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SYNOPSIS

A purely mathematical approach is unaertakén to the E-Ri relation of a two-
dimensional inclined plume flowing ovér a frictionless slope. This is an idealized
mathematical experiment to gain knowledge of the ba'sic characteriksticsk of the relation.
The Gaklerkin methéd is applied to Fukushiﬁa's equations (1988), a set of dimensioniess -
bouvndary layer equations including the effect of buoyancy, té obtain efficiently the E-Rf
relation under conditions of systematically changed hydraulic parameters. The resulting
E-Rirelation shows the same tendency as an entrainment formula empirically proposed
by Turner(1986) in which E decreases rapzdly as Ri approaches unity. This charactemstlc
of the E-Fi relation is physically explained by a co’ns1derat10n of the TKE budget in a

plume.
INTRODUCTION

An inclined plume, a layer of fluid little heavier than surroundings flowing along a
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sloping ground, appears in many forms at many situations, such as a turbidity currént in
the ocean, cold down-wind from mountains ’at night, flood water intrusion into a
reservoir. The density currents of this kind play an impqrtant role in heat and mass
transport in ﬁatural environment. ’ ‘

The entrainment coefficient (£), a ratio of the velocity of inflow across the density
interface to the velocity of the underflow, is an ixﬁportant factor to describe the motion of
density currents(Ellison and Turner, (3)). A lot of experiments have been conducted in
laboratory flumes in ordef to obtain a reiation betwéen the coefficient and the
Richardson number (&I), a parameter indicating the stability of density currents.

Several empirical formulae of "the entrainment law" have been proposed for

_inclined plumes on the basis of flume data. Most of them can be classified into two
categories: One is a group of power func’tions‘(Egashira(Z), Fuku;hima(5)) and its
modifications(Parker et al. (8)), which show straight lines for large R/ in a logarithmic
plot. The other is a group of fractional functions(Akiyama et al. (1) and Turner(9))
with which £ drops sharply as Bi approaches some value (~1) even in a logarithmic plot.
In this paper, the former is called as Type-1 formula, and the latter as Type-2 formula.

It is not concluded yét which expression would be more appropriate to deseribe the
entrainment relation for inclined plumes because of the ‘following problems of laboratory
exéeriment: The range of experimental paramefers such as bottom slope, relative density
difference and Reynolds number are limited aue to the scale of facilities and the
avéilable working fluids. As a result, the data are piled iﬁ a restricted area of E-Fimap,
and most of the empirical formulae pass through the cloud of data and then diverge ffom
one another. Ho?vever, information on entrainment rate at éonditions out of the cloud
becomes significant when we estimate the scale of plumes appearing in natural
environment.

To break this deadlock, two new approaches different from laboratory experiment
are being taken recently. One is a field experimenﬁ on an inclined plume in Lake

Ogawara far larger than laboratory flumes(Nagao and Ishikawa, (7)). Its results support
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Type-2 ’formtvzla, providing entrainment coefficients quite smaller than those predicted by
Type-1 formula at Bi of around 1. The other is a mathematical approach using
turbulent modkel equations ( Fukushima (6)). Fukushima investigated the Z-Rirelation
by using &- ¢ model equations based on a dynamic similarity of inclined plumés. The‘
results of his study showed the tendency similar to Type-2 formula.  However, because
the condition for nﬁmeﬁcal calculation was not controlled systematically, the results
were not in a line but a fragment of a twisted band, and himself did not refer to the
analogy of his results with Type-2 formula.

In this paper, a mathematical approach is presented as an extension of
Fukushima's method: the Galerkin method is/ applied to Fukushima's equations to obtain
a series of analytical solutions under systematically changed flow conditioﬁs. A unique
c;xrve for tﬁe E-Ri felation showing f.he same tendency as Type-2 formula is obtained
under the condition of negligible bottom friction. A remarkable feature of Type-2
formula, the existence of upper limit for Rj, is theoretically illustrated by energy budget

consideration.
STRATEGY

Empirical relations for ehtrainment rate of density currents including inclined
plumes hax)e been proposed based on flume data. Many of them aré expressed by the
following power function: |

E oc Ey, Ri™" | | ‘ | ; 1)
where E, and n = constants. Egashira(2) recommended £,= 0.0015 and n = 1, while
Fukushima(5) gave £,=0.003 and n=1.5. Onthe other hand, Parker et al. (8) proposed
a modified power; function which has a finite Fat Bi=0,as different from a simple power

function.

E =0.075/(1+718 Ri**)"* ~ @
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This relation almost coincides with an ordinary power function when R>0.1. This
group of formulae called as Type-1 formula herein.

On the other hand, Turner(9) proposed the following empirical relation based on the
experimental results obtained by Ellison and Turner(3).

E =(0.08-0.1R)/(1+5Ri) 3)

A feature of this expression is that ¥ decreases to O rapidly when R approaches 0.8
Akxyama et al. (1) modified the constants in Eq. (3) being based on their own experiments.
These kinds of formulae are called as Type-2 formula herein. v

Egs.(1)~(3)are compared with flume data in Fig. 1. It should be noted that Eq(2)
of Type-1 and Eq.(3) of Type-2 coincide with each other in a region of Ri<0.6 where most
of flume data concentrate. However, they diverge to one another rapidly outside of the
region. As mentioned earlier, information on entrainment rate at large 27 or small &
becomes significant when we estimate the scale of plumes appearing in natural
environment.

In order to obtain data in this area of E-Fi map, it is necessary to carry

out an experiment on a very mild slope. However, it becomes more difficult to keep the



ﬂqw in weil-developed turbuient state as the slope is set milder in laboratory experiment
of small size. After all, an experiment of larger scale than ordinary laboratory ones is
required for judging which type of relation is more appropriate.

Nagao and Ishikawa (7) carried out a detailed field measurement of an inclined
plume which was generated in Lake Ogawara by the density difference between lake
water and sea water intruding into the lake. This plume was fully turbulent; the layer
thickness was about 1.m, the flow velocity was 20-40.cm/sec and the flow continues over a

dist}ance of 1.5 km on the slope of 0.25 degree. (It is usually thought that field

measurements are less accurate than laboratory experiments. In this field

measurement, however, the entrainment rate was estimated from the spatial variation of

salinity over a distance of 1 km which is far larger than the length of usual laboratory
flumes so that the accuracy of estimation is satisfactory. - Please refers to the original
paper on this point.) The result of the E-Ri relation obtained in Lake Ogawara is shown
in Fig.2. The field and laboratory data clearly suggests that Eq.(3) of Type-2 describes
the entrainment relation better than Type-1 formula.

On the other hand, Fukushima(6) made an epoch-making analytical study to
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estimate the entrainment relation by using k- ¢ model equations. At first, he assumed .

" all physical quantities in a plume, say S;, as the followi;ng form being based on a :

consideration of dynamic similarity.
S; e x? f,(m) S DR @

where 7 = y/x; x= the distance along the sloping ground; y = the distance pérpendicular
to it. Subétituting them into the k- £ model equé_tions, and determining the expo‘nentsy D
s from dimensional argumentation, he derived a set of dimensionless ordinary
differential equations for (7 )s. Finally, he obtained the & Rirelation numerically for
a lot of slope angles with some variation of a coefficient C; in k- s model. The results
are plotted in Fig.3 in which Z drops sharply as Riapproaches 1. It should be noted that
Fukushima's study was purely analytical without any help of experimental evidence.

(However, as mentioned earlier, himself did not refer to the ahalogy of his results to
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Type-2 formula.)

From the above evidences, the authors consider as follows: @ Type-2 formula
proposed by Turner(9) and Akiyama et al. (1) is probably more appropriate than Type-1
formula which is rather widely accepted now. @ Analytical verification of Type-2
formula will be possible by using turbulent models such as k- ¢ model.

The strategy of this study is basically same as Fukushima's: a set of dimensionless
ordinary differential equations is derived from k- ¢ model equations based on dynémic
similarity assumption and dimensional argumentation. The solutions of the equations
for different slope angles are plotted ‘on £ Ri map to discuss the entrainment relation.

However, the analysis in this study is different from Fukushima's on the following three

- points: The first is to take account the term of additional pressure gradient appearing

from the change of coordinate scale into calculation which Fukushima eliminaf:ed from
his analysis. ~The second is the mathematical technigue to solve the ordinary
differential equations: Fukushima solved the equations numerically by using the finite
difference method. This method takes a lot of time for iteration, and quantities
sometimes do not converge enough because of the number of unknown vaﬁables, high
nonlinearity of the equations and the boundary conditions assigned at two different
places. Accordingly, the Galerkin method is adopted in this study to obtain a series of
approximate solutions for many different slope angles under the systematical change in a
coefficient C; which is the only uncertain factor in k- ¢ model. The Galerkin method is
one of approximate solvers of macroscopic point of view, which obtains not the detailed
profiles qf variables but their magnitude or amplitude by minimizing the error of
equations in average or integral. This method is considered to be suitable for the
purpose of the present study, since we do not need the detailed profile of an inclined
plume but the entrainment rate which is a macroscopic quantity relating to the volume
integral. The third point is that the friction or drag force on the sloping ground is
assumed to be negligible. The reason for this assumption is rather philosophical: There

are two sources of turbulence for mixing in inclined plumes, i.e., the shear layer in



halocline and the bottom boundary layer. If the latter contributes to the mixing with
significant amount, the entrainment rate must be affected by the bottom roughness.
This means that the entrainment coefficient (E) is a function not only of the Richardson
number (R1) but also of some dimensionless parameter indiéating the effect of bottom
roughness, such as the drag coefficient (Cr). In other words, in order to investigate the
dependence of £ on Rj, it is necessary to specify the bottom roughness or to assume

conditions in which the bottom friction is negligible.
ANALYSIS

(1) Basic Equations

The basic  equations for analysis are the continuity equation, conservation
equations for momentum in x-direction, buoyancy, turbulent kinetic energy and
dissipation rate, and an equation of assumption for kinetic e&dy viscosity. Using

“boundary layer approximations”, we obtain.

. ¥y ®)
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where x = the distance along the slope; y = the distanée perpendicular to the slope
surface; e= relative density difference; u, v= flow velocity in the x and y direction; & =
turbulent kinetic energy; ¢ g= dissipatiop rate; g égravity acceleration,; &= slope angle;
v . = kinetic eddy viscosity. The values of model parameters except C3 are set as the

standard ones,
0,=11.2; 0=1.0; o ,=1/0.77; C,=0.09; C=1.44; C~1.92

The parameter C;, the only uncertain parameter in k- ¢ model, is varied in the range

" from O to 1 in order to examine its influence on the calculation result.

(2). Dimensionless equations
Let us assume that physical quantities can be expressed by Eq.(4). Substituting
them into Egs.(5)~(10), we can determine the dependence of each valuable on x from

dimensional argumentation:

bUfmy ¢ e | -
v=V,f, @) R o )
eg = Ex™' £,(1) ; (110)
k=Ko fy(m) S | o
&g =&ux" £,(1) (11e)
v, - VaoXf, (1) , (11

- where n= y/x; £, f, £, £, f,=dimensionless functions for the profiles of u, v ¢, &, ¢,

respectively. Then, the following dimensionless equations are derived.
nf.~f,'=0 (12)

Nt =SS H S —cotfn f+(£,1.)=0 (19

S 4SS L (=0 a9
: g
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S 0L = F S A= 4G, -%fvfu g
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B A
e

where ’ (prime) = differentiation by 7 ; 7, = dimensionless eddy viscosity defined by
fv ::Cpsz /fs s (17)
The term underlined in Eq.(13)= an additional pressure gradient which appears from the

change of coordinate scale from y to,. This term was disregarded in Fukushima’s

analysis, but it is correctly taken into account in the present study. The six scale factors

in Eqs. (11a)~(11f), U,~ v 4 ,can be defined arbitrarily. The following five relations are

assumed amohg them in the dekrivation of Egs.(12) —(17). -

E,sind v

Qo _1. Ky . €u
9 i

Uz v, "u Ul

It should be noted that there still remains a freedom fo set one of the séale factors
arbitrarily because the number of above rela;tiohs is fikverwhile thosé‘of the scale factors
. are six. |
When 7 —oo, all the variables except v must become 0. Nameyly;
£=0;  £=0; £=0; f,=0 atp=co 19

At the bottom surface, the fluxes of momentum, buoyancy, turbulent kinetic energy and
dissipation rate must be 0 as well as vertical velocity because the frictionless condition is
assumed in this study. Then,

£,=0; £=0; ,=0; £,=0; £’,=0 aty=0 (20)

(2) Galerkin Equations
The trial functions of £, to £, are prepared on the basis of Fukushima’s results and

another numerical experiments by the authors which will be published in another place:

L=uy(1-£) ; (21a)
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L=vp é (21b)
fe=eo(1-£) (21c)
L=k €) : (21d)
L=¢p1(£) (21e)
£,=v f(£) (219

where u, v, k, &, v, =constants;£=17/0; 6= the dimensionless plume layer

thickness; f{¢) = a function expressed by

1
2& (O<§<-2—)

1 (22
201-&) (5<J;<1)

1) =

In the Galerkin method, which is one of weighted residual methods, the weight
functions are taken to be the same form as the trial functions. The correspondence of
variables to equations, such that Eq.(8) corresponds to the conservation of %, leads to the
following combinations of weight functions:

The weight function of Eq(12) — £
The weight function of Eq.(13)and (14) —  (1-¢&)
‘The weight fuﬁction of Eq.(15) and (16) — f(¢)
Multiplying Wéight functions to Egs.(12)-(16) with above mentioned combinations,

and integrating them over the range of 7 = 0 ~, we obtain the Galerkin equations as

follows:
[@r. -7 mdn=0 f ' (23)
0 .
[@fof = oSt o =cotOn owdn = (£ dn+|f.f wl; =0 @4
0 0
(o] . 1 @
[Ften ottt Owdn-—[f.f'W.dn
0 9 0 (25)

1 00
S owly =0
O



175

[@f = Fu S 2 °°“’ff' ~fowdn |
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Substituting the trial functions of Eqs.(11.a-f) into the Galerkin equations, and 'exécut'ing
the integration under the boundary conditions of Eqs.(19) and (20), we obtain the

following algebraic equations:

Yo_ 25 @28)
U, 3

Yo Zeg | (29)
u, 9

€, 7+20

b T0 30
ul  3(4-cotés) . ©0)

1 o,k cot() 3C, ky, 1
—~(1+228y %y T ey g 31
9( O_k)(ugk) T ( -, (ug) 5 3D
——C;‘——C(l C)°°“9( s
(32)
ce, ky
=27—= (=% 2)
o Uy

g
There are six unknowns J, u, v, €, k,and ¢, while the number of equations are five.
The fact means that one of them can be determined freely because we assumed only five
relations among six arbitrary scale factors in Eqs.(18). By setting u, =1, we find

2

vy =30 ‘ (33)

v =%52 | 3
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7+20, .
SR S (35)
3(4 cot8d)

to 3C, K
—-—-(1+2-——)k +~2-§~-%— ) v =0 (36)
_C; 1 ! C)cotﬂ 5
3
@7
C,C k2
c, 0

- We can easily obtain the five unknowns for specified slope angle # by iteration with
some numerical technique.

The definition of Rf proposed by Ellison and Turner(3) can be expressed by the
dimensionless valuables in this study. Substituting the expression of Eq.(ll.a) and
Eq.(21.a) into the integrand gives the characteristic velocity defined by Ellison and
Turner:

?uzdy
y=0

©

J' udy

0

=20, » (38)

In the same way, the flux of relative buoyancy is obtained as,

Ee U6

39
3 (39)

A= ?egudy =
0

Therefore, the Richardson number and the entrainment coefficient are expressed by

Ri= Ac;);sa —z-cotaé' e, (40)
1d 4
=———(ludy) =—6 o (41)
dx 5[ 3

RESULTS AND DISCUSSIONS

(1) The Entrainment Relation
As mentioned before, the most proper value of €, in the %- ¢+ model has not been

recommended yet. Therefore, calculations are made for several values of C, ranging
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present  analysis  and Richardson number on C,.
Fukushima’s numerical
calculation for - the
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froxn 0 tor 1. The result of E-Ri relatmn is shown in Fxg 4,and compared Wlth ’I\n‘ner s

relat10n(9) and Fukush1ma s numencal results(G) It is seen from the ﬁgure that all

curves become a constant value (—O 085) as Ri approaches 0 This value corresponds to

the entramment coefﬁment for Jets and Vertlcal plumes in whlch no densnnetrlc effect

ex1sts on entramment. On the other hand, as Riincreases, £ rapxdly drops showing the

same tendency as Turner's relation and Fukushima's results. It should be noteci that
Fukushima's results are plotted almost along one of the curves, though the'vaiue of Cyis
not always same as each other. (In Fukushima’é'analysis, Cj is changed case by case.)
But, the decreasing rate of the curves of present study is larger than that of Turner's
relation.” A successive stndy bykone of authors, which will be published near future,
found that the decreasing rate of theoretical curves become milder when the bottom
friction is taken into account.

It must be noted that the value of BJ at the position of falling, say the critical
Richardson number Fi., depends on Cj Ri, corresponds to the limit where the slope

angle approaches 0;i.e. no mixing on a horizontal bottom. Fig.5 shows the dependence

177
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of Ri_on Cy, in which K7 takes the maximum value of 0.94 at 03?0. Th;s fact means that
k- £ turbulence model has no solution for inclined plumes of R1 ~>] iﬁ the ébndition of no
bottom friction. Accordingly, it is suggested that there is the maximum value of B/ for an
inclined plumes on a frictionless boundary, and the value is at most unity.

The existence of the limitation of Rican be explained from a consideration of TKE
balance based on Eq.(8). The sécond term on the right hand side of Eq.(8) shows the
production rate, and the third term shows the rate of energy transfer from turbulent
kinetic energy to potential energy. Although the Iatt‘er can be larger than the former
locally, the former mﬁst be larger thah the latter in total in a cross section, otherwise the

dissipation rate would become negative. Then, the following inequality must be

 satisfied:

U* v Eg . Egs ' ‘
—— e 2 = Ri'(= < 42
ng ()'g 5 I( UZ ) ’a.g N ( )

where Uts the characteristic velocity in a section, Fis the total relative buoyancy and §
the plume layer thickness. Note that the definition of the Richardson number in Eq.(42)
is notf étrictly same as that of Ecj.(40). Theh the above estimation is an approximate one
in a style‘ of order estimation.y A detailed calculatioﬁ based onqu.(40) leads to the
following result, though the calculation process is omitted here because of the restriction
of space. | ’
Ri<—9-cr =0.94 . 43
8 ¢ v ,

The above mentioned’results depend on the assumption of trial functions and
weight functions, of course. However, the basic characteristics of solutions are
considered to be universal because'the Galerkin method is a mathematical technique to
optimize the amplitude of trial function so that the total error in a section becomes the

smallest, and its solution is not sensitive to minor changes of the functions.

(2) Vertical Profiles of Quantities

To examine the adequacy of solutions in detail, the dimensionless profiles of all
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quantities are compared with those of Fukushima's results.  Figs.6 (1)~(4) show the
comparisons for slope angles of 10 ° and 20° . In this calculation, the conditions are

set in the same manner as Fukushima's; C;is 0.6, and the additional pressure term (the
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underlined term in Eq.(6)) is ignored. The definition of dimensionless parameter is also -

made in thé same way as his definition. These ﬁéures show the good agreements of the
plume thickness and the amplitude of all quantities are seen between the two analyses,
although there aré discrepancies in the region of wall boundary layer, the existence of
which is ignored in this analysis. This fact suggests that the approximate analysis of

present study provides efficiently the £-R7 relation.
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SUMMARY AND CON CLUSION

Previous studies on inclined plumes have proposed two kinds of entrainment
relations(Z-Ri relation); a group of power functions (Type-1) and a group of fractional
functions (Type-2). Although they héve very different mathematical characteristics
from each other, it has not been concluded yet which one is more adequate, because both k

were empirical relations based on laboratory experiments of same kind: i.e. both were

-drawn to get through the same cloud of data. However, information of entrainment rate

at conditions out of the existing data becomes significant when we assume the scale of
plumes appearing in natural énvironment;

This study presented purely analytical approach to E’-Ri‘ relation modifying and
extending Fukushima's analysis, where k- + model equations were used as the
governing equations of “boundary layer analysis”.

The most distinctive feature of the present analysis is the application of Galerkin
method to convert the dimensionless k- s model equations, which are high nonlinear
differential equations, into a set of algebraic equations. As a resqlt, the E-Ri relation
for the condition of no bottom friétion is obtained systematically and continuocusly for
various values of {3, an uncertain parameter of k- s model, with great time saving.
The results clearly shéw the same teﬁdency as Type-2 forrﬁula proposéd by Turner(9) and
Akiyama et.al. (1). k ’ ’ k

However, the agreement of fhe present result with Turner"s relafidn, and the ﬂume
data of Ellison and Turher, is not perfect yet. Some possible reasons for the
disagreement can be considered as follows: One might be the problems 0f k £ modelyin’a
sense that no turbulent model can be perfect. The other might rise from the assuﬁzption
that the bottom friction would be négligible. As mentioned befdre, the entraiﬁment rate
(E) must be considered as a function not only of the Richardson numbér (Ri) but aléo of
some dimensionless parameter indicating the effect of bdttoin fﬁction such as thé drag

coefficient (C), if the bottom friction is not negligible. One of the authors has extended
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the analysis taking in to account the effect of the bottom friction, and the most recent

results show a good agreement with the existing flume data and field data quantitatively.
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APPENDIX - NOTATION

The following symbols are used in this paper:

AV = the flux of relative buoyancy and the characteristic velocity
defined by Ellison-and Turner respectively;

C. Cy Cy, C, = model parameters respectively;

Ce = the drag coefficient

E = the entrainment coefficient;

E,n = constants for Eq. (1) respectively;

e = relative density difference;

£ = dimensionless function for the profiles;

£, 1,50, 1,F, = dimensionless functions for the profilesof u, v, ¢, k, and v
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respectively;
/e } = a function expressed by Eq. (22);
g - = gravity acceleration;
k = turbulent kinetic energy;
Ri = the Richardson number;
Ri, = the critical Richardson number;
S; » = physical quantities in a plume;
Up Vo Ep, Ko 840 vap = constants for Eq. (11) respectively;
Up, V€0 K0 €0,V = constants for Eq. (21) respectively;
u ) = flow velocity in the x direction;
v = flow velocity in the y direction;
Wy Wy W, Wi, W, = the weight functions for u, v; ¢, k and & respectively;
x k k = the distance along the sloping ground;
v = the distance perpendicular to the slope surface;
S = the dimensionless plume layer thickness;
&y ' = dissipation rate;
n = dimensionless distance( = y/%);
é = . slope angle;
v, = kinetic eddy viscosity;
Oy Ops O = model parameters; and
£ = . dimensionless distance ( = 7/6).
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