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SYNOPSIS

Numerical models are useful to predict the characteristics of environmental systems at the interface between
waters of different densities. In the last few years, some models have been proposed to calculate factors including
flow in stratified and closed water systems and saltwedges. They provided favorable results. Models that analyze
the flow of waters of different densities are needed to accurately calculate density distribution. However, models
that take an ordinary finite differential method suffer from a major difficulty in calculating the advection term
because numerical diffusion. In this paper, a simple two-dimensional numerical model is constructed. The
model uses the CIP method in the calculation of advection term, in order to calculate density flows more
accurately without usirig complicated models. The model applicability was verified by the comparison between
the calculation and the experimental results under the same condition.

INTRODUCTION

Characteristic phenomena occur at the interface between water layers of different densities. These include
" a0shio” in a stratified water system and salt wedge encroachment at a river mouth. A numerical model is useful
to understand the characteristics of environmental systems of such phenomena and to predict the causes. In the
last few years, many numerical models of density flow have been proposed. Examples are the study of hydraulic
characteristics in semi-enclosed stratified basins by k - € model(Michioku (1)), the simulation of behavior of
the density interface between salt and fresh waters in Lake Abashiri by the multilayer model(Tkenaga (2)), and
the numerical analysis of a density front in a densimetric exchange flow(Hosoda (3)). These models realized
favorable results. o )

A numerical simulation would aim a precise solution at the density interface between fluids. However. a
numerical model that employs an ordinary upwind scheme suffers from numerical diffusion when it calculates
advection term. and this numerical diffusion overstates density diffusion, especially at the interface. Therefore.
this study proposes a new numerical model to calculate density flow more accurately by using the CIP method
(Yabe (4)), which has recently gained attention in the field of computational fluid dynamics. The method was
used to simulate the density front advance and the internal seiche by the direct calculation with a simple model of
2-dimensional incompressible flow , which is based on Navier-Stokes equations. Since turbulent flow is originally
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3-dimensional. a turbulence models or the Direct Numerical Simulation is needed for flow simulation. However.
in this study. a 2-dimensional model is used for simplification of analysis. because present flow systenis were
regarded as roughly 2-dimensional and because we aimed to provide a model whose calculations are possible by
PC.

In this method. values in the next computational step are interpolated from profiles of physical quantities
in the computational domain. The profiles are approximated by a cubic equation that is defined from the
latest variables on the grids. The CIP method (4) is able to calculate density distribution at the interface more
precisely than the upwind scheme. Recently, many applications of the CIP were provided i in the several fields of
engineering (Yabe (5), (6)). The model in this study is very simple; however it is expected to be very precise,
for the reasons above mentioned.

The results of the calculation and the experiment under the same condition were compared to verify the
model. The numerical results successfully reproduced the phenomena.

BASIC EQUATIONS

The basic equations of a vertical 2-dimensional, numerical model of incompressible density flow are shown
below. Eq.1is the continuity equation, Eq.2 and Eq.3 are the Navier-Stokes equations, and Eq.4 is a density
equation. Eq.4 is obtained from Eq.1 and from a continuity equation of salt concentration ¢ that includes
advection and diffusion terms. To obtain Eq.4, a relationship (¢ = {p — pu)/puw, o is density and gy, is fresh
water density) must be substituted into in the conservation equation of salinity c.
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Here, (z,y) are orthogonal axes, P = p/p(p is pressure), g is gravitational acceleration, u and v are velocity
components on z and y axes, ¢ is time, v is a coefficient of viscosity, D,, D, are coefficients of diffusion on z
and y axis.

In this paper, the computational domain is defined in a body-fitted coordinate system(¢,n) instead of in
the Cartesian coordinate(z, y) to enable calculation of complicated lakes of arbitrary shape. The boundaries of
the body-fitted coordinate are the water surface line and the bottom line of a lake. On the coordinate, £ axis is
set along the water and along the bottom line and 7 axis is taken positive upward. These axes are defined as
follows: z = z{&,n,7),y = &, 7),t =7 .

Eq.5 or Eq.6 describes the relationship between these two coordinate systems.
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By these relationships, Egs.1~4 are transformed into Eqs.8, 9, 10, and 11. New coordinates are now
introduced as:

T=t €=z, n=(y-2z)/h (7)

in which, z is height from the bottom and h = H,; — z, where H,, is water level and h is water depth.

g—é(hu) + —(%(v;) =0 (8)
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THE CIP METHOD (4)

The CIP method(4) is a main part of this model. Here, for briefly showing the basic idea of the CIP
method, 1-dimensional wave equation, Eq.14 is considered instead of a 2-dimensional system.
ac ac
B + V}ﬂ =0 (14)
This equation suggests that a value C' is convected by a velocity V', while keeping its profile in the z axis
(Fig.1).
However, since the value C' is known only at grid points, a profile between grid points must be assumed in
order to obtain a value in the next time step.
In the CIP method (4), every two successive grid points located on the curved line are approximated by a
cubic equation(15), in which, a;, b;, C;' are still unknown.

Fi@)=a;{z —2:)° + bi{lz — )2 + C'(z — z:) + C; (15)

First, a; and b; are obtained from Egs.16 and 17 as in Eqs.18 and 19. Eq.16 means that a value of C is
continuous on the grid points and Eq.17 means that first derivative of C is also continuous on the grid points
as well.

Fi(zi1) = Fioy(zia1) (18)

dFi(zi_1)/dz = dF;_ (1) /dx (17)
_ G+ Gy Ciy1 = C;

@i = ox? -2 ox3 (18)
_oCia=Ci 207 +Ciy’

bi=3— S+ = (19)

From these equations, it is recognized that a; and b; can related to by C and C'.
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However, the three unknowns (a;. b;, C;) cannot be determined from these two equations, yet. Therefore,
it is assumed that C'. the derivative of C;, is conserved while it is convected with a velocity 17, in other words.
C;' satisfies a relationship C'(w. 1) = C'(x — 8. — dt). This is deduced concluded from Eq.20. The same thing
can be recognized also in the relationship of C between the equation C(x.t) = C(xr — 6t.t — ot) and Eq.14.

2(?_’ + 1'@2
at Jdx
Now, C and €’ are known, then a; and b; are obtained by Eqé.lS and 19.
The values in the next time step, C™* and C'"¢*, can be obtained from Eq.21 and Eq.22 by using a; and

=0 (20)

Ci" = Fi(z; — Vét) = [(a:f +b)E+ C1 €+ C; (21)

Fi(l'i - VC%)

Ci(new —_ =

= (3a,6 + 2b;)€ + Ci (22)

in which, £ = (-Vé¢).
In the actual calculation, the same method is applied to the 2-dimensional system, and the advection term
in the basic equations is calculated by using so-called "separation method”.

CALCULATION PROCEDURE

Eq.9, Eq.10, and Eq.11 are calculated by the separation method, so that the CIP method (4) can be used.
The procedure is as follows.

At first, Eq.9, 10, and 11 are transformed into finite differential forms and divided into the advection term
and others. Except for advection, Eqs.9 and 10 are also divided into two parts: viscosity term and others
including pressure gradient. These terms are calculated step by step. In this procedure, the part including
pressure term can be solved by a Poisson equation with SOR method so as Eq.8 to be satisfied. In the
separation method, the pressure term is neither advective nor diffusive. So the Poisson equation has a very
simple structure.

Next, the advection term is calculated by the CIP method (4), and in the next time step values such as
velocity and density are obtained. V .

At the boundaries of bottom and walls, non-slip condition is applied, and the water surface is considered
to be free from shear. Water surface variation is regarded as very small and it is approximated to be rigid in
this paper.

OVERVIEW OF THE EXPERIMENT

Fig.(2) outlines the experimental setup. Length of the flume is 1.0(m), width 0.4(m), height 0.3(m), and
water depth is 0.155(m). At first, the flume is divided into left and right blocks by a plastic partition at the center
of the flume, where the left side is filled with fresh water and the right side with salt water, respectively. The salt
water is dyed blue. Density of water on the left side is 1000.0(kg/m®) and on the right side is 1033.0(kg/m?).
At time t=0.0(sec), the partition is quickly removed and the water from both sides starts to form layers. This
motion is recorded by digital video camera, and the image data is stored in a desktop computer. These images
are compared with the calculation result.

Actual saltwedge is usually found, constructed in an open water system. However, our model addresses a
closed water system, and the main purpose of the experiment is verification of the numerical model. Therefore,
both of the numerical and experimental models are set in a closed water system.

RESULTS OF THE EXPERIMENT.

Fig.3 shows the results of the experiment obtained from the motion picture.

At t=0.0{sec), when the central partition is removed, the salt water plunges into the fresh water, and
the density front starts to move. Then two swells are observed at the front and at the middle of the interface
(arrows in Fig.3). These swells are considered to be vortices generated by the interfacial shear stress. Density
diffusion is observed right behind these vortexes. The front reaches the left end at about t=6.0(sec), and the
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-Fig.2  Overview of Experimentai Setup

density water rises up to its highest point at about t=12.0(sec). Then, the internal seiche is generated. The
seiche’s period is about 24(sec).

INITIAL CONDITION OF THE CALCULATION

Fig.4 shows the initial condition of the calculation. The numerical results obtained under the following
conditions are compared with the experiment. .

Height of the computational domain is 0.155(m), and length is 1.0(m). The flume is divided into two blocks
at first. Water density of left side p; is 1000.0 (kg/m?®), that of right side p, is 1033.0 (kg/m?). The center
partition is removed when the calculation starts at t=0.0(sec).

Beside, the fluid viscosity is ¥ = 0.000001 (m?/s) for water temperature of 20 degrees Celsius, the diffusion
coefficients are D, = D, = 0.000001 (m*/s), and numbers of grid points are 30 in the vertical direction, 100 in
the horizontal direction, respectively.

CALCULATION RESULTS

Fig.5 shows the results of calculation. These are compared only graphically with the experiment, because
it is very difficult to collect precise data of velocity or density in the experiment. However, this comparison is
enough to show the model’s performance. In Fig.5, the darker pattern indicates higher density, and black dots
are tracers.

At t=0.0(sec), the density front is shaped immediately and starts to migrate to the left side. While the
front advances, vortices gradually grow along the deformable density interface, and water density difference
diffuse mainly behind the vortexes. Calculation of this process agreed well with results of the experiment. In
addition, the vortexes caused by the shear stress are observed very clearly in calculation (arrows in Fig.5), and
their locations are close to those in the experiment. Then, the front reaches the left end of the channel, and
after the dense water rising to its highest point at about t=12.0(sec), internal seiche is generated. The period
of seiching is about 23(sec). The behavior of seiche and its period time are also very similar to those of the
experiment.

In Figs.6 and 7, our calculations are compared with past similar experiments and calculations from previous
other research. Our model’s availability is confirmed through comparison. To plot more data (like mixed layer
thickness at the front, lower layer thickness, and Reynolds number), other three calculations are done with our
model, where the initial water depth are decreased by 2.0(cm) gradually in each case. All other initial conditions
are the same as for the first calculation mentioned above. The objects of comparison are the calculations results
of numerical analysis of a density front in a densimetric exchange flow by Hosoda (3), which is mentioned in
introduction, and results of experiments by Simpson, Britter (7) and by Okubo (8). These experiments are
quoted in Hosoda (3). This comparison is not so strict, because conditions of the calculations and experiments
are different from our calculations. However, the comparison is supposed to show the tendency of the density
front profile.

Fig.6 shows the relationship between the Reynolds number and the mixed layer thickness, in which, H is
the water depth, h3 is a mixed layer thickness, hd is lower layer, Re is defined as: Re = usR/v (R is a hydraulic
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radius of the lower laver as defined in Okubo’s experiment and identified to be I /4 in calculations), and us is
the density front velocity. In this figure, we can compare the mixed layer thickness of éur calculations providing
better agreement with the experiment than those of previous calculations. In the experiments (7)(8), optical
and chemical techniques were used, and only the mixed layer was measured

Fig.7 shows the relationship between the mixed layer thickness and the lower layer thickness. In this figure,
it is concluded that our calculation results agree with experimental results such as mixing events across the
density interface. o s

CONCLUSIONS

In this paper, a simple and precise 2-dimensional numerical model employing the CIP method (4) was
constructed to calculate density flows, and this model applicability was tested by comparison between calcu-
lation results and experimental results under similar conditions or past calculations and experiments by other
researchers.

Regarding comparison between calculation results and experimental results under similar conditions, the
method was brief. However, this numerical model agreed well with the experiment. In particular, the advance of
the vortexes behind the density front was observed more clearly in the model calculations than in the experiment.
Besides, the behavior of internal seiche, which plays a very important role in hydraulics at the stratified fuids,
could be reproduced on the laboratory scale.

Otherwise, through comparison between our model’s result and those from previous experiments and
calculations by others, our model using the CIP method (4) could provide more accurate result. The CIP was
recognized to be a good tool for decreasing the mixed layer thickness, which is caused by too much numerical
diffusion. The successful results were thanks to the CIP method (4), which can reproduce interfacial events
with high resolution.

This study showed that a simple numerical model, which employs the CIP method (4), is applicable to
complicated phenomena such as of density flows. This model is expected to be a powerful tool to simulate
behavior of interface of different density waters.

REFERENCES

1. Michioku, K., G. Tsujimoto, and H. Miyamoto : Water exchange characteristics of wind-driven density
current system in semi-enclosed stratified basins, Annual Journal of Hydraulic Engineering, Vol.39, pp.805-810,
1995. (in Japanese)

2. Ikenaga, H., T. Yamada, K. Uchijima, K. Mukouyama, M. Hirano, and Y. Ide : Study on generation of wind-
driven current and behavior of the density interface between salt and fresh waters in Lake Abashiri, Annual
Journal of Hydraulic Engineering, Vol.41, pp.481-488, 1997. (in Japanese)

3. Hosoda, T., K. Nishizawa, A. Fukusumi, K. Okubo, and Y. Muramoto : Numerical studies on internal waves
induced in a densimetric exchange flow, Annual Journal of Hydraulic Engineering, Vol.40, pp.525-530, 1996.
(in Japanese)

4. Yabe, T. and T. Aoki : A universal solver for hyperbolic equations by cubic-polynomial interpolation I.
One-dimensional solver, Comp. Phys. Comm., Vol.66, pp.219-232, 1991.

5. Yabe, T. and F. Xiao : CIP method: a unified solver of solid, liquid and gas (1), Japan Society of CFD,
vol.7 No.2, pp.70-81, 1999. (in Japanese)

6. Yabe, T. and F. Xiao : CIP method: a unified solver of solid, liquid and gas (2), Japan Society of CFD,
vol.7 No.3, pp.103-114, 1999. (in Japanese)

7. Simpson, J. E. and R. E. Britter : The dynamics of the head of a gravity current advancing over a horizontal
surface, J. Fluid Mech., Vol.94, pp.477-495, 1979.



104

t=0.0(sec)

t=1.1(sec)

t=2.1(sec)

t=3.1(sec)

t=4.1(sec)

t=6.1(sec)

t=12.2(sec)

t=25.1(sec)

Fig.5 Calculation Results
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APPENDIX - NOTATION

The following symbols are used in this paper:

c = concentration;
p = density;
pw = fresh water density;

velocity components on z direction;

I

velocity components on y direction;
orthogonal axes;

8w
<
I

time;

= pressure / density;

coefficient of viscosity;

= gravitational acceleration;
coefficients of diffusion on z direction;
coefficients of diffusion on y direction;

<
i

Mo e Yoy
11

axes on body-fitted coordinates;

==
|
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9¢/y:

an/dy;

dx/OT;

dy/oT;

Ox]OE;

Oy/9¢;

Oz/dn;

dy/on;

bottom level;

water depth;

water level;

defined as Eq.(12);

defined as Eq.(12);

defined as Eq.(12);

velocity on 1-dimensional wave equation;
a value transported by V7; :
cubic function providing profile of C between grid points ¢ — 1 and i;
unknown value in Eq.(15);

unknown value in Eq.(15);

C on grid points;

derivative of Cj;

position on grid points

water density in left side of the flume;
water density in right side of the flume;
total water depth;

mixed layer thickness;

lower layer thickness;

front velocity; and

hydraulic radius.
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