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SYNOPSIS

An algorithm was developed to map soil moisture using the spatial and temporal distributions of
the microwave backscattering coefficients of the ground surface. A scattering model that includes the
Integral Equation Method (IEM) was applied to the L-band Synthetic Aperture Radar (SAR) mounted on the
Japanese Earth Resources Satellite-1 (JERS-1). The images used in this study were taken over the Tibetan
Plateau in January and August 1993. The ground surface backscattering coefficient is affected not only
by soil moisture but also by other factors, such as, surface roughness, vegetation, and soil composition.
To obtain the values related to roughness, we conducted ground-based measurements in the summer of 1997
as a part of the Tibet regional experiment of the GEWEX Asian Monsoon Experiment (GAME) project. Two
experiment areas with different surface characteristics were selected. We drew a surface roughness
map from the January JERS-1 SAR image by applying the scattering model and the relationship between
two surface roughness parameters obtained through the ground-based measurements. We also derived an
August soil moisture map from the August image by applying the scattering model and the surface roughness
map estimated in January. The estimated distributions of the soil moisture on the Tibetan Plateau
qualitatively correspond to those obtained by field measurement.

INTRODUCTION

Soil moisture is a key parameter in numerous environmental studies, including hydrology,
meteorology, and agriculture. It plays important roles in the interactions between the land surface
and the atmosphere, as well as in the separation of precipitation into runoff and ground water storage.
In spite of its importance, soil moisture is not generally used for weather forecasting and water
resources management because it is difficult to measure on a routine basis over large areas. In cold
regions, hydrological processes such as melting of snow and permafrost are considered to play predominant
roles in global atmospheric circulation as well as the seasonal march and interannual variation of the
regional climate. It has been suggested, for example, that the anomalous state of soil moisture on
the Tibetan Plateau affects the variation of the Asian summer monsoon through the atmospheric heating
processes over the plateau (Yasunari et al. (17)). Some algorithms were developed to estimate this
important parameter on a large scale using brightness temperature data from passive microwave radiometer
measurements (Jackson et al. (7), Njoku and Kong (10), Wang et al. (15)). Koike et al. (9) derived
the spatial and seasonal distributions of surface soil wetness in the Eurasian Continent, especially
in the east part of China and the Tibetan Plateau, from the Special Sensor Microwave Imager (SSM/I)



30

data. However, the main drawback of radiometer systems for understanding the effect of land surface
hydrological heterogeneity on atmospheric circulation and management of basin-scale water resources
is their coarse spatial resolution. Active microwave remote sensors, in particular Synthetic Aperture
Radars (SARs), have the potential of observing surface soil moisture with high spatial resolution on
a regional scale (Engman and Chauhan (3)).

The signal obtained by SAR is known as the backscattering coefficient and is affected by not only
dielectric properties that depend on the soil moisture, but also on surface roughness, correlation length,
and other surface characteristics. Previous studies (Dobson and Ulaby (2), Wang et al. (16)) have
revealed that Shuttle Imaging Radar-B (SIR-B) imagery with single polarization and single frequency
can only describe the dependence of backscattering coefficients on these surface parameters.
Polarimetric radar data were acquired in the Shuttle Imaging Radar-C (SIR-C) experiment. More
sophisticated algorithms for soil moisture were presented using these data (Oh et al. (11), Shi et al.
(13)). However, no space-borne polarimetric SAR has become operational so far.

The objective of this study is to develop an algorithm for soil moisture mapping with fine spatial
resolution by single-parameter SAR data. To compensate for the lack of information, we introduce
regional characteristics of surface roughness and seasonal variation of soil moisture into a scattering
model that includes the Integral Equation Method (IEM) (Fung et al. (4), Fung (5)). To reduce the number
of unknown parameters, we parameterize the relationships between two roughness parameters through
ground-based measurements.

DERIVATION

Basic Equations of Scattering Processes

The scattering model used in this study formulates scattering processes from an inhomogeneous
medium composed of irregular soil particles and water. To apply this model to perfectly dry conditions,
such as, permafrost regions in winter, we used the microwave radiative transfer model including both
processes of surface and volume scattering for the half-space medium as formulated by

I (p.0)=1,+1, (n

where 1 (u,,4,) = total scattered intensity; p, = cos(6,); 6, = scattering angle; ¢, = azimuth angle;
I, = scattering intensity due primarily to volume scattering within the medium calculated based on
the first-order radiative transfer solution; and 7, = surface scattering from the top boundary calculated
by the IEM model (see Shi and Dozier (12)) that is,

o, =4mcos @)1, (1,.9,)/1 1|5,
=—kziexp[—2k, 13|l —*“—W(")(jk”’o) @)
with
I, =(2k,0)" £, exp {—2k302]+%{k;’[ (kL 0)+F, (k,,0)]} (3)
where subscript pp = polarization state (p=h or v) and
fun = —2R,[cos(8) (4)

fo=2R, [c0s(8) Y

th (”kxno)*‘th (kxao) =
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Ground-based measurement

Smooth area : dry and low vegetated
Rough area : wet with the earth hammock

Fig. 1 Study area and location of two test sites
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In the above equations, o,, = backscattering coefficient; {, = transmitted intensity; g = local
incidence angle, if calculating backscattering for other than 6 =6,. R, = Fresnel reflection
coefficient for p polarization; & = wave number depending on wavelength, A k,=kcos(8,); k,=ksin(8));
g, = relative complex dielectric constant of the surface; u, = relative magnetic permeability of the
surface, ¢ = standard deviation of the surface height; and W (~2k,,0) = Fourier transform of the

nth power of the surface correlation function, p(£).

Algorithm Basis

Equation 1 input from Eq. 2 to Eq. 7 can be expressed simply as follows:

[ (NJ"‘PS):.f(A‘s pp’ Ba93,8S7d7Gsls n) (8)

where P = transmitted power; 4 = diameter of soil particle; and / = correlation length of soil surface.
Variables A, pp and B are the system parameters, and @, is calculated using the Digital Elevation

Model (DEM) and the satellite orbit information. We assume n=1, which corresponds to the exponential
correlation function (see Fung (5)), to apply to L-band data with relatively longer wavelength than
surface roughness scales. To evaluate £,, we use the semi-empirical mode! for a four-component mixture

(see Dobson et al. (1)). That is,

€, = f(Mv,t,p,, 0, B) (9)

where My = volumetric water content of soil; ¢ = thermometric temperature of soil medium; p, = soil
density; and o, B = ajustable parameters for soil composition. In this study, typical values of ¢
and B for sandy soil are adapted. Parameters p, and 4 are treated as fitting parameters. Temperature

¢ is assumed to be -5 degree Celsius in winter and +10 degree Celsius in summer. Consenquently, Eq.
8 can be expressed as
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Fig. 2 Relationship between ¢ and / based on ground-based measurement
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Fig. 3 Determination of the threshold value for classifying surface conditions

I (#s,(j)x)—‘—‘f(Mv,O',l) (10)

There are three unknown parameters. To solve Eq. 10, we introduce relationships between two surface
roughness parameters derived from field surveys and assume particular values for regional character-
istics of soil moisture.

APPLICATION TO PERMAFROST‘REGION IN THE TIBETAN PLATEAU
Ground-based Measurements and Relationship between the Two Surface-Roughness FParameters

The surface roughness parameters were obtained as a part of the Tibet regional experiment of the
GEWEX Asian Monsoon Experiment (GAME) project in the summer of 1997. Figure 1 shows the study area
in the plateau. The two dots indicate test sites selected with different surface characteristics: one
with short vegetation characterized as a relatively smooth surface, and the other, situated in an earth
hammock area regarded as a relatively rough surface. They had typical surface conditions on the plateau.

We selected 12 measurement points in 60m square of each site. A total number of 24 one-dimensional
profiles of the land surface height were measured by a comb-style instrument (from 40cm to 80cm length,
2mm interval) in each site (two profiles in different directions for each measured point). Two surface
roughness parameters, standard deviation of height (o) and surface correlation length (/), were
calculated for each surface profile through Eq. 11 to Eq. 14 (see Ulaby et al. (14)).
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In these equations, Z, = surface height at the location i; N = number of samples in a profile; p(x')
= normal ized autocorrelation function; x'=(j-1)Ax; Ax = horizontal interval; and j = an integer j21.

The results are shown in Fig. 2. To reduce the number of parameters contributing to backscattering
coefficient, we assumed the following linear relationship between ¢ and / at each surface:

Smooth area [=43¢+0.9 (15)
Rough area.  [/=0.606+9.5 (16)

The accuracy of the above assumptions was quite poor. However, these assumptions provided us the
characteristics of surface roughness for each site. Inaddition, the sensitivity of the backscattering
coefficient to the variation of ¢ exceeds the variation of / in the range of measured roughness based
on numerical simulation using the single-scattering IEM mode! (see Shi et al. (13)). Therefore, we
introduced the above roughness relationships into the algorithm and Eq. 10 was represented by

1 (1,,8,)=f(Mv,0()) an

The land surfaces covered by SAR images were classified into the above two categories with certain
threshold values decided statistically from the relationship of SAR-observed backscattering
coefficients between January and August in the test sites (see Fig. 3). Equation 15 or 16 was applied
to each pixel in the images depending on its category.

Calculation of Local Incidence Angle

Two L-band SAR images from the Japanese Earth Resources Satellite-1 (JERS-1), obtained in January
and August under quite different hydrological conditions, were overlaid on a topographic map. This
overlaid image is useful for qualitatively classifying the surface condition and detecting its seasonal
change (see Koike et al. (8)). To determine the local incidence angle for each pixel, we calculated
the normal unit vector of slope (7) using four adjacent elevation data points derived from the DEM,
Global Land One-kilometer Base Elevation (GLOBE) (see Fig. 4 and Ishidaira et al. (6)), which is a
global-scale, high spatial resolution DEM. The area over 5, 350 meters in elevation was masked out in
this overlaid image as rocky surface. The incidence angle of JERS-1 SAR was defined at the center of
the image. The coordinates of the image and topography map were matched. The local incidence angle
(6, =0,) for all pixels was calculated by

cos (8,)=H m (18)
where 7 = a unit vector along the backscattering direction (see Fig. 5). The geometric distortions,
such as foreshortening and layover in the image, were not processed in this study because the area on
the plateau was almost flat except for the mountainous region.
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Fig. 6 Algorithm for estimating surface roughness and soil moisture for each pixel
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Volumetric water content: Mv 0 10 20 30 40 %
Fig.k 7 50m mesh soil moisture map of the Tibetan Plateau by JERS-1 SAR image (Aug. 17, 1993)

Estimating Surface Roughness Distribution

Figure 6 shows the algorithm for estimating the surface roughness and soil moisture. By inputting
the ¢ - / relationships and the local incidence angles into the scattering model under dry conditions,
we produced the distribution of surface roughness in January. The model was evaluated by both surface
and volume scattering processes as inEq. 1. Inaddition, there were usually snow-free in January except
around mountaintops. The process was as follows:

1. Under assumed perfectly dry conditions due to subfreezing soil temperatures in winter, we simulate
the backscattering coefficient as a function of incidence angle (Q) from 17 to 51 degrees with
an interval of 2 degrees, the standard deviation of height (o) from 0 to 2 cm with an interval
of 1 mm for the smooth area, and from 0 to 7 cm with an interval of 2 mm for the rough area. We
also made lookup tables for estimating o(/).

2. o was derived from the simulated table by applying the combination of g and the observed
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Fig. 8 Comparisons of 5011 water content histograms for smooth area estimated by this algorithm
on August 17, 1993, and observed on July 31, 1997 and August 5, 1998

backscattering coeffxment obtained on January 9, 1993.
3. The distribution of correlation length (/) was also derived.

Estimating Soil Moisture Distribution

In the Tibetan Plateau, soil moisture increases in summer because of rainfall and melting snow
and permafrost. The soil moisture map in August was derived from the scattering model after inputting
the local incidence angle and the distribution of roughness into it. The soil moisture distribution
was estimated similarly to the roughness distribution.

1. The backscattering coefficient was simulated under various combinations of incidence angle (g, ),

standard deviation of height (o), and soil moisture {Mv).
2. Weestimated My for one pixel by using the observed backscattering coefficient obtained on August
17, 1993 and @,, and o estimated from the January image.

3. Finally, we derived Mv map with a 50-meter mesh averaging over four pixels square of an original
spatial resolution of 12.5 meters.

Results

Figure 7 shows the August soil moisture map obtained by this algorithm. The brighter portion
of the image indicates the lower Mv; darker, a higher Mv; and black, the masking areas and areas
out of the range of the lookup tables because the roughness is too large or small, such as a water surface.
The surrounding areas of rivers and glacier tips have relatively high Mv values, and the lower right
region in Fig. 7 is a very wet area. The estimated soil moisture distribution thus qualitatively
corresponds to the result of the field examination. We could not directly compare absolute values of
estimated soil moisture with measured ones because observation days were different. However, Fig. 8
compares histograms of soil moisture estimated this algorithm (solid line) and measured on July 31,
1997 (white boxes) and August 5, 1998 (black boxes) for a smooth area. Observed years were different,
but the seasons were almost the same as the estimated one. The absolute values were different, but
the shapes and range of distribution were similar to measured values.

CONCLUSION

This paper developed an algorithm for soil moisture mapping in the Tibetan Plateau by using two
images of single-parameter L-band SAR. To reduce the number of unknown parameters contributing to the
backscattering coefficient, we introduced regional characteristics of surface roughness and seasonal
variation of soil moisture into a scattering model. The former was assumed through ground-based
measurement under two typical types of surface conditions on the plateau. The latter was estimated
using two temporal images obtained in winter and summer under quite different hydrological conditions.
In winter, soil surface was perfectly dry because it was in a permafrost region. Thus, we considered
evaluating not only surface scattering but also volume scattering in the model. Insummer, soil moisture
increases because of rainfall and melting snow and permafrost. The local incidence angle for each image
pixel was also evaluated using DEM, GLOBE data. :
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We can conclude from this study that the algorithm derived can be applied to single-parameter
SAR with the hydrological knowledge. We also showed the possibility of estimating spatial distributions
of surface roughness and soil moisture. When a higher resolution DEM becomes available, the algorithm
can be improved to calculate the local incidence angles and to perform geometric correction in images.
Furthermore, the algorithm must be validated previously with ground-based measurements and estimated
parameters from obtained L-band SAR data. Currently, no L-band SAR system is mounted on a satellite.
In the near feature, satellite-based multi-parameter SAR data will be available. At least, this means
that the single-parameter data can be used continuously. To best manage the limitations of satellite
data, we will have to consider an algorithm applying both parameter data sets.
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APPENDIX - NOTATION
The following symbols are used in this paper:

d - = diameter of soil particle;

! (1.9 = total scattered intensity;

I, = transmitted intensity; , ‘
I, k =  surface scattering intensity from the top boundary surface;
I, = volume scattering intensity within the medium,

j - integer j>1 in Eq. 14;

1 =  wave number;

k, = - ksin(8,)

k, = kcos(6,)

] = correlation length of soil surface;

My =  volumetric water content of soil;

,;, = unit vector along the backscattering direction;

N = number of samples for surface height;

i = normal unit vector of slope;

P = transmitting power;

w = polarization state (p=h or v);

R, = Frespel reflection coefficient for p polarization;
¢ = _ thermometric temperature of soil medium;

W (~2k,,0) =  Fourier transform of the »th power of the surface correlation function;
x'=(j~1)Ax = distance in Eq. 14; '

Z, = surface height;

a, B = ajustable parameters for soil composition; -

Ax = horizontal interval in Eq. 13;

£, = relative complex dielectric constant of the surface;
8,8, = local incidence and scattering angles;

A = wavelength;

i, = relative magnetic permiability of the surface;

I, = cos(6,):

p(x') = normalized autocorrelation function;

p) = surface correlation function;

o, - ®  soil density;

& = standard deviation of the surface height;

o, = backscattering coefficient; and

@, = azimuth angle.
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