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SYNOPSIS

Groundwater monitoring network planning largely concerns itself with
constructing a flexible and efficient monitoring network. While attempting to solve
a related problem, this study presents a novel procedure that combines genetic
algorithms with geostatistical theory. The proposed method is compared to other
methods that also integrate geostatistical theory with other optimization schemes,
including the sequential design method (SDM), branch and bound method (BBM) and
non-linear programming method (NPM). Those methods are implemented and applied to
a simplified field case. The finding indicates that the BBM method is computationally
infeasible for practical applications even if it canobtain the global optimal solution
in principle. Genetic algorithms (GAs) are characterized by their ability to obtain
a set of near optimal solutions instead of a single solution. In general, the total
variations among the network defined by these methods do not significantly differ.
For a network design problem, the SDM method provides a computationally efficient
solution for a preliminary study. On the other hand, the multiple choices given by
the GAs provide decision makers with flexibility to consider factors that
geostatistics can not.

INTRODUCTION

Regardless of the hydrogeological problem, understanding groundwater behavior.
is a relevant task. Estimating the number of samples and obtaining them are always
problematic owing to the high cost of hydrogeclogical investigation. To resolve this
problem, a sufficient number of monitoring wells should be constructed. However,
how much information is sufficient? The different planning methods were discussed
in the last century, most were based on Kriging (12) method owing to the following
characteristics of this method: (a) The estimated variance can be obtained when the
value is interpolated by Kriging; and (b) The statistical spatial dependency between
the sampling sites is characterized by the variogram function when Kriging is
implemented. Kriging method is therefore an effective means of monitoring network
design. This method was initially applied to determine the optimal locations of .
sampling sites for estimating fluoride concentrations in groundwater (3). Rouhani
(15) developed a sequential algorithm, variance reduction analysis (VRA), to identify
the new sampling locations that could enhance the maximum estimated accuracy
(information gain) for the entire analyzed field. VRA selects a point from regular
nodes to provide maximum information gain sequentially.

Theoretically, the solution of VRA is not a purely optimal network distribution.
The following questions arise: can any algorithm locate the optimal location of
sampling sites? Previous studies have utilized the branch and bound method (1, 5),
non-linear programming method (10, 9), and Genetic algorithms (2, 4) to identify the
optimal locations in the monitoring network. Differences among the above three
techniques can be summarized as follows; (a) Difference in the search space.
Non-linear programming (NPM) is completely continuous in the search domain, while
the other two search techniques are based on a set of finite candidate points; (b)
Difference in the meaning of optimizatiom. Theoretically, branch and bound method
(BBM) can obtain the global optimal solution, while the other techniques can not



necessarily do so; and {¢) Difference in the number of solutions. While the genetic
algorithms (GAs) can provide users with multiple sclutions, the other two can only
offer a single solution.

For the above three methodologies, NPM and BBM are traditional optimal methods,
GA is not. The underlying concept of genetic algorithm is inspired by mnatural
processes of the selection of individuals and the evolution of species as well as
reproduction mechanisms and the genetic transmission of characteristics (11). 1In
addition, genetic algorithms generally function as searching procedures capable of
optimizing functions based on a limited sample of function values. In sum, genetic
algorithms are promising alternatives to conventional optimal methodologies in
searching for optimal groundwater monitoring sites.

This study integrates geostatistics and different optimal methodologies (NPM,
BBM and GAs) to perform the monitoring network design. This incorporation is able
to consider the structure of hydrogeclogical parameters on space and the optimal search
on mathematics. Besides these three algorithms, the forth monitoring planning
algorithm based on VRA is termed herein as the sequential design method (SDM).
Co-Kriging is selected as the common interpolation method in the four algorithms.
All of the algorithms are applied to a simplified field case in Ping-Tung Plain,
southern part of Taiwan. Moreover, the computational reliability of the algorithms
and issues related to application are discussed.

GEOSTATISTICAL INTERPOLATION METHOD

Co-Kriging is adopted in this study to compute the estimation variance. Therefore,
features of Co-Kriging are highlighted as follows.

Structural Analysis

As widely considered, hydrogeological parameters are regionalized variables
with spatial statistical structures (7). In the following, we present the structural
aspect of a regionalized variable by a theoretically mathematical form of semi-
variogram:
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In geostatistical technigues on interpolation, Kriging, semivariogram is a basic
and important term.

Co-Kriging

Co-Kriging is a type of Kriging that interpolates the value using the data of
interrelated variables. The estimator is expressed as a linear combination of all
the available data (12, 13):
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where U*LXé)z the estimator of variables U to be estimated at location X;; 2?,2{

= co-Kriging coefficients which present the weight to the variables U and V by the
observation point of both variables; N = the total observation number of primary
variables U; and M = total observation number of secondary variable V. Then, by
applying the criteria of unbiased condition and minimum variance, the co-Kriging
coefficients are determined and the co-Kriging system can be derived (13). The
variance of the co-Kriging estimation is
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where o= the variance of co-Kriging estimation; 7,-;: the auto-variogram of variable
(13) U at location X; and X, ; ;k: = the cross variogram of variables Vand Uat location

X and X, ; Z;: nugget effect; and H|= the Langrange multipliers.
By assuming that multiple points ([Xj,F=12- ,Q}) are to be estimated, the total

estimation variance can be written as follows:
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where Xﬂ: the locations to be estimated.

Variation of Estimation Variance

For the co-Kriging method, the variance reduction caused by adding new monitoring
wells into the network can be expressed as

VR*Q =V0(N)—V0(N+L) (5)

In Egs. 5, the network is assumed to have N monitoring wells before adding new
wells and VR« is the variance reduction at any location X (i=1,2,..,L) after adding
the newmonitoring wells. In contrast to the variance reductionbasedon the universal
Kriging as in Rouhani (15), Egs. 5 can not be rewritten as a compact and computationally
efficient form owing to the complexity in computing the variance as shown by Egs.
3. Therefore, the total estimation variance of V,(N) and V,(N+L) must be evaluated
independently using the Egs. 4, thus increasing the computational load significantly.
For the optimal algorithms adopted herein, the SDM algorithm adds a new well at each
iteration, and L equals 1. However, multiple wells are added into or removed from
the network at each iteration for the BBM and GAs algorithms. As for the NPMalgorithm,
the variation of variance continuously varies with its decision variables, the
locations of the new wells (10).

OPTIMAL ALGORITHMS

In this section, we introduce the optimal schemes for optimal groundwater
monitoring network design. All of the algorithms search for the optimal network with
minimum variance of total estimation or maximum reduction of estimation variance.

Genetic Algorithms (GAs)

Genetic algorithms (GAs) are computational paradigms inspired by the mechanics
of natural evolution, including survival of the fittest, reproduction, and mutation.
Developed by Holland in the 1960s, GAs allow computers to derive solutions from
difficult problems, such as function optimization and artificial intelligence. In
this study, we apply GAs and co-Xriging to optimal groundwater network design. The
procedures are summarized as follows.

[Step 0] Express the objective function as

max VRso(S), Sc|x,| num(s)=L ()

where § = the set of solution; [X,]= the set of candidate sites and will be further

defined in section *study area”; L = the number of new wells that the decision maker

plans to construct; and VR« (S)= the value of the total reduced variance because of

the new additional sites in set S.

[Step 1] Generate an initial set of chromosomes (network designs): .
Herein, each chromosome refers to a possible network design or network alternative.

The chromosomes are represented by binary strings. Consider the following example:



For a network design, a chromosome that selects the first, third and fifth sites from
a candidate set with totally 10 sites is encoded as a binary string, [1 01010
000 0]. Inthis study, the algorithm randomly generates 100 chromosomes initially
and the number of chromosomes remains constant for all the generations.

[Step 2] Evaluate the fitness for all the chromosomes.

The measure of fitness for each chromosome (network design) consists of two parts:
the variance reduction for the design network and the penalty related to the total
number of wells that the network design will increase. In GAs, the number of wells
for each chromosome may be greater or less than the required number of well numbers.
Therefore, a penalty factor is defined as a situation in which the proposed number
of wells is greater than the required well numbers. The fitness value for each
chromosome is then formulated as (7)

2
F=AV X(i) ; where ¢ = the number of generated sites S (7)
c

In Eqs. 7, ¢ equals the number of wells for the chromosome when they are greater than
L. On the other hand, ¢ equals 1 when the number of wells is less than the specified.
Where AV = the total variance reduction for the (chromosome) network design.
[Step 3] Verify the terminating conditions.

This step examines the terminating conditions to determine whether or not the
algorithm is to be continued. Herein, we apply the simple criteria to stop the
calculation after fifty generations.

[Step 4] Select (reproduction) the chromosomes:

The roulette wheel method is applied to select the chromosomes for crossover
inthis study. Inthe roulette wheel reproduction, each chromesome has the probability
p; being selected. This operation is simulating the natural selection. The more
high fitness chromosomes have the more probability to survive. All the selected
chromosomes form a pool of chromosomes that are ready to crossover.

[Step 5] Perform crossover of the chromosomes.

Randomly select two chromosomes from the pool and, then, perform the crossover
to generate new offspring. In this study, one-point crossover is utilized.
[Step 6] Conduct mutation of the chromosomes.

The mutation restores the lost or unexplored genetic material into the population
to prevent the GAs from prematurely converging to a local minimum. A mutation
probability allows random mutations to be made to individual genes. Chen (4) supposed
a simplified case, and three mutation probabilities (0.1,0.05,0.01) are tested and
implemented five times for each. 0.1 is the most flexible probability among the above
three values. Therefore, mutation probability 0.1 is finally adopted in this work.
After completing this procedure, a new population of chromosomes is generated. The
algorithm then goes back to step 2.

Sequential Design Method (SDM)

Although the basic procedure of SDM resembles the VRA method developed by Rouhani
(15), co-Kriging is adopted herein instead of universal Kriging. The procedure of
SDM is summarized as follows.

[Step 0] Define maxVR«y, VRxy as in Egs. 5.

[Step 1] Define a set of points [Xﬁ,ﬁzl,Z-",Q] to evaluate the total estimation
variance .

[Step 2] Examine the set of available data points [Xj,k=12---,N], which is the basis
for interpolation. ’

[Step 3] Define the set of candidate locations [X,,7=12---,p] from which the new well
locations are selected. :

[Step 4] Select a point X» from the candidate set [X,], then, evaluate the new total
estimation variance V, due to the addition of X by Egs. 3. Repeat the same

procedure for all the candidate points. The well location that causes the new



network to have minimum total variance is the optimal well location, Xs, .

[step 5] Move point Xx, out of the candidate set [X,] and into the observation data
set [X;]. Therefore, the number of wells in the candidate set is reduced to p-1
and the number of observation points in [X;] increases by one for the next
evaluation.

[Step 6] Repeat the procedure 4 and 5 until the required number of monitoring wells
is selected.

Branch and Bound Method (BBM)

While performing the search along pre-constructed tree branches, the branch and
bound method is a simultaneous search as Ben-Jemaa (1) proposed. This algorithm is
formed as a sequential procedure in which a well is conceptually deleted (dropped)
at a time while moving along the tree branches. On the other hand, each node in the
tree represents a possible network design. Fig. 1 illustrates a search tree of this
algorithm in which three wells from a total of five candidate sites. Based on the
evaluated estimation variance at each node, the search either proceeds forward along
the same branch to delete a new well or leaves the current branch and moves one step

back to another branch. The operation of BBM is described as follows.
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Fig. 1 The diagram of branch and bound method

[step 0] Define the objective function in this algorithm as mino%, cr%which is
described as Egs. 4.

[Step 0] Utilize the total estimation variance by the SDMmethod as the initial ‘Bound’
value.

[Step 1] Evaluate the total variance of the nodes starting from the root.

[Step 2] Describe this step according to Fig. 1 owingto its complexity. The following
conditions should be considered.
By assuming that the process is visiting the node E, for a situation in which the
total estimation variance due to the node E is less than the initial ‘Bound’ from
step 1, the algorithm proceeds to the branches of the node E which has not been
checked, e.g. node K. Consider a situation in which the node K is the lowest level



of the tree and its total estimation variance V,; is less than the ‘Bound’. Under
this circumstance, the algorithm replaces the ‘Bound’ by V,, as the new ‘Bound’.
Notably, nothing changes if the total variance of the node K is greater than the
‘Bound’. The process then continues to the other branches of node E, e.g. node
L.

e Assume that the total variance of the node E exceeds or equal the ‘Bound’, thus
making it impossible to obtain a smaller total variance when going down to its
branches. Therefore, all the branches starting from node E can be omitted. The
process then goes directly to the other nodes at the same level of node E.

e After calculating the branches of the node E, the algorithm proceeds to the other
node at the same level as node E, for example node F. The process repeats itself.

o The final ‘Bound’ value is the global optimal total estimation variance after
visiting all the branches. Meanwhile, the set of associated sites is the global
optimal monitoring network.

In principle, the BBM method can determine the global optimal solution for the
network design problem. Nevertheless, computational loading of this algorithm is

too heavy for a practical problem. : .

Non-linear Programming Method (NPM)

If the well locations of the design network are treated as continuous decision
variables, the problem is obviously a non-linear programming one and the objective
function is maxVR« . This study adopts general non-linear programming algorithms,
the steep descent method, to search for the optimal locations in space. Steepest
descent is an algorithm' that takes the optimal move at each iteration. The
implementation is straightforward and is summarized as follows:

[Step 0] Define the objective function as maxVRsy, in which VR« was defined as Egs.
5; The objective function also is a function of coordinates (10). The initial
total estimation variance is evaluated from the set of observation networks by
using Egs. 4.

[Step 1] Choose a initial design of well locations Xk=°=(XP,Xg,---,X,(,))

[step 2] Evaluate the gradient d* (via central-difference approximation) of
objective function on the designing well locations. The vector shows thedirection
when searching the optimal locations.

[Step 3] Select a search step sk by a one-dimensional search method and, then, update
the well locations by X**1 = x* . 5%3% and the value of the objective function,

7ok o stak).
[Step 4] Define an acceptable stopping criterion &. If the ratio of the variance
i ¥ .
reduction is less than or equal to &, %Z(-(}-(-%Ss, then stop the computation.

Otherwise, repeat procedures 2 and 3.
APPLICATIONS AND COMPARISONS

Study Area
This study applies the above algorithms to a simplified groundwater monitoring

network design problem in Ping-Tung Plain, one of nine groundwater regions in Taiwan.
Located in the southern part of Taiwan, Ping-Tung Plain is about 1200km’. Groundwater
table (W) and hydraulic conductivity (K) are the parameters in this monitoring network
analysis. The former one is the parameter that is of primary concern, while the latter
one ig the auxiliary parameter. Three sets of sites must be defined before the optimal
schemes are employed:
1. Set of existed data sites [X;]: the set of existed monitoring wells. Herein, the

initial set of existed data sites contains fifteen installed observation wells.
2. Set of candidate sites [X,]: the set of possible locations to construct new

monitoring wells in the analyzed field. Herein, the set contains forty candidate



sites.
3. Set of basis nodes [Xj]: Herein, the estimation variances for a design network

are evaluated at a set of nodes distributed in space. The total variance is the
summation of all the estimation variance at the nodes. In practice, the nodes
on uniform grids are adopted for this purpose. Cumulatively, thirty eight nodes
are defined uniformly in our study area to calculate the total estimation variance.
Fig. 2 presents the distribution of the above three sets of sites for the Ping-Tung
Plain. Co-Kriging is the primary means of evaluating the estimation variance in
all the algorithms. Therefore, the structure analysis of geostatistics, the
semivariogram, must be completed before the algorithms can be proceeded.

@ candidate set
O basis set
A existed set

Fig. 2 The distribution of the data sets

Geostatistical Structure Analysis

By analyzing the data of Ping-Tung plain using the GeoEAS which was developed
by EPA, the semivariogram and cross-semeivariogram for the groundwater table and
hydraulic conductivity can be summarized as follows:

1. Semivariogram of water table (W): Exponential model, sill=1.7, range=30km

-3h
yw=171-e30 |; where h = the distance between any two points

2. Semivariogramof natural logof hydraulic conductivity (In(K)): Exponential model,
8ill=0.7, range=20km

=3h

}’1“(1() =0.71-e 20

3. Cross-semivariogram p (h) was taken by the following formula (13):

Win(K)
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where }’;/l"(K)(h)'—" the summation of semivariogram of water table and natural log

of hydraulic conductivity.
Models Application

The four monitoring design algorithms are developed using MATLAB. This study
initially examines the programs by a simple case. The simple case isdefinedas follows;
the numbers for the set of existed data sites [X;], the set of candidate sites [X,]

and the set of basis nodes {Xﬂ] are 8, 7 and 21, respectively, as illustrated in Fig.

3. The objective is to add three more wells to the existing network. Fig. 4 summarizes
the solutions for all the algorithms, and the solutions of SDM, BBM and GAs are the
same for this simplified case. The solution of NPM is somewhat different from the
other methods. The optimal locations for the NPM can be anywhere within the study
area and not restricted to the candidate set. Therefore, two sites of NPM are not
in the study area owing to the lack of a constraint for the boundary in the NPM system.
Since the solution of BBM is theoretically global optimal, the SDM and GAs could thereby
provide the optimal solution in this simplified case. This finding also demonstrates
that the program is ready to solve a practical problem.

@ candidate set
o basis set
A existed set

Fig. 3 The distributiomn of the data sets for simplified case
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Fig. 4 The distribution of solutions from each optimal algorithxn‘ (simplified case)

The problem for the field case has been described in section “Study Area”.

objective is to add five wells to the existing monitoring network; the final network
contains a total of twenty monitoring wells.

of all the different algorithms.

Table 1 and Fig. 5 summarize the results

Method SDM NPM BBM GAs
Coordinate X Y X Y X Y
(km)
Site 1 212.903)2532.350(|212.985(2532.996 - 212.903|2532.350
Site 2 207.600(2472.2001207.013[2478.991 — 207.600({2479.200
Site 3 203.306|2533.460{200.994{2532.993 - 203.306(|2533.460
Site 4 182.900]2490.930{182.998(2491.011 — 182.900(2490.930
Site 5 206.360(2515.100|206.993|2515.005 - 206.360|2515.100
Initial TEV [59.3571
TEV after the|48.8479 46.4772 - 48.8479
above 5 sites
added

TEV: total estimation variance; [m?]

Table 1 Sclutions of the different methods
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Fig. 5 The distribution of solutions from each optimal algorithm

Based on above results, the following points are worth mentioning:
The computational load for BBM algorithm does not grow linearly with candidate

points. For the both cases, the number of branches is C;=35 while three new
monitoring locations are picked up from seven candidate points; in addition, the

number of branches sharply becomes C§m=658008 while 5 new monitoring locations
are selected from forty candidate points. However, depending on the value of
initial ‘BOUND’, the tree search does not necessarily visit all the branches.
Nevertheless, the number of total bracnches is still a fair index to estimate
the computational load. For this simplified field case, more than cne month was
spent separately on three different computers (PC AMD-K6, PC P-II MMX and
workstation Ultra-5); the problem was still not solved. Therefore, the BBM is
not a feasible algorithm for a practical problem owing to its high comptational
demand. By the way, the other three methods are completed in one day.

An initial solution must be defined to start the NPM computation. In this study,
the solution of SDM is used as the initial solution. Although the solution of
SDM is not necessarily an optimal one in principle, its solution is very close
to the optimal soclution by experience; and it also does well for the optimal
solutions in many cases. Therefore, the solution of SDM is a good starting point
for the NPM methods.

As mentioned earlier, GAs canprovide users withmultiple solutions simultaneously.
For our problem, as indicated in Fig. 6, the optimal fitness for each generation
is almost the same after twenty three generations. This finding implies that
chromosomes have the fitness value near the optimal fitness value, 10.509, after
twenty three generations. After collecting all the chromosomes with the fitness
value near the optimal one, there are a total of £ifty one chromosomes. Inaddition,

-each chromosome represents a network design, implying that there are fifty one

near optimal network designs for this problem. Table 2 lists the solutions. For
all candidate sites, points 40, 1, 34, 32, 27, and 26 are selected with a high
frequency; points 2, 3, 4, 6, 7, 8, 9, 10, 11, 14, 15, 19, 20, 21 and 23 are never
selected. Table 3 displays the frequency for each candidate site. From table
3, the candidate site with the higher frequency demonstrates that the gene is
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more suitable for GAs. Therefore, it is always selected to reproduce. This table
could also be a reference for the decision maker during the construction of new
wells.
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Fig. 6 Best fitness of eath generation for GAs

Solution (Se- |Total estimation] Solution (Se- |Total estimation] Solution (Se- |Total estimation

lected Sites”) variance lected Sites”) variance lected Sites”) variance
1,26,32,34,40 48.8479 1,29,32,34,40 49.5796 1,24,34,39,40 50.6162
1,27,32,34,40 48.9201 1,26,33,34,40 49.9291 1,22,26,38,40 50.7000
1,22,26,34,40 49.0289 12226323440 | 493527 11,26,32,37,40 50.4437
1,16,26,34,40 49.6892 1,27,33,34,40 49.9985 16,22,27,34,40 50.2999
1,24,32,34,40 49.4071 1,26,32,36,40 49.8682 1,29,32,36,40 50.5993
1,24,26,34,40 49.0505 1,27,32,35,40 49.2357 18,22,26,34,40 50.5493
1,26,31,34,40 49.3415 1,31,32,34,40 49.6464 1,31,33,3440 | 50.6540
1,27,30,34,40 49.6438 12,26,32,34,40 49.6186 1,22,27,36,40 50.1133
1,24,26,32,40 495738 11,24,31,34,40 497754 11,27,33,36,40 51.1237
1,13,27,34,40 49.5796  125,27,32,35,40 50.6055 1,25,33,34,40 51.3321
1,22,27,34,40 49.0984 1,26,27,32,40 50.0563 1,29,32,38.40 51.2499
1,24,27,35,40 49.4355 1,22,30,34,40 50.1121 1,30,32,36,40 51.4386
1,24,27,34,40 49.1198 1,25,27,32,40 50.4911 1,13,27,.33,34 51.9558
1,22,32,34,40 49.3857 1,28,31,32,40 50.4687 1,30,32,38,40 51.9200
1,24,27,32,40 49.6482 1,27,34,39,40 50.2811 1,17,33,34,40 51.6981
1,25,27,34,40 499632 11,30,32,34,40 50.2362_ 15,25,27,34,40 51.0006
1,26,27,34,40 49.5304 1,25,32,34,40 50.2505 1,22,33,36,40 51.5941

*; Selected Sites are from candidate set
Table 2 The total estimation variance of GAs' solutions

No. of candidate point 1 2 31 4 5 6 7 8 9 10
Frequency 451 0 0 O i 0 0 0 0 O
No. of candidate point i1] 12y 13| 14| 15| 16| 17/ 18] 19| 20
Frequency 0 1 20 0 0 2 1 1 of 0
No. of candidate point 21] 22| 23] 24| 25| 26{ 27| 28] 29| 30
Frequency 0| 10, O 8 6] 15/ 20 1 3 5
No. of candidate point | 31| 32f 33| 34| 35) 36/ 37, 38| 39| 40
Frequency 5/ 23 8 331 31 6 1 31 21 50

Table 3 The frequency of each candidate site for the solutions of GAs
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If the last (50%®) generation of GAs is considered, then six different solutions
([1,26,32,34,40], [1,24,27,34,40}, [1,27,32,34,40], [1,26,27,34,40],
[1,26,33,34,40], [1,27,30,34,40]) have nearly the same optimal fitness value,
10.509. Furthermore, for the above six solutions, sites 1, 34 and 40 are chosen
all the time.

As indicated in Egs. 7, the fitness of GAs contains a penalty factor to restrict
the number of wells to be added. Therefore, the total estimation variance for
their represented network designs may not be the same value when the chromosomes
have the same fitness value. Hence, the total estimation variance must be
re-calculated alone to evaluate the efficiency of the network design represented
by each chromosome. The actual values of total estimation variance for the
previous fifty one different chromosomes are re-evaluated by co-Kriging as
summarized in Table 2. According to this table, the difference between the minimum
total variance and the maximum one is 2.7462, i.e. only 5.6% on average, which
is insignificant for hydrogeological estimation in practice. This finding
confirms that all fifty one solutions can be accepted as the monitoring network
designs. Our results also suggest that the network design can be flexible. In
fact, the geostatistics can not consider factors such as the geological condition,
land availability and other administrative constraints. The multiple choices
given by the GAs can provide decision-makers with flexibility in considering these
factors. On the other hand, the single solution provided by the other methods
places unnecessary restrictions on the decision-makers.

CONCLUSION

This study presents a novel algorithm to solve a problem related to groundwater

monitoring network design. The proposed algorithmis alsocomparedwithother methods.
All the algorithms are all based on the co-Kriging theorem and the differences of
these methods are based on the optimization schemes. The proposed algorithms are
tested and applied to a field case. Based on the results in this study, we conclude
the following:

1.

For a small sized test problems all the algorithms can find the optimal solutions
and the solutions for SDM, BBM and GAs method are all the same. The solution of
BBM method is a global optimal one, indicating that the SDM and GAs can find the
optimal solution as well. Nevertheless, for the simplified field case problem
of a moderate size, the BBM method fails to solve the problem within a reasonable
computational time, implying that it may be inappropriate for practical
applications.

The decision variables for NPM method are continuocus in space. Nevertheless, for
a practical regional network project, a future study should determine whether or
not the available sites to construct the monitoring wells should be implemented
before the network is developed. Therefore, the continuous nature of the NPM method
may not be beneficial for practical applications. Results in this study indicate
that, when the density of the candidate sites is high, the solution of the NPM
method is close to solutions of other methods.

The monitoring wells should be well maintained when located at schools and naticonal
regions in Taiwan. Though the candidate sites are distributed as a mesh, the most
troublesome points (such as: private land, river, etc.) can be eliminated before
the optimal algorithms are implemented. As we know, the geostatistics cannot
consider the special geological situations or extermal factors. For the four
algorithms what we use, SDM, NPM and BBM methods can only offer a single solution,
GBs can provide multiple near optimal solutions. The multiple choices given by
the GAs can provide decision-makers with the flexibility to consider the other
real factors (such as: the geological situations) which are not easily defined
in the monitoring design algorithms. On the other hand, the single solution
provided by other methods might place unnecessary restrictions on decision-makers.
The solutions of the SDM method are closer to the solutions of other three methods
even though the total estimation variance is the highest among the four algorithms.
Therefore, the SDM method is the practical algorithm for a network design problem
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if the external factors (geclogical situation, land use, etc.) are not concerned.
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APPENDIX - NOTATION

The following symbols are used in this paper:

the number of sites what GAs generate;
= fitness in Gas;

the distance between any two points;

® P omoa
]

hydraulic conductivity;
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the number of constructed wells what decision makers plan;
the search step in Steepest descent algorithm

groundwater table;

total reduction estimation variance;

location of the existed(observed) data sites;

location of the candidate sites;
location of the basis nodes;
estimated cross variogram of variable U and V at location X; and X;;

nugget effect;

co-Kriging coefficients;

Langrange multiplier; and

total estimation variance.
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