry Reb Rep Fr;, Frp

Name | X10° | (s) | (em) | (cm) | (cm/s) | (cm/s) x10° | x10*
US | 301 | 60 | o1 75 | ... | 133 |154 494 224 | 112 | 004 | 0.6
Uz | 186 120 | 78 ) 128 | 156 1587 | 232 | 116 | 0.04 | 0.15

S3 294 | 60 | 72 | 85 4.17 106 216 | 434 | 300 | 090 | 005 | 0.12
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RESULTS AND DISCUSSIONS

Evaluation of Friction Velocity and von Karman Constant x

Fig.1 shows the mean velocity
distributions the
sublayer(0< y* =5) in the rising stage and

in viscous
falling stage. The symbol of the time before
the increase of the water depth is denoted as
—oo , The mean velocity distributions in the
viscous sublayer fit well to the linear formula
of (5), which is derived analytically from the
equation of motion. The friction velocity
U. was evaluated from the linear formula
of (5).

Fig.2 shows the mean velocity
distributions in the inner and outer regions in
the case of S3. Over the buffer layer
(30 s y*), the velocity distributions are

described by the log-law, which is shown by
the straight lines in Fig.2, up to the free
surface. Nezu & Rodi(1986) indicated that
the log-law is valid up to the free surface in
the range of low Reynolds numbers in which
R. attains up to 500 in the case of steady
open-channel flows. The log-wake law is,
however, necessary at high Reynolds
numbers in which R. is greater than 500,
as have pointed out by Nezu & Rodi(1986).
This Nezu & Rodi's criterion seems to be
valid even in unsteady open-channel flows.

- The von Karman constant x can be
calculated from the log-law of (6), by
making use of the friction velocity Uy
which was evaluated from the linear formula
of (5). Fig.3 shows the variations of the von
Karman constant x against the normalized
time Tw=t/T, Nezu, Kadota &
Nakagawa's (1997) data, which were
obtained in monotonically rising and falling
flows, were also plotted in Fig.3 by black
symbols. It was found that the values of x
increase suddenly near the initial time and
decrease before the time of the peak depth.
Next, the values of x increase then with
the normalized time and decrease before the
end of the flood time. This tendency agrees
with Nezu, Kadota & Nakagawa's (1997)
results ~ which  were  obtained
monotonically rising and falling flows. The
deviation of von Karman constant x from
the steady value( x =0.41) increases in

in
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proportion to the unsteadiness parameter
o . Spalat & Leonald(1987) have
calculated wvelocity profiles in turbulent
boundary layers with pressure gradients by
making use of a direct numerical
simulation(DNS) and have shown that von
Karman constant x is not universal
constant in the case of non-uniform flows.
Therefore, the von Karman constant is
affected by the pressure gradients, which is
proportional to the unsteadiness parameter
a.

Integration Constant A

The integration constant A; in the

log law can be obtained by making use of
the friction wvelocity U, which is
evaluated from the linear formula of (5), i.e.,
the Method 1. Fig.4 shows the behavior of
integration constant A, against the
normalized time T . The integration
constant A; increases in the rising stage
and decreases in the falling stage.

In contrast, almost researchers have
estimated the integral constant by making
use of the friction velocity which is
calculated from the log law of (6) under the
assumption that the von Karman constant is
an universal constant, ie., x =041,
irrespective the unsteadiness, which is
called here as the Method 2. However, the
von Karman constant is influenced by
strong unsteadiness. It is mecessary to
compare the results by Method 1 with those
by Method 2. Fig.5 shows the behavior of
integration constant A, against the
The value of A,

decreases with normalized time and attains
a minimum value before the time of peak
depth, ie., T <1. Its value increases then
and attains a maximum value in the middle
of the falling stage. This is because the
unsteady flows are affected by the pressure

normalized time.
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gradient, as pointed out by Song & Graf (1996) and Nezu, Kadota & Nakagawa(1997).
Fig.6 shows the relationship between the integral constant A; and the integration constant A, . Both values do not

coincide with each other and show a loop relationship. The circulation area increases with an increase of the unsteadiness.
It is further necessary to investigate the unsteadiness effects on velocity profiles of open-channel flows in the wide range of

weak and strong unsteadiness parameters.
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Friction Velocity U.

3
; It is very important to evaluate the T T C=09 08 07 06
friction velocity accurately not only for , : ) ’
normalized turbulence statistics but also for 5—-

suspended sediment in river environment.
This is because it is necessary to evaluate
the friction velocity with high accuracy for 21
predicting the bed-load transport rate and
the concentration of the suspended
sediment in flooded rivers. Fig.7 shows the
relationship  between  the  friction
velocities(as Ul ) calculated by the linear
formula of (5) and friction velocities (as 1k
U., ) caiculated by the log law of (6) under
the assumption that the von Karman

constant is same as the steady value(=0.41).
The friction velocities U., deviate from

C=0.3 is the value of steady flow
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viscous sublayer normalized by the friction
velocity U. at the corresponding phase
time. The normalized turbulence intensity Fig.8(b) Distributions of turbulence intensity of viscous sublayer

u'/U. can be described by a linear

function, i.e. Eq.(11). The coefficient C

can be determined from (11) by making use

of the least-square method. Fig.9 shows the behavior of the coefficient C against the normalized time. Although there is

in falling stage
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some scatter in data, no systematic deviation against the normalized time is seen. Therefore, the coefficient C is not
affected by the unsteadiness so much at least when the range of the unsteadiness parameter & is less than 3.0x10™ . This
fact may be surprised compared with the characteristics of von Karman constant.

In the case of steady open-channel flow, Nezu & Rodi(1986) and Onitsuka & Nezu(1998) have found that the
damping factor B, in Eqs.(9) and (10) is almost constant(= 10), irrespective of the Reynolds numbers and Froude

numbers. In contrast, the damping factor B,, in unsteady open channel flows has been unknown as yet. Fig.10 shows the
distributions of the turbulence intensity #'/U. in the wall region normalized by the friction velocity. The damping factor
B,, was determined with the least-square method so that the data in the region of 5< y* =40 gave the best fit to Eqs.(9)
and (10). The calculated values of the turbulence intensity from Eqs.(9) and (10) are also included in Fig.10 by curved lines.
The calculated curves coincide well with the measured data. The turbulence intensity attains a maximum value at y* =17,

which is in good agreement with steady open-channel flows investigated by Nezu & Rodi(1986). Fig.11 shows the behavior
of the damping factor ‘B,, against the normalized time T . It can be seen that the damping factor B, is almost constant

against the normalized time in all cases.
Reynolds stress Distributions - w

Fig.12 shows the distributions of the Reynolds stress ~ uv normalized by the friction velocity at the corresponding
phase time, together with the theoretical curves of Eq.(1). Although Eq.(1) is not valid exactly in unsteady open-channel
flows but valid only in steady open-channel flows, the experimental data in this study agrees well with Eq.(1) in almost
regions. These facts suggest that the Reynolds shear stress distributions normalized by the corresponding friction velocity
are not so much affected by the unsteadiness.

Third-order Moments of Turbulence

Until now, the third-order moments of the turbulence in unsteady open-channel flows have not been investigated at
all in spite of these importance. These third-order moments are very important statistics because they relate with the
bursting phenomena, as pointed out by Nakagawa & Nezu(1977) and because the third moments uuv and v constitute
the diffusion term in a turbulent energy equation. Figs.13 and 14 show an example of distributions of unv and wv
normalized by the friction velocity, together with Kim, Moin & Moiser's.(1987) DNS (Direct Numerical Simulation) data
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the diffusion term in a turbulent energy equation. Figs.13 and 14 show an example of distributions of unv and v
normalized by the friction velocity, together with Kim, Moin & Moiser's.(1987) DNS (Direct Numerical Simulation) data
in a closed-channel flow at the Reynolds number R.= 400 and R, =8000. Although there is some scatter in data, no

systematic deviation can be seen. The present data agree well with DNS database. Therefore, it can be said that the
third-order moments of turbulence are not affected by the unsteadiness.

CONCLUSIONS

Turbulence measurements in unsteady open-channel flows over a smooth bed at strong unsteadiness were

conducted accurately with an LDA system.

The von Karman constant & decreases slightly in the rising stage and increases in the falling stage in comparison
with steady value(=0.41). Consequently, the friction velocity calculated by the log-law deviates slightly from that
caiculated by the linear formula in the viscous sublayer. In contrast, the coefficient C and the damping factor B,, in the
turbulence intensity are not so affected by the unsteadiness. The Reynolds stress and the third-order moments of the
turbulence are also not so much affected by the unsteadiness.
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