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SYNOPSIS

A second-order accurate numerical model for two-dimensional flood flow is developed based on
high-resolution TVD-MacCormack scheme. The cell-averaged flow variables are used to include the
effects of obstructions. within a cell on the flow.in the model. The drag force is modeled with drag
coefficient and the ratio of obstructions’ area to the cell area. The performance of the model is verified
against the Stoker’s analytical solution for a one-dimensional dam-break problem and the experimental
data on one- and two-dimensional dam-break flood waves propagating in a horizontal channel where
equi-spaced cylinders are placed over the full and half width of the channel. Sensitivity analysis related
to the effects of obstructions on the flow is also performed.

INTRODUCTION

River basins are almost always concentrated with population and property. Areas in the vicinity
of rivers are also most likely to be flooded following heavy rainfall in these areas or in the catchments
upstream. Flooding in the densely populated and well developed areas may be characterized by flood
flows obstructed and often guided by such obstructions as buildings, posts, trees etc: A numerical model
for simulation. of such flood flows must take into account these obstructions as well as other relevant
flood phenomenon. :

A flood simulation model generally consists of a numerical model for two-dimensional flood ﬂow
based on shallow water equations and techniques to treat arbitrary flood-plain geometry and topography
with road networks, buildings, vegetation, structures, and others. There exist many flood simulation
models ((1), (2), (3), and (4)). Iwasa et al. (1) developed a flood simulation model for a flood-plain
with drainage channels and embankments. Takahashi and Nakagawa (2) made some modifications,
and applied it to urban areas. This model is based on a very diffusive scheme. Suetugi and Kuriki
(3) proposed a flood simulation model with land-uses dependent roughness coefficients and applied it
to the Chikugo and the Turumi river basins. However the basis of the artificial viscosity used in the
model is uncertain. Fukuoka et al. (4) constructed a flood simulation model for urban residential areas.
The model makes use of the general curvilinear coordinates applied to arbitrary geometry consisting of
road networks and houses. The hydrodynamic force acting on the obstructions was estimated from the
depths, both in front and at back sides of an obstruction. The model was verified by comparing the
experimental data conducted under simplified situation of the real urban residential areas. However,
the scheme used in the model is not explained in detail.

High resolution schemes such as FDS, MUSCL, etc. have been proposed for the Euler equations
in the field of computational fluid dynamics(CFD)(5). Similar to the Euler equations, the shallow water
- equations are hyperbolic. With suitable modifications, high-resolution schemes developed for the Euler
equations can be utilized to develop a flood simulation model with higher accuracy than existing ones
(e.g. (6) and (7)). Glaister (8), Alcrudo et al. (9), Fraccarollo and Toro (10) and Zhao et al. (11), for
instance, have demonstrated such a possibility. -

This work is a first step in construction of an accurate flood simulation model. A second-order
accurate numerical model for two-dimensional flood flow based on the shallow water equations is devel-
oped. In this model, a technique to treat obstructions, which correspond to trees, buildings, and others,
within a cell is considered, and the cell-averaged flow variables are used in a manner similar to Raupach
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and Shaw (12). The drag force on the obstructions is modeled with both drag coefficient and ratio of
obstructions area to cell area. The TVD-MacCormack scheme is employed as a high-resolution scheme.
The scheme consists of MacCormack scheme and a TVD term. A TVD term adds dissipation, according
to the theory of TVD, to MacCormack scheme and provides oscillation free solutions. The performance
of the model is verified against the Stoker’s analytical solution for a one-dimensional dam-break prob-
lem and the experimental data on one- and two-dimensional dam-break flood waves propagating in a
horizontal channel with equi-spaced cylinders, which are not submerged, placed over the full and half
width of the channel. Additionally, sens1t1v1ty analysis for both the drag coefficient and area ratio in
the drag force are performed.

GOVERNING EQUATIONS

The governing equations for two-dimensional unsteady free surface flows can be written as

oU OJFE 6F
e e e S +8,= O ‘ : e (1
m+6$+a+z+y | | : | 1)
where U = vector of unknowns; E and F = components of the flux along x- and y-directions,
respectively; §, and Sy = vectors containing source and sink terms along x- and y-directions, respec-

tively.
These vectors are given by

T ‘ T
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where h = water depth; u and v = velocity components along z and y directions, respectively; ¢
= acceleration due to gravity; So; and S,y = bed-slopes along x and y directions, respectively; Sy, and
Sy = friction slopes along = and y directions, respectively; F; and F;, = components of the drag forces
due to obstructions within a cell along = and y directions, respectively.

The bed slopes S,z and Sy are defined respectively as

_ O o _ 0m
S‘””‘"ax’ T By (3)

where z, = bed elevation abqve a reference datum.
The friction slopes Sy, and Sy, are assumed to be given by Manning’s formula. Thus,

n®uvu? + o2 n2uvu? + v2 k ‘
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" where n = Manning’s roughness coefficient.
The effect of the obstructions within a cell on the flow is modeled as a drag force term. The drag

forces F; and F, are defined as

Fp= %)\CdUh\/ u?+v? Fy= -%/\Cdvh\/ w2402 - S(B)

where Cy = drag coefficient; and A = the ratio of obstructions area to cell area termed as area
ratio.
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Fig.1 Definition of symbols used for area ratio A.

N

A= - (6)

where' A = cell area; A’ = area within a cell circumscribing obstructions; X' = density of obstruc-
tions in a cell for the obstructions arrangements considered here (13)(see Fig.1).

d
! =
A all,

)

where d = projected width of obstructions against main flow; I, and I, = obstructions’ spacing
along z, y direction, respectively; a = coefficient of obstructions’ pattern. a = 1 for parallel pattern and
a = 2 for staggered pattern.

FE and F have their Jacobian vectors A and B , respectively, with respect to U, which are given

by
0 1 0 0 0 1
A:%: ~u?+c 2u 0 ;B:g—g: - v u (8)
—UU vou ~v?+c? 0 20
where ¢ = the wave speed( = /gh).
The eigenvalues and eigenvectors of A are
M=y, =utc ¥ =u-c 9)
e=(00 1) ;e2=(1 ute v) ;€= (1 u-c v)’ (10)
The eigenvalues and eigenvectors of B are
= =vteut=v—c (11)
ff=(01 O)T;f?‘:(l uv+c)T;f3=(1 u v-—c)T (12)

The eigenvalues of A and B are the characteristic speeds and their signs provide the information
about the direction of propagation of the flow.



NUMERICAL MODEL

The TVD-MacCormack scheme is adopted as a high resolution scheme because of easy incorpora-
tion of source terms while maintaining second-order accuracy in both time and space.

The two-dimensional problem is decomposed into the problem of solving a pair of one-dimensional
problems using operator splitting technique. Thus, Eq.1 can be written as

oU OF

—(—9?+-5;+er0 ; (132)
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—5‘t—+—é§+3y=0 (13b)

Operator splitting used in this work is as follows:

At At At At
Ut =L, ("é") L, (3’) Ly, (—2—) L, (7) Ui, (14)

where L = integration in time, the quantity in the bracket denotes time increment, and the
subscripts, z-and y, denote the direction of computation. The solution along x-direction is described in
the following. MacCormack’s two-step predictor and corrector scheme for Eq.13a can be written as

Predictor Step:

At
UL = ULy~ 5 {(1=62) Biyyy — (1= 200) By — 0o By} — AtSey (15)

Corrector Step:

At

C P _
Uii=Ui;— %

{0 -6 BYyy - (1~ 20,) BY; —0,BY;} - AtSE (16)

x,7

The updated variables at the new time level ¢t + 1 are then obtained as
1
Uit =5 (UL +U5)) : (17

where At = time step; Az = grid size along x-direction. The superscripts, p and ¢, stand for
predicted and corrected variables, respectively; 6; = parameter determining the direction of space
difference for removing most of the directional bias (14). The corrected variables obtained by Eq.17 are
modified with a TVD term as

Uit = U;,tfl + Griviy2,j — Gri-1/2,5 (18)

where G = upwind TVD term. Addition of the TVD term to MacCormack scheme gives TVD
property for an oscillation free solution, while retaining second-order accuracy in space and time to the
scheme. The TVD term allows solution of sub- and supercritical flows with high accuracy and can be
written as i : :
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where X and & are eigenvalues and eigenvectors, respectively, evaluated by Roe’s average defined

k
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The o in Eq.19 are wave strengths expressed as

1 A L . [ N B
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1
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1 _ i
p1je; = s { (@ar1/25 + Gr1/25) (hivrg = hig) = (Wignhivry — wighig)}
T 2841725

where the function ¥ in Eq.19 is an entropy correction to & (15).

P (S‘fil /z,j) = max (5&1/2,]‘, S\fﬂ/zgl)
bir1/25 =max ( 0, A(Uij,Uir1) — A (Uij), A(Usgrg) — A Ui, Ui1y) ) (22)
bic1j25 = max ( 0, A(Ui—1,7,Uij) = A(Ui-15), A (Uij) = A(Uic15, Uiy) )

The factor ¢ in Eq.19 is a limiter, which guarantees second. order accuracy while preventing
oscillation. The limiter is a non-linear function of

k
aff .
k _ Ti41/2-82,7 _ k
Tziv1/25 = o Sg = 8GN Ai+1/2,j . (23)
i+1/2,

We use Van Leer limiter (16) expressed as

60)= {7 (24)
MODEL VERIFICATION

Dam break problem

The validity of the model is examined by comparing the computed results with the Stoker’s an-
alytical solution (17) for a dam-break problem. The dam-break problem is illustrated in Fig.2. The
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channel is 3.20m long with a dam placed at 1.08m from the upstream end of the channel. Initially the
reservoir depth A, is 0.1m and the tailwater depth h; is 0.0001m, i.e. the depth ratio h:/h, equals to
0.001. The grid size (Az) is 0.04m and the Courant number C, is set to 0.8. The computed results at
0.8 seconds are compared with the analytical solutions in Fig.3. The calculated result matches with the
analytical solution, with only slight difference in the front resolution.

Dam-break problem with solid cylinders

The experiments were conducted in a rectangular channel 3.2m long and 0.4m wide with cylinders
placed at 0.2m downstream of the dam, which itself was placed at 1.08m from the upstream end of the
channel. The cylinder is made of Perspex and its diameter is 0.01m. The arrangements of cylinders is
shown in Fig.4. Three cases of experiments were conducted, changing the arrangements of cylinders;
Casel had two parallel rows of equi-spaced solid cylinders across the full width of the channel; Case2
had four such rows; Case3d had four rows of equi-spaced solid cylinders across the half of the channel
width. In all cases the initial reservoir depth was set to 0.1m and the tailwater depth was 0.0m, i.e.
dry-bed condition.

A dam-break flow was produced by instantaneously opening a gate, which modeled the dam. The
flow was visualized using a laser light sheet and was recorded with a VITR. The time required to open
the gate was about 0.025 seconds. A water surface profile along B-B’ (see Fig.4) at a given time was
obtained by analyzing the recorded images with computer. Each experiment was repeated five times
under the same condition in order to obtain accurate data. Fig.5 shows an example of the flow at t =
1.3 seconds. :

The computational grid size (Az x Ay) is 0.04m x 0.04m and the Courant number used is the
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same as before. The drag coefficient of 1.2 is used. Although the experiments were conducted with
dry-bed condition, the model works only when h:/h, > 0.001, and hence h; is set to be 0.0001m.

Fig.6 and Fig.7 are examples of comparisons between computed results and experimental data
for Casel and Case2, respectively. In the figures the shadow indicates the region wherein cylinders
are placed. The symbol e and the error-bar represent the mean values of experimental data and the
standard deviation of experimental data, respectively. These figures show that the standard deviation
is small, indicating that the reproduction of the experiments is satisfactory. No difference between the
water surface profiles at the center and near the side walls of the channel is observed. The agreement
between computed and experimental results is satisfactory. However, in the upstream of cylinders and
in the domain where cylinders exist the computed values are a little lower than the experimental ones,
while the reverse is true in the downstream of cylinders. These differences may be due to such reasons
as; use of the steady state value of drag coefficient(Cy = 1.2), no consideration of the source term in
the TVD term, non dry-bed conditions in the computation. In addition, water splashes when the flow
hits the cylinders and delay in gate openings may also cause the difference.

Fig.8 compares computed results with experimental data for Case3. In this case we compare water
surface profiles along A-A’, B-B’, and C-C’(see Fig.4). The symbols in Fig.8 are the same as in Casel
and Case2. Even in Case3 only small standard deviation is observed, and hence the reproduction of
the experimental results is satisfactory. The agreement between the computed and experimental results
is satisfactory along every cross section. In the upstream of cylinders, howe: er, computed values are a
little lower than the experimental ones, while the reverse is seen in the downstream of the cylinders.
The reasons for this difference are believed to be the same as in Casel and Case2.
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SENSITIVITY ANALYSIS

To investigate the effects of obstructions’ shapes and arrangement patterns on the dam-break flow
and the effects of the grid size on computation of obstructions, different values of the drag coefficients,
the area ratios and the grid sizes are tested:

Effect of the drag coefficient

Three drag coeflicients, C3=0.2, 1.2, and 2.2 are used to examine the effects of the drag coefficient
on the dam-break flow under the presence of obstructions. The channel is horizontal, frictionless and
rectangular (3.36m long and 0.48m wide) with obstructions placed downstream of 0.2m from the dam.
The dam was placed at 1.12m from upstream end of the channel(see Fig.9). The depth upstream of the
dam, the tail water depth, the grid size, and the Courant number are the same as before.

The simulated water surface profiles, at 1.3 seconds after sudden dam removal, are shown in
Fig.10. The results indicate that the wave front is retarded and the depth in the downstream of the
dam increases as the drag coefficient is increased. The model response to the variations in drag coefficient
seems reasonable. '

Effect of the area ratio

The effects of area ratio on the flow are examined by changing arrangement patterns of obstruc-
tions, values of a projected width of obstruction, and obstructions’ spacing. In all cases Cy = 1.2 is
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used.

The effect of arrangement patterns of obstructions on the flow is investigated through two patterns,
parallel(I; = I, = 0.04m) and staggered(f, = 0.04m, I, = 0.02m). The water surface profiles at 1.3
seconds are shown in Fig.11(a). As obvious from model formulation(Eq.7), the area ratio for the two
patterns are equal. So the same results are obtained.

In the case to investigate the effect of a projected width and obstruction spacings, three projected
widths of 0.005m, 0.01m, and 0.015m and obstruction spacings(Z; x I) of 0.04mx0.02m, 0.04mx0.04m,
and 0.04mx0.06m are adopted.The arrangement pattern used is parallel. The water surface profiles at
1.3 seconds are shown in Fig.11(b) and Fig.11(c). The results indicate that the wave front moves slower
as the projected width increases or as the spacing decreases, and the depth immediately downstream of
the dam becomes higher as the projected width increases or as the obstruction spacing decreases. The
model response to the area ratio seems reasonable.

Effect of the grid size on computation of obstructions

As the grid size is increased, the effect of even the localized obstructions must spread over the
whole mesh. Therefore, the rise in water level due to obstructions appear diffused in space. The reverse
is true when the grid size becomes finer.

For investigating the effect of the grid size on computation of obstructions, three grid size of 0.04m
x 0.04m, 0.08m x 0.08m, and 0.16m x 0.16m are adopted. The obstructions’ arrangement pattern is
parallel, the projected width is 0.01m, and the obstructions’ spacing are 0.04m x 0.04m. The simulated
water surface profiles are shown in Fig.11(d). The phenomena is reasonably simulated by the model, as
shown by the figure.

CONCLUSIONS

A second order accurate two-dimensional flood model is proposed. The effect of obstructions within
a cell on the flow is treated as a drag force. The drag force term is modeled with a drag coefficient
and an area ratio. The TVD-MacCormack scheme is employed for its high-resolution. The applicability
and accuracy of the proposed model are tested against the Stoker’s analytical solution and one- and
two-dimensional dam-break problems in a horizontal channel with equi-spaced rigid cylinders. The
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computed results agree well with both the analytical solution and the experimental data, indicating
validity of the proposed numerical model. The effects of drag coefficient and area ratio on the flow are
examined through numerical experiments. The model responses to these parameters are found to be
reasonable. The work is continuing to include techniques for source term discretization and internal
boundary conditions for flood simulation model.
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APPENDIX - NOTATION

The following symbols are used in this paper:

by
by
L, I,

Sozy Soy
Stay Sty
Sz, 8y

coefficient of obstructions patterns (a =1:parallel, a = 2: staggered);
cell area; »

area within a cell circumscribing obstructions;

Jacobian of E and F with respect to U, respectively;
wave speed( = v/gh);

drag forces coefficient;

Courant number;

projected width of a obstruction against main flow;
components of the flux;

drag forces along z and y directions;

acceleration due to gravity;

water depth;

reservoir depth;

tailwater depth;

obstructions spacing along =, y directions, respecti\}ely;
Manning’s roughness coefficient;

bed—slopes along z and y directions, respectively;

friction slopes along = and y directions, respectively;
vectors containing source and sink terms.;

velocity components along « and y directions, respectively;
vector of unknowns;

wave strength;

time step;

grid size along x-direction;

parameter determining the direction of space differences;
area ratio; »

density of obstructions in a cell for the considered patterns;
eigenvalues and eigenvectors of A4;

limiter;

an entropy correction to &; and

eigenvalues and eigenvectors of B.

95

(Received December 9, 1999 ; revised February 22, 2000)



