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SYNOPSIS

When the length of systematic gauged hydrological record is not enough, historical flood information is
practically useful to improve the accuracy of flood-quantile estimation. Historical flood data, which can be
utilized for flood frequency analysis by the adjusted-moment method or the maximum likelihood method,
often have much larger errors than systematic gauged data. Thus, it is important to evaluate the effect of the
error on the precision of flood-quantile estimators. Monte Carlo simulations using the Gumbel distribution
show that flood-quantile estimates contain positive bias when the standard: error of historical data exceeds a
certain level (in this study, approximately 1/6 of the average for the systematic gauged data). Moreover,
when it exceeds 1/4 to 1/3 of the average, improvement of the accuracy cannot be confirmed for calculated
flood-quantile values.

INTRODUCTION

In the planning and design of flood-control projects, the design flood corresponding to a 7-year return
period of is determined from hydrological data. When the systematic gauged record is not long enough to
estimate a T-year flood accurately, historical flood information is practically useful. Methods of utilizing
historical flood data, which contain both quantitative values and categorical information (e.g., above or
below a certain threshold), have been investigated for flood frequency analysis. Furthermore, the effects of
increasing record lengths on improvement of the accuracy of flood-quantile estimation have been evaluated
by computer simulations (e.g., Cohn and Stedinger (1); Hosking and Wallis (2); Ikebuchi and Maeda (3);
Stedinger and Cohn (4)). However, historical data often contain much larger errors than systematic gauged
data because those are estimated from indirect evidences, such as sediment deposits, botanical evidences or
subjective written records. When the errors of additional historical data are too large, the reliability of
obtained flood-quantile estimates is likely to decrease than at the case when only systematic data are used.
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Thus, it is necessary to simulate the relation between both factors. 'This paper examines the effect of the
errors of historical data on the accuracy of flood-quantile estimation by incorporating the process of error
generation in the Monte Carlo procedure, and investigates the acceptable size of errors in flood frequency
analysis for various estimators.

METHODS OF UTILIZING HISTORICAL FLOOD INFORMATION
FOR FLOOD FREQUENCY ANALYSIS

In historical years, the larger floods tend to leave more information about their magnitudes and dates.
We define “a historical period” as the period such that all floods greater than a threshold left a record that is
currently available, and “a systematic period” as the period such that all quantitative gauged data are
available for that period. Historical flood data can be categorized into three classes: “censored” data, where
the magnitudes of historical flood peaks are known, “binomial” data, where only threshold exceedance
information is available and “range” data, where the magnitudes of historical flood peaks have errors within
a predetermined range. In this section we describe methods of estimating parameters of probability
distributions using systematic and historical flood data,

In this study, the Gumbel distribution is used as the pmbablhty distribution of flood peaks. Its
distribution function and probability density function are respectively,

F(x)=exp[~exp {-a(x - w}]
f()=a-exp[-a(x-p)-exp{~a(x-w}]
with the mean value m and the standard deviation o: The parameters u and o are denoted as
u=m-0455005¢0 ; a=128255/0 | | )
Parameters wand a can be estimated by the method of moments or the maximum likelihood method.

Adjusted-Moment Estimator

Let x; (=1, 2, -, 5) be annual flood peaks in a s year systematic period, y; (=1, 2, -, k) be flood peaks
that exceeded a perception threshold U in a A year historical period and % be the number of threshold
exceedance data of the historical period. For remaining (h-k) years, the magnitudes of flood peaks are
unknown except for the fact that those are below the threshold U. Then we assume that the mean and
variance of historical data below the threshold U are the same as those of systematic data below U,
respectively. When the number of systematic data below U is »,, and those values are x,; (=1, 2, -+, n,), the
mean value M, and the variance o;’ of total samples for the historical period are

My, = "[(k k)"“'zxy, +E}’1

X)’ i=l iw]
o g—[o: k)-——-z(xyi ~M)Y'+ E(y -M) ]
xy i=l ol
where M is the mean value for the total period,
M =(sM, +hM,)/ (s +h) ' @
The variance for the total period o is denoted as

o’ =(so +hoy’)/(s+h) ?3)
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where M, and 6, are the mean and variance for the systematic period,
5
1

Thus, the values of w and o can be obtained by substituting Eqs. 2 and 3 into Eq. 1.

1&

i=1

Ca!»—‘

Maximum Likelihood Estimator

For the probability density function f(x;0), the likelihood function L is defined as k

)

i=1

where 6 s a vector of unknown parameters and # is the number of data. Given sample data x, (=1, 2, -, n),
L is the function of 6, and the maximum likelihood estimate & can be calculated by partially differentiating
in 6, equating to zero and solving for 6. Since the Gumbel distribution has two parameters p and @, two
equations are obtained,

J J
—L =0 ; —L(ga)=0
o (u, @) e (& @)
V Cbnsidering the nature of historical data, there can be foﬁr types of likelihood function as follows.

a) Censored Data :
If sample data z; (=1, 2, -, 5) are known as quantitative values, the likelihood function L, is given by

Le[[fGsme)

i=1

All of systematic data and the historical data estimated as quantitative values are categorized into this
case.
b) Binomial Data (below threshold)

In the historical period, if there are no records of flood during a specified year, the flood magnitudes are
treated as less than a censoring threshold. Let n; (j=1, 2, -, k) be the number of data below a threshold U,
and the likelihood function L, is

k
L,= HF(Uj; wa)”

el

¢) Binomial Data (above threshold)
For m; (j=1, 2, -, I), the number of historical data whose magnitudes cannot be estimated but are
known to have exceeded a threshold T}, the likelihood function L, is given by

I
L=~ F(T; 0]

il

d) Range Data

Occasionally, one must treat historical data as having errors within a predetermined range because of
their unreliability. If there are » historical data every one of whose value is known to range between ¥, and
Z; (=1, 2, -, m), then the likelihood function L, is
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m

L =[]lF(Z;u 0)~F(¥%; p,0)]

i=1

Since every systematic or historical datum can be categorized into one of the above, the likelihood
function for all data is denoted as the combination of these four cases, say,

L=LLL,L,

The maximum likelihood method is effective in being appropriate for any kind or combination of data
and easy to alter thresholds.

MONTE CARLO EXPERIMENT

In this section we examine various methods of estimating flood-quantile values using systematic and
historical data by Monte Carlo experiments.

Estimation Models

a) Maximum Likelihood Method Case 1 (MLE1)

In this case, in addition to systematic data x,; (i=1, 2, -, k), the historical data x,; (’=1, 2, -+, k), which
happened to exceed a threshold U during the %, year historical period, are available as quantitative values.
The remaining (,~k;) historical data are assumed to be below the threshold. The likelihood function is
given by ‘

ko K
L=T]fa) [[Fen)-FO)"™

i=1 i=]

b) Maximum Likelihood Method Case 2 (MLE2)

In this case, in addition to systematic data x,; (i=1, 2, -, ko), each of the historical data x,; =1, 2, -, ky),
which exceeded a threshold U during the A, year historical period, can be estimated with a =R error margin.
The likelihood function is ‘

kg K
L =[] f6o) T[F Gy + R)= Flxy - R} FO)" ™

j=l i=]

¢) Maximum Likelihood Method Case 3 (MLE3)
In this case, in addition to systematic data x,, (=1, 2, -, ko), only the fact that a threshold U was
exceeded k, times in historical /, years is known. The likelihood function is

ky
L =T f0a) FO)" ™ {1 -FU)I*

i=l

d) Adjusted-Moment Method (MOM)
For this case, the procedure as described in the previous section is applied.

Simulation Procedure
For the above four cases, we examine the effect of historical flood data containing errors on the
precision of flood-quantile estimators by the Monte Carlo experiment. Estimators are evaluated using root

mean square errors (RMSE) of the 100-year flood. The procedure is described as follows:

Step 1 : Assume a population distribution
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We use the Gumbel distribution as the population distribution, with the parameters = 300 and o= 0.01.
These values have been derived by con51der1ng the actual distribution of annual-maximum 30-day
precipitation for Lake Biwa area.

Step 2 : Take a sample of size (s+h) from the populatlon ;

Generate (s+h) random numbers of the distribution given in Stepl, where s and % are the length of
systematic and historical periods, respectively. In this study, we assume s = 80 and vary % from 0 to 200, in
order to examine the performance of estimators by increasing historical information in addition to systematic
gauged data.

Step 3 : Generate errors of historical samples

Generate 4 random numbers of a normal distribution M0, %), and add them to each of historical
samples generated in Step2. The errors of systematic data are assumed to be negligibly small. In this study
we examine various cases of £=0~120.

Step 4 : Fit a flood frequency distribution and calculate quantile estimates

Apply each of the four methods a) ~ d) to the samples obtained in Step3 and estimate the parameters
o and T-year floods. Here we calculate under the condition of the return period 7 = 100 and the censoring
threshold of the historical period U= 500 (in this case, the ratio of threshold exceedace data is approximately
1/8 of total samples). For the presumed range of errors R in the MLE2 model, we examine two cases of R =
20, 60 and express them by “MLE2-1” and “MLE2-2”, respectively.

Step 5 : Repeat Steps 1~4 many times, and calculate the mean value and RMSE of estimates of parameters
and T-year quantiles. In this study, we repeat Steps 1~4 1,000 times.

RESULTS AND CONCLUSIONS

Figure 1 shows the effect of increase of historical information on the mean and RMSE of estimated 100-
year floods, for various standard errors (¢) of historical data. Moreover, Fig. 2 shows the same information
as in Fig. 1 and compares four estimators, for £ = 0, 20, 60 and 120 The following conclusion can be drawn
from Fig. 1 and Fig. 2.

1. When ¢ is less than 60 (approximately 1/6 of the mean value of the population), the accuracy of
estimated 100-year floods is improved with the increase of historical information. Especially when ¢ is less
than 40 (approximately 1/9 of the mean value of the population), it shows almost the same performance as
the case of £= 0, for all estimators (see Fig. 1).

2. When ¢ is 60 or more, the estimates tend to have positive bias with the increase of historical data
without a considerable reduction in RMSE. Thus, for these cases, the historical period should not be too
long (in this study, approximately less than 1/2~2/3 of the length of systematic period). '

3. From the cases of £= 20 and 60 in Fig. 2, it can be seen that the cases of MLE2 having the presumed
range of errors R corresponding to & show smaller bias and RMSE than the other estimators. Therefore, if
the errors of historical data can be estimated approximately, in that case, the best result can be obtained by
using MLEZ2, such that the value of R equal to the estimated errors.

4. When ¢ exceeds 100 (approximately 1/4~1/3 of the mean value of the population), RMSE increases
with the number of historical data. In these cases, the method of maximum likelihood using only systematic
data is most appropriate.

5. The estimation accuracy of MOM (the method of moments) is clearly lower than that of MLE
(maximum likelihood method) estimators. And in the case of MLE3, the RMSEs are larger than those of
other MLE cases.

In this study, the simulation was performed under the simple conditions that the threshold and accuracy
of data are constant during the historical period and the errors of the historical data have the normal
distribution with a mean value of 0. Further analyses on error distribution of the historical data, temporal
variation of accuracy or censoring threshold, and their nonstationarity remain to be addressed.
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Fig. 1 Mean value (left) and RMSE (right) of 100-year flood estimates for various standard errors of historical
(a) MLE1, (b) MLE2-1, (c) MLE2-2, (d) MLE3, (¢) MOM
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Fig. 2 Mean value (left) and RMSE (right) of 100-year flood estimates (comparing the four estimaters).
(8 &=0, (b)s =20, (c)& =60, (d)&=120
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