127

Journal of Hydroscience and Hydraulic Engineering
Vol. 18, No.1 May, 2000, 127-140

CONCEPTUAL ASPECTS OF ONE-DIMENSIONAL MATHEMATICAL MODELS
FOR ALLUVIAL RIVERS

By

Zhixian Cao and Shinji Egashira

College of Science and Engineering, Ritsumeikan University,
Noji-Higashi 1-1-1, Kusatsu, Shiga 525-8577, Japan -

SYNOPSIS

The complete governing equations of one-dimensional nonequilibrium mathematical models for alluvial
rivers are presented, and the simplified equations and assumptions involved are briefly described. The
characteristic celerities are analyzed to examine the lumped total-load transport capacity concept and decoupled
solution approach widely incorporated in prior models. Existing celerity analyses for total-load transport
capacity models are extended. It is revealed that suspended load transport does not adjust as quickly as flow
changes. This strongly constraints the use of models in which the total-load transport rate is specified at a
capacity value determined primarily by local hydraulic conditions. Further, it is shown that riverbed
deformation does not occur instantaneously in response to flow change only within very limited ranges of small
Froude number and low bed-load concentration (rather than the total-load concentration as of previous analyses).
Otherwise, neither the “quasi-steady state” nor the “fixed bed” assumptlon implicit in most previous models is
approprlate which necessitates a coupled solution procedure. :

INTRODUCTION

Refined modeling of flow, sediment transport, and bed evolution in alluvial rivers is essential for hydraulic
and environmental engineering as well as geophysical studies. Numerous mathematical models have been
developed since the 1950°s and highly marketed in the last two decades. However, most suffer from serious
deficiencies in the present state-of-the-art. In the context of one-dimensional models pertaining to the long-term
evolution of alluvial rivers, three of the most acute features can be identified as follows.

Simplified Governing Equations

First, the governing equations for the water flow-sediment-riverbed system are over-simplified. 'In the
aggressively marketed mobile-bed mathematical models, the governing equations are only programmatically
listed, while the limitations and approximations thereof are seldom interpreted or understood. The strong
coupling among the water flow, sediment transport and riverbed evolution is to a certain extent ignored without
justification. Most popularly, the classical de St. Venant equations for single-phase water flow are used without
considering the presence of sediment and bed mobility (e.g., Bhallamudi and Chaudhry 1991; Holly and Rahuel
1990a, b; Li 1990; Lyn 1987). Stevens (1988) claimed the importance of bed mobility, but did not consider the
presence of sediment. Correia et al. (1992) introduced the term representing the change of riverbed level in the
continuity equation, and found that this term is important for long-term modeling. At the same time, in the mass
conservation equation for global bed material, the temporal effect associated with total- or bed-load transport
(sediment storage in water column) is sometimes neglected without any justification, see for example, Li (1990),
Holly and Rahuel (19902, b), Chang (1988), Zhang and Kahawita (1987). Wei (1990) presented a set of
governing equations for the phenomenon. It consists of 4 PDEs (Partial Differential Equations) based on the
momentum conservation law for the sediment-water mixture flow and the mass conservation law respectively for
the mixture, total bed material, and suspended sediment. Unfortunately, in this set of equations, bed-load
transport is not included. Recently Cao and Egashira (1999) investigated the influences of the simplified
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continuity equations for both the mixture and the global bed material. This study confirms the results of Correia
et al. (1992) regarding the influence of the inclusion of bed mobility, and possibly for the first time shows the
considerable errors due to simplifying the bed material’s continuity equation. )

Lumped Total-Load Transport Capacity Coneept

Second, some models are developed and analyzed on the basis of the lumped total-load concept, and the
total-load transport rate is prescribed at a capacity value determined primarily by local hydraulic parameters (e.g.,
Hsu and Chu 1964; Cunge et al. 1980; Lyn 1987; Chang 1988; Bhallamudi and Chaudhry 1991; Correia et al.
1992; Saiedi 1994, 1997; Morris and Williams 1996; Cao and Egashira 1999). Obviously, the exchange between
suspended sediment, bed-load and bed surface material cannot be explicitly represented. More deficiencies in its
practical aspects have been pointed out by, for example, Holly and Rahuel (1 990a).

The lumped total-load capacity concept is exclusively related to the 3-PDE models. The governing
equations involve the momentum conservation and mass conservation respectively for the mixture (or water
phase only) and total bed material. Criticized by many workers, the 3-PDE capacity models are limited in the
applicability for refined modeling of the flow-sediment-mobile bed system.

The last three decades have seen many 4-PDE nonequilibrium models. Compared to the 3-PDE models,
the new equation added is derived from the mass conservation for suspended sediment. In this kind of models,
suspended and bed-load transport processes are distinctly considered (bed-load is neglected when suspension is
the predominant mode of sediment transport). One may refer to among others, Dou (1963), Lin et al. (1983),
Holly and Rahuel (1990a, b), Zhou and Lin (1998) etc. Nevertheless, it is still not sufficiently clear that if
nonequilibrium models must always be used. Alternatively, it remains to be justified that if the total-load
transport capacity approach can be used under some conditions. This appears of practical significance because
of the relative simplicity of 3-PDE models in comparison with the 4-PDE nonequilibrium ones. Physically, the
capacity concept for suspended load transport may be validated should the celerity of suspended load be equal to
or greater than those of the flow. : :

Decoupled Solution Procedure

Finally, the “quasi-steady state” for the flow is often assumed when the evolution of riverbed is studied.
Alternatively, the riverbed is implicitly assumed to be “fixed” within a time step and decoupled solution of the
governing equations is pursued while the flow over mobile bed is of primary interest. Whether this feature is
valid or not is determined by the typical time scales or relative magnitude of the characteristic celerities
corresponding to the free-surface flow and riverbed evolution respectively. In the physical sense, the
“quasi-steady state” or “fixed bed” assumption should be justified as the celerity related to the bed level
evolution is negligible compared to those of the free surface flow. - : ' )

De Vries (1965, 1973) considered the 3-PDE, total-load transport capacity model and analyzed the relative
celerities when the volumetric sediment concentration is negligible. Morris and Williams (1996) confirmed the
results of De Vries and extended the analysis to cases with finite sediment concentrations. It has been found that
‘water flow, sediment transport, and riverbed evolution can be considered to be mathematically independent of.
each other only within very limited ranges of total-load concentration and Froude number. Beyond these ranges,
the “quasi-steady state” or “fixed bed” assumption is no longer reasonable. Lyn (1987) identified the multiple
time scales of the 3-PDE, total-load transport capacity model. He showed that previous models, which reduce
the number of conservation equations solved simultaneously from three to two under the “quasi-steady state” or
“fixed bed” assumption, are unable to satisfy exactly either a general boundary condition or an arbitrary initial
condition. And in situations with highly variable discharge and sediment inputs, the aforementioned assumption
is not justified. Cao and Egashira (1999) have studied the behavior of decoupled models with complete or
simplified governing equations. It has been found that an asynchronous solution procedure may either render the
physical process mathematically ill posed or cause appreciable errors for long-term simulations. More analyses
on this feature can be found in Hsu and Chu (1964). Despite the studies stated above, it is recognized that
previous analyses are mostly for 3-PDE, total-load fransport capacity models. To these writers’ knowledge, there
has been no analysis, in the configuration presented in this paper, of the relative celerities or time scales
associated with the 4-PDE, nonequilibrium models with distinct separation of suspended and bed-load. In sharp
contrast to this fact, the “quasi-steady state” or “fixed bed” assumption is frequently introduced in such type of
models and decoupled solution is mostly pursued. Holly and Rahuel (1990a, b) presented a framework of
nonequilibrium models and coupled solutions to many problems, but without analysis of its simplifying or
decoupling conditions. The need for clarifying the assumptions and decoupling conditions is evident.
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Present Work

‘This paper first seeks to present the complete set of governing equations for the flow-sediment-riverbed
system, which are rigorously based on mass and momentum conservation laws. Discussions are given inrelation
to the simplified forms. Then, the characteristic celerities are analyzed to examine the aforesaid acute features
common to most existing mathematical models. The results discourage the use of models which represent the
suspended load transport rate as a capacity value specified by local hydraulic conditions, especially in very small
Froude number cases. Also, the finding severely constraints the use of the “quasi-steady state” or “fixed-bed”
assumption, and accordingly challenges the decoupled solution of the governing equations. The need for fully
coupled, nonequilibrium modeling is conceptually demonstrated.

FORMULATIONS — GOVERNING EQUATIONS AND CLOSURE
Complete Conservation-Based E(;{uations "

Consider the unsteady, sediment-laden flow over erodible bed in an alluvial channel. No lateral inflows
are included. A definition sketch is shown in Fig. 1. At this time, sediment is assumed to be uniform. Extension
to graded sediments will be straightforward. The governing equations are formulated by utilizing the Reynolds
Transport Theorem (Roberson and Crowe 1990), based on the momentum conservation law for the
water-sediment mixture flow and the mass conservation law respectively for the mixture, global bed material,
and suspended sediment. : ) o

Apparently, to properly account for the mass exchange across the mobile bottom boundary is essential for
describing the water-sediment mixture’s mass conservation. Traditionally, the control volume is defined to
include only the flow area 4. In this case, one has to formulate separately the mass conservation iri an extended
alluvial area 4, above some datum, Fig. 1(b), in which the time-averaged streamwise velocity vanishes. It

follows from the mass conservation law respectively for the flow and alluvial areas that
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where ¢ = time; x = streamwise kcoordinate; U = cross section-averaged streamwise velocity; F,= net mass
flux of total water-sediment mixture exchange with bed surface; py =p,p+ps(1~ p), bulk density of
water-saturated bed; p = bed sediment porosity (constant); pp, =p,,(1-C,)+p,C, , bulk density of
water-sediment mixture; C, = flux-averaged total-load concentration in volume; p,, = water density (constant);
ps = sediment density (constant); and ¢; = modification coefficient denoting the difference of the mixture’s

geometrically and flux-averaged densities,
Adding Egs. (1) to (2) leads to the continuity equation for the mixture flow over a movable bed
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The water-sediment mixture’s momentum conservation equation reads
G 8 2 oh .. &C o
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where g = gravitational acceleration; / = flow depth; /4 = distance from water surface of the shape center of
cross section; I, =-0Y/0x , bed slope; ¥ = bed elevation; I, = friction slope; and B; = momentum
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modification coefficient.
The mass conservation equations respectively for the global bed material and suspended sediment read

04y 0 0 B
(l—np)—m-at + > (024C) + r (4UC) =0 | | &
~—~6 (03 4CY + __8 (AUC) = BF, | | 6)
a2 o n , (

where B = channel width; C = flux-averaged suspended load concentration in volume; F, =net flux of
suspended sediment exchange with bed surface per unit width; and o, and o3 = modification coefficients

expressing the difference of geometrically and flux-averaged concentranons respectively of total- and suspended
loads.
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FIG. 1. Definition Sketch of Problem. (a) Streamwise Profile; and (b) Cross-Section

Simplified Equations

In applications, the complete governing Eqs. (3) through (6) are often simplified by assuming
(i) sediment concentration is very low as is in most natural rivers; and
(ii) the modification coefficients oy, o, a3, and B; are approximately equal to unity.
Using Eq. (5), the mixture’s continuum Eq. (3) can be rewritten as

+U
o Ox ox Ot

Uy +4 v + % =0 )

From Eq. (5) it can be inferred that the bed evolution rate (i.e., the last term in the left-hand-side of Eq. (7)) is of
second order-of-magnitude compared to other terms due to the low sediment concentration assumption. In most
existing models, it is neglected. However, Correia et al. (1992) suggested that this term in Eq. (7) is important
when long-term river modeling is pursued, whereas Rahuel (1993) challenges the reliability of this argument.
The recent study of Cao and Egashira (1999) demonstrates that neglecting the bed mobility in Eq. (7) leads to
appreciable inaccuracy, depending on the changes of flow discharge and sediment inputs. Especially, this
inaccuracy becomes more pronounced progressively with increasing computational time. In view of thls status
respect to this term, it is retained in the present paper as strictly is.

When Eq. (3) is substituted into. Eq. (4) and the terms of second order-of-magnitude related to the low
sediment concentration are neglected, one yields
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Evidently, Eqgs. (7) and (8) reduce to the classical St. Venant equations that are used widely in prior models (e.g.,
Holly and Rahuel 19904, b) if the bed evolution rate in Eq. (7) is not included. In view of the unavoidable
uncertainty due to the flow resistance relationship that must be invoked to close the momentum equation, the
simplified Eq. (8) is acceptable for most cases and has been widely used. o L =

' Generally speaking, the phenomenon to be modeled is the water-sediment mixture flow over erodible bed,
rather than the fluid-phase (water) flow only. The continuity and momentum equations naturally should be
formulated for the mixture, despite that under the low sediment concentration assumption they may reduce to the
same forms (St. Venant equations) as for equivalent single-phase flows. One may be interested in two-phase
formulation-based models. Yet, the interactions between the two phases are still so poorly understood as not to
be accurately expressed. In some prior studies (Morris and Williams. 1996), the continuity equation for the
fluid-phase (water) only is used instead of the mixture’s continuity Egs. (3) or (7), while the momentum equation
thereof is for the mixture flow. In essence, this inconsistency is reconcilable as the fluid-phase continuity
equation can be simply derived by subtracting the global bed material’s conservation Eq. (5) from Eq. (3) for the
mixture. In other words, the three continuity equations respectively for water, total bed material, and their
mixture are not independent of each other, and any two of them may be used.

Subtracting Eq. (6) from Eq. (5) leads to

od, P '
(1-np)—§;'1 +2(ACy) + = (4UCy) = -BF, (%)
4y 8 9 . M
(1-ny) Py + at(qu/U)+ E» (gvB)=-BF, (9b)

where Cp = Cy —C the bed-load concentration in volume; g, = AUC, /B, the bed-load transport rate in
volume per unit width. s B : 4 T

It is interesting to mention that when bed-load is negligible (g =0), Eq. (9) reduces to the so-called
riverbed deformation equation (Wei 1990) distinctly derived from the kinematics of the mobile bottom boundary,
which is subject to prior prescription of the net flux of suspended sediment exchange. In this case, the bed
evolution is caused by suspended sediment exchange with the mobile bed only, which apparently assumes local
characteristics. In contrast, as bed-load transport dominates (or suspended load is negligible, 7, =0),Eq. (9)is
similar to the total-load mass conservation equation as used by infer alia, Lyn (1987), Bhallamudi and Chaudhry
(1991), Correia et al. (1992) as well as Morris and Williams (1996). It is noted that the second terms in the
left-hand-side of Egs. (9a, b) and (5) represent the temporal effects in relation to bed- and total-load transport.
However, in some models (e.g., Holly and Rahuel 1990a, b; Li 1990; Chang 1988; Zhang and Kahawita 1987) it
is erroneously neglected without any explanation. Evidently it remains to be justified. Part of the efforts on this
line can be found in Cao and Egashira (1999), in which the effect of this term is clearly shown to be substantial
for long-term simulations. o o 1 ,

Considering the empiricism inherent in existing closure relations for the net flux of suspended sediment
exchange with the mobile bed, it is reasonable to simplify Eq. (6) based on the low sediment concentration
assumption. Substituting Egs. (7) into (6) yields

&,y _Bh
ot ox A
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In some existing models (especially developed by Chinese workers, see for example Xie 1990; Zhou and Lin
1998), the right-hand-side of Egs. (9) and (10) are priori replaced with specific empirical relations for the net flux
of sediment exchange. Recognizing the hypotheses is definitely important to interpret the results and limitations
of these models.
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In prior models (e.g., Holly and Rahuel 1990a), there may be more PDEs in addition to the mass and
momentum conservation-based governing equations as stated above. Strictly speaking, the governing equations
should be distinguished from these auxiliary PDEs complemented empirically to represent the temporal and
spatial delay effects associated with bed-load transport and the sorting of heterogeneous sediments.

Closure of Equations

It is necessary to recognize that Egs. (3) through (5) constitute the governing equations of 3-PDE models
based on the capacity concept for the lumiped total-load. By nature the total-load transport rate (alternatively,
total-load concentration) is whereby specified empirically as a function of local hydraulic conditions. To close
the 3-PDE models, one must also specify a flow resistance relation, in addition to a total-load transport capacity.

For closure of the nonequilibrium models (i.e., Egs. (3) through (6)), one must '

(1) determine the flux of exchange between suspended sediment and bed surface material;

- (ii) specify a flow resistance relation; and '
(iii) represent the bed-load transport rate, where the spatial and temporal delay effects (Phillips and
Sutherland 1989, 1990) may need to be considered. o ,

Because the present analysis is conceptual in nature and concerned primarily with the structure of the governing
equations, more details for the friction resistance and net flux of sediment exchange are not given here as they
can be found not to influence the results of this study. However, a relation for the unit bed-load transport rate has
to be specified. It is not difficult to incorporate the spatial and temporal bed-load delay effects in Egs. (9a, b) as
they are well formulated based on enhanced understanding of the mechanism. For simplicity, the spatial and
temporal delay effects associated with bed-load transport are not considered herein as in most existing models.
Thus the bed-load transport rate g, is equal to the equilibrium value, which can be determined approximately by

the simplest power form : o
g, =8U%RPd° 1
where d = sediment particle diameter; o, B and o are the exponents; and § is the coefficient.

CHARACTERISTIC CELERITIES AND IMPLICATIONS

Without losing generality, the cross-section of the channel is in this study assumed to be rectangular with
constant width. Thus 4= Bh, 04,/3t = BdY /8, and Cy = g, /Uh . From Eq. (11), one obtains

o, oU oh

=2 = aC,h— +BC,U — 12
Ew aly 6x+B o 5 (12)
2 gy L OU oh

— (=)= (o -1D)C AU — +BC, — 13
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Substituting Egs. (7) and (8) into Eq. (13), and then the resulting formulation with Eq. (12) into Eq. (9b),
neglecting the term of second order-of-magnitude and introducing the Froude number Fr =U( gh)‘o‘5 , one has

oY 2,00 QU -, 8Y F, 2 ' -
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After rearrangement, Eqgs. (7); (8), (10), and (14) can be expressed as

K=—=R, . TR ; (16)
X

where
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F=(hUCY)" (18)
w= R R R RO e | a9
Ri=-Ry; Ry=—gly; Ry=Fy/h; Ry=-F,/(1-n)-yFr2Ul,  (20abed)

Eq. (16) forms a fouﬁh-order hyperbolic system and is thus associated with four characiéristic celerities
Ay, Ay, Ay and Ay, They are related to the propagation of small disturbances of free-surface flow (A; and

A, ), suspended sediment transport (A3 ) and mobile bed evo!utlon (A4 ) respectively. These celerities can be
found to satisfy the following characteristic equation in A, i

(U =N 2002 + (U* - gh + ghy))+ Ugh(¢ —y)] =0 : @n
Defining the relative celerity f =AU 1 one yields from Eq. (21) that

=DIf* =272+ (- B2 4 yFr)f + Fr2p-y)]=0 2
The first solution of Eq. (22) can be found easily, i.e.,

fi=1 - ~ : , o | 23)

which represents the propagation of small disturbance in relation to Suspended load transport. The other three
relative celerities can be found from the following cubic equation in f

P22 -Fr ey ) f+ Fr(o-y)=0 24)

It is noted that Eq. (24), in its structure, is similar to a previous characteristic equation (De Vries 1973;
Cunge et al. 1980) when ¢ is neglected. However, it is necessary to recognize the distinct physical background
involved. In De Vries’ study, a total-load transport capacity approach (i.e., 3-PDE model) was adopted, and
therefore  is associated with the total-load concentration rather than the bed-load concentration as in the
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present analysis.
Special Solution

For the special situation in which sediment transport is predominantly in the suspension mode, i.e.,
Cy, =0, Eq. (24) reduces to

=22+ (-Ff =0 (25)
which gives the well-known results for the free surface flow,

A=1+F fr=1-F" ' (262, b)
and for riverbed evolution,

f4=0 @7

Conventionally, Eqs. (26) and (27) are correct only for single-phase flows over fixed bed. However, it is
presently shown that the results can be extended to sediment-laden flows over mobile bed when bed-load is
negligible compared to suspended sediment. Under this condition, the free surface flow and bed evolution can
be considered to be mathematically independent of each other and decoupled solution is applicable. Specifically,
in a given time step, the flow equations are first solved, and then the riverbed evolution equation is solved. The
need to simultaneously solve the whole set of equations is thus obviated. This result justifies the flow-bed
decoupling in numerous existing nonequilibrium models for suspended load-dominated alluvial rivers. The
present clarification is important, recalling the prior results that the decoupling should be valid only under the
conditions of low total-load concentration and small Froude number (De Vries 1965, 1973; Morris and Williams
1996). . . : :

Moreover, as can be derived from Egs. (23) and (26),

S <Max(fi,|fo) = fi ~ (28)

Itis revealed by Eq. (28) that the transport of suspended load will never adjust itself to local hydraulic conditions
as quickly as the flow changes. Consequently, it is inappropriate to represent the suspended load and accordingly,
the total-load transport rates at capacity values specified primarily by local hydraulic parameters. The use of
3-PDE total-load capacity models is thus open to question. More discussions on this aspect follow in the next
subsection. )

General Solution

For a general solution of Eq. (24), y and ¢ need to be addressed. Roughly, the typical values of the
exponents in the relation Eq. (11) for equilibrium bed-load transport rate are specified as o =4.0, B=~0.2
(Xie 1981), and the porosity n, = 0.4 . Thus, from Eq. (15),

y=-5.0C,; ¢ =2.0Cy (29a, b)

Fig. 2 shows the relative celerities determined by \Eqs. (24) and (23) versus Froude number Fr and
bed-load concentration Cy,. It is not surprising that the three relative celerities f], f; and f; vary with Fr

and C, in the manner similar to those with F7 and a total-load transport parameter (De Vries 1973) because of
the similar structure of Eq. (24) to De Vries’ characteristic equation, as described before. The first celerity £, is
invariably positive and almost unaffected by Cy. The second celerity f, is always negative, independent of
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Fr and finite bed-load concentration Cy, although it is correct only for suberitical flows (Fr<1) when
Cy =0 as is apparent from (26b). Algebraically, this results from the fact that the last term in the left-hand-side
of Eq. (24) is consistently positive. Physically, it is characterized that any disturbance in the downstream will
definitely influence the upstream flow and bed evolution, wherever Cp#0. The third celerity f=1,
indicating that the propagation of small disturbance pertaining to suspended load transport always follows the
flow velocity. The fourth celerity £}, in relation to riverbed evolution, is seen to increase with Fr slowly or
rapidly for finite values of Cj,.

Discussions

Define the following ratios of the relative celerities of suspended load transport ( f3) and bed evolution
(f4) to those of the free surface flow (£} and f,),

Ry=filfis Ru=|filhl; Ru=fulfis  Ru=|falf] (30)

Figs. 3 and 4 show respectively the variations of Rj;, Ryy, Ry, and Ry, with Fr and Cy. Itis obvious from
Fig. 3 that for very small Fr, both R;; and R3, are much smaller than unity, characterizing that suspended
load transport does not adjust immediately to any flow change. As Fr increases, both Ry, and R;, become
larger. Approximately when Fr 2 0.5, Ry, becomes larger than unity independent on Cy,. However, Ry will
never be as large as up to unity except when Fr — oo, noting the lower bound of /1 given by Eq. (26a). For
finite values of Fr practically possible, there invariably will be

Ry <1 . 1))

Consequently, suspended load transport will not adapt itself to local hydraulic conditions as quickly as flow
varies as seen in the special case with negligible bed-load stated above. This upsets and highly constraints the
use of the transport capacity concept for suspended load and subsequently total-load in which the transport rate is
specified primarily by local hydraulic parameters. Naturally, this finding could not be derived from the tumped
total-load transport capacity concept as in previous studies (e.g., De Vries 1965, 1973; Lyn 1987; Morris and
Williams 1996).

As shown in Fig. 4, both Ry; and Ry, increase with C, and Fr when Fr<1. While Fr>1, Ry,

becomes greater than unity and Ry, increases with Fr slightly dependent on Cp,. This is similar but not
identical to the results of De Vries (1973) and Morris and Williams (1996). The bed-load concentration Cy in

Fig. 4 must be distinguished from the total-load transport parameter in prior analyses. It follows from Fig. 4 that
under certain conditions of bed-load concentration and Froude number, the celerity of bed evolution is
comparable to those of the flow. The rate of bed level is not small enough as to be negligible in comparison with
flow change. This upsets the aforesaid “quasi-steady state and “fixed bed” assumptions and subsequently the
flow-bed decoupling. As aresult, the whole set of governing equations must be solved simultaneously. Further,
because Ryy = Ryy and f, is invariably negative wherever Cy, =0, the bed evolution. is subject to the

disturbance from the downstream more sensitively than from the upstream. Therefore, when the process of
flow-sediment-bed evolution in response to downstream factors is to be modeled, coupled solution is
necessitated to a greater extent. Practically there exist some processes, in which the changes of water flow and
bed evolution stem purely from the downstream disturbances. A couple of examples can be provided here. The
first is reservoir flushing-induced bed degradation in the reservoir (while the upstream flow and sediment inputs
remain unchanged). The second is the bed evolution resulting from the downstream base level lowering. For
these processes, coupled solution approach has the promise to give more refined results.
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FIG. 2. Relative Celerities versus Fr and C} .

(a) and (b), f; and f, Associated with

Free-Surface Flow; (¢) f3 and fj, Related to Suspended Load Transport and Riverbed Evolution
Respectively. f, is always negative when Cy, > 0.
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Qualitatively,
Ry <<1; Ry <<1 : i (32a, b)

must be satisfied for validity of the aforementioned “quasi-steady state” and “fixed-bed” assumptions and
therefore mathematical decoupling of the routing of free surface flow with riverbed evolution. A quantitative
criterion is, however, unavailable at this time. For the purpose of interpretation of the implications, the following
relations

R41 <0.01 H R42 <0.01 (333, b)

are tentatively suggested. Then, the maximum Fr corresponding to a specific C,, can be found as given in
Table 1. Itis obvious that the maximum Fr decreases as Cy, becomes greater. As C,, decreases, the constraint
on Fr isrelaxed. And especially, when Cy, = 0, the constraint on Fr vanishes as is evident from Eq.(27). In
spite of that the quantitative &eéoupling conditions are dependent on the exponents o and B in Eq. (11) as well
as the bed porosity, it is demonstrated that the “quasi-steady state” or “fixed-bed” assumption and therefore the
flow-bed decoupling are reasonable only within very limited ranges of small values of Fr and Cy. In the

special situations with negligible bed-load transport, i.e., when suspended sediment transport dominates, the
flow-bed decoupling is valid. Previous studies (e.g., De Vries 1965, 1973; Morris and Williams 1996) suggest
that low total-load concentration, instead of bed-load concentration as in this study, should validate the
decoupling between flow and bed evolution at small Froude numbers. The clarification by the present analysis is
obviously important for applications.

TABLE 1. Maximum Fr Corresponding to Specific Cy, to Satisfy Criteria Eq. (33a, b)
C, 0.000005 | 0.00001 0.0001 0.001 0.002 0.01 0.02 0.05

Max. Fr | 0959 0.943 0.824 | 0519 | 0387 | 0135 | 0082 | 0043
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FIG. 3. Ratio of Relative Celerity of Suspended Load Transport to Those of Flow
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' CONCLUSIONS

The present study leads to the following conclusions:

. The governing equations in existing one-dimensional mathematical models for alluvial rivers are usually

oversimplified. Some of the simplifications and hypotheses involved remain to be justified.

Suspended sediment transport does not adapt itself to local hydraulic conditions as quickly as flow changes,
particularly at small Froude numbers. This result severely constraints the use of the 3-PDE models, in
which the total-load transport rate is specified as a capacity value determined primarily by local hydraulic
parameters. Thus, 4-PDE nonequilibrium models need to be used with separate accounts for suspended
sediment and bed-load. '

Riverbed does not adjust instantaneously in response to any flow change only within very limited ranges of
small Froude number and low bed-load concentration (instead of the total-load concentration as of
previous studies). Beyond these limited ranges, both the “quasi-steady state” and “fixed bed” assumptions
and accordingly the artificial decoupling of flow and bed evolution involved in most existing mobile-bed
flow models are not valid. This finding necessitates synchronous solution of the governing equations.
Particularly as bed-load is negligible, decoupled solution is justified independent upon the Froude number.
This fact validates the flow-bed evolution decoupling used in most ex:stlng nonethbnum models for
suspended sediment-dominated rivers.

This study is conceptual and qualitative. Further efforts are necessary for quantitative results.
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APPENDIX II. NOTATION
The following symbols are used in this paper:

A = area of flow cross-section;
Ay = extended alluvial area above some datum;
B = channel width;
C = flux-averaged suspended sediment concentration in volume;
- C} = flux-averaged bed-load concentration in volume;
C, = flux-averaged total-load concentration in volume;
d = sediment particle diameter; . '
F, = net flux of suspended sediment exchange with bed per unit width;
F, = net mass flux of total water-sediment mixture exchange with bed surface;
Fr = Froude number; o
S = relative celerity;
g = gravitational acceleration;

h = flow depth;
hg = distance from free surface of shape center of cross-sectioxi;
I, = bed slope;

1, = friction slope;

p = bed sediment porosity; }

gy, = bed-load transport rate pér unit width;

g, = total-load transport rate per unit width;

t=time;

U = cross section-averaged streamwise velocity;

x = streamwise coordinate;

Y =bed elevation; - .

0,B,0,8 = parameters in bed-load discharge formula;

W, = parameters related to bed-load concentration;

A = characteristic celerity;

pw = water density;

ps = sediment density;

Pm =pPw(l - C,)+ pCy, bulk density of water-sediment mixture; and
Po =PwP + Ps - (1= p), bulk density of water-saturated bed.
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