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SYNOPSIS

A method has been proposed to compute instantaneous turbulent bottom shear stress from the
variation in free stream velocity under irregular waves for plane bed condition. Instantaneous free
stream velocity and a modified relationship for turbulent wave friction factor have been introduced
as the basis for the correlation with bottom shear stress. Turbulent friction factor and phase
difference, obtained through spectral analysis of generated free stream velocity time variation and
corresponding bottom shear stress from k-& model results, corresponds quite well to those from
laboratory data for sinusoidal waves. Instantaneous bottom shear stress computed by the proposed
method has been compared with those from k-€ model results. Proposed method presents a high
degree of accuracy and has been found to be very convenient to use from the viewpoint of practical
application.

INTRODUCTION

Waves propagating in oceanic regions of shallow and intermediate depths interact with the
changing depth. While waves are affected due to shoaling and refraction, the effect of waves on
the bottom can be observed through sand movement at the bottom. The sediment movement is
caused partly by the process of energy dissipation that takes place through a thin boundary layer
attached to the bottom. Flow in this layer is strongly shared through the production and
dissipation of turbulent energy, and governs near bottom flow dynamics. This has attracted many
researchers to investigate flow properties in the bottom boundary layer. The early experimental
studies mainly investigated the mean flow properties in the boundary layer (Jonsson, 1963) and
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wave friction factors (Kamphuis, 1975). While detailed turbulent behavior and fine flow
visualization techniques are generally applied in recent experiments (Hino et al., 1976; Hayashi and
Ohashi, 1982; Sleath, 1987; Jensen et al., 1989) covering both smooth and rough bottom conditions.
However, most of these studies considered boundary layer flows induced by sinusoidal oscillation
at the free stream.

Apart from the experimental studies, several researchers have proposed mathematical models
to estimate boundary layer flows under oscillatory motion. These models mainly use linearized
boundary layer equation coupled with turbulence models of various level of complexities; like
eddy-viscosity model (Kajiura, 1968), one-equation model (Justesen and Fredsge, 1985), two-
equaiton model (Justesen, 1988a; Asano et al., 1988; Justesen and Spalart, 1990), Reynolds stress
model (Sheng, 1982) etc. Also Spalart and Baldwin (1989) had performed direct numerical
simulation (DNS) of full Navier-Stokes equation to compute boundary layer flows under sinusoidal
wave motion. Among these models, two-equation &-£ model has been the most popular. The k-¢
models were originally proposed for unidirectional flows, however its successful use in oscillatory
motion is mainly due to the fact that considering turbulent time scales, the flow over most of the
domain can be assumed as quasi-steady. Sana and Tanaka (1996) had tested the applicability of
different k-£ models and compared model results with DNS data of Spalart and Baldwin (1989)
covering a wide range of Reynolds numbers. It was shown that among the models tested, original
low Reynolds number model of Jones and Launder (1972) provided the best predictive capability.

Considering the random nature of ocean waves and complexities in determining the
governing forcing for sediment transport beneath irregular waves, it is of practical importance that
these are studied in full details to facilitate establishing methods for practical computation.
Although several researchers have considered non-linearity in wave motion and subsequently
studied bottom boundary layer flows (Elfrink et al., 1993; Nadaoka et al., 1994; Tanaka et al.,
1998a), only few studies have so far been reported on irregular wave bottom boundary layers.
Simons et al. (1994) had measured time variation of bottom shear stress under irregular waves in a
two-dimensional wave basin for waves alone and for superimposed currents. This experiment
provides some useful information on time variation of bottom shear stress. Madsen et al. (1988)
had proposed an analytical model to evaluate irregular wave bottom friction considering spectral
wave dissipation based on linearized boundary layer equation, a constant eddy viscosity and
directional wave spectrum. Myrhaug (1995) expressed irregular wave friction factor with an
assumption that wave motion can be expressed as Gaussian narrow-band random process. All
these studies were aimed at expressing irregular wave behavior in the boundary layer in terms of
representative spectral properties. Recently Samad and Tanaka (1998) had studied the time
varying character of bottom boundary layer using Jones and Launder original low Reynolds number
k-&£ model and had obtained generally satisfactory results for turbulent computation.

Turbulence modeling can aid resolve detailed time variation of botiom shear stress and
turbulent fluctuations, however, it is not always very convenient for practical applicability specially
considering computational economy. Alternatively several researchers have tried to achieve
simple description of time variation of turbulent bottom shear stress under oscillatory waves that
can easily be adopted for practical computation purposes. Hasselmann and Collins (1968), and
later Kabling and Sato (1994) had suggested that the time variation of turbulent bottom shear stress
can be estimated from the variation of free stream velocity based on the definition of wave friction
factor. However, systematic assessment of applicability of such a relationship is yet to be reported.
One of the reason for this had been the lack of experimental and computational data on irregular
wave bottom shear stress.

In the present paper a detailed spectral analysis has been made to evaluate correlation
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characters between free stream velocity and turbulent plane bed bottom shear stress obtained
through irregular wave generation and from computed k-£ model results respectively. The analysis
has resulted in a systematic evaluation of turbulent wave friction factor, based on which a method
to compute instantaneous bottom shear stress has been proposed. When applied with average
turbulent phase difference, the proposed method could predict instantaneous turbulent bottom shear
stress from free stream velocity with significant accuracy. It has also been observed that the wave
friction factor achieved through spectral analysis corresponds quite well to those from experimental
data and from computed results for sinusoidal waves.

COMPUTATION METHODOLOGY AND GOVERNING EQUATIONS

In this paper irregular wave free stream velocity time variation has first béen generated from
input spectral parameters, and the results for speciral density and transfer functions have been
compared with those obtained from applying small amplitude wave theory. Upon satisfactory
comparison the generated irregular wave velocity record has been specified as free stream velocity
to evaluate the pressure term in the boundary layer equation. Original low Reynolds number k-&
model of Jones and Launder (1972) then has been used to compute the bottom shear stress. A
detailed spectral analysis has been performed between generated free stream velocity and computed
bottom shear stress that resulted in the determination of coherence and phase difference, a
description of wave friction factor and a set of correlating coefficient and exponent. The later two
has been applied to derive a working relationship between free stream velocity and bottom shear
stress. Obtained time variation of bottom shear stress from the proposed method then has been
compared with k-£ model results and the accuracy of prediction has been discussed.

Generation of Irregular Wave Free Stream Velocity

The spectral density for irregular water surface elevation, Sy(f), can be computed using
Bretschneider-Mitsuyasu (Mitsuyasu, 1970) spectral density formulation:

8,(f) = 025TH, T, (T0 )™ exp{- 103(T;. /)™ } o

where, His, Ty = significant wave height and period respectively, and f = frequency of component
waves. Applying small amplitude wave theory following relationship can be obtained for spectral
densities of water surface elevation and free stream velocity:

Su(fhﬁ(f)&,(fh[;;;%z] Sy () @

where, Sy(f) = spectral density of free stream velocity, Hy(f) = velocity transfer function, 4 = water
depth, and L, @ (=27f) = wave length and angular frequency of component waves.
Obtained velocity spectrum has then been used to generate velocity time variation with the

approximation that irregular waves can be resolved as a sum of infinite number of wavelets with
small amplitudes and random phases:

Uty = 2 A;,i cos(27ft + ¢, ) 3

Ay = 2\/ Su (f)Afz @
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where, U(t) = instantaneous free stream velocity, Ay; = velocity amplitudes of component waves, f;
= component frequencies, f = time, ¢ = component phases and A4f; = frequency increment between
successive wave components.

k-& Model

Linearized boundary layer equation has been applied for flow computation in the bottom
layer: ’

=2, Z ®

where, u = velocity in the direction of flow, p = pressure, 7 = shear stress, p = mass density of the
fluid and x-, z- = coordinates along and perpendicular to the direction of flow, respectively. The
pressure term in the right hand side can be evaluated from the consideration that outside boundary
layer the shear stress vanishes and the velocity approaches free stream velocity. The shear stress
for turbulent flow regime can be defined based on kinematic and turbulent eddy viscosity; so that:

%zvgzu._w ©)

where, v = kinematic viscosity and -u’v’ = Reynolds stress which is:

~uV=v, 2 )

where, v; = turbulent eddy viscosity which again can be expressed in terms of the turbulent kinetic
energy, k and its dissipation rate &

k2
v, = C[lf/[_g——- (8)

where Cy,, f,, = parameters determined from experimental results.

The closure is achieved by jntroducing transport equations for k and €.  These are given by:

%k 9 v, ok oY _

5?“&“{(”'&:]&}”’(&) P ®
de  d v, \os euY g
5*&{(”*‘2)‘;}“‘”@(5}) ~GhHE o

where, o, D, 0, C, fi, Co, fo, E = model parameters. Equations (5) through (10) are solved
numerically to obtain time variation of turbulent flow quantities and the bottom shear stress.

In the present computation, original low Reynolds number k-£ model of Jones and Launder
(1972) has been used. The selection of this particular model has been based on the testing of low
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Reynolds number k-£ models by Sana and Tanaka (1996). For numerical computation, the
governing equations have been made non-dimensional form and Crank-Nicolson implicit finite
difference scheme has been applied. In the non-dimensional form of the governing equations,
along with free stream velocity variation only Reynolds number and reciprocal of Strouhal number
(S) are required to compute flows in laminar, turbulent or in transitional regimes (where,
S=Uin/zpann, Uis = significant free stream velocity, wy; = wave frequency corresponding to
significant wave period and z; = a normalizing depth set outside boundary layer).

Non-Dimensional Parameter

Irregular wave Reynolds number (Rej;s) has been defined in terms of significant wave
properties and has been made analogous to wave Reynolds number defined by Jonsson (1966):

2

U
Re,, = —2 (11)
V(Dl/S
with
7H 1 2r
Uy =—1— > By = (12)
T,; sinh 2mh/ L T,
COMPUTATION RESULT AND SPECTRUM ANALYSIS
Input Parameters

The input wave parameters specified for computation have been the significant wave height
and period, water depth, and a normalizing depth where the flow is same with the free stream
velocity. Input parameters have been selected to produce flows with sufficiently large irregular
wave Reynolds number representing turbulent flow. Four turbulent cases have been considered
here and the parameters are presented in Table 1. Apart from these cases, additional model runs
have also been carried out for sinusoidal waves to examine the applicability of proposed wave
friction factor description. '

Table 1. Parameters for turbulent irregular wave computation.

Run h o T3 His Up Reys
cm cm s cm cm/s
Case 1 430 184.0 5.39%10°
6
Case 2 1000 100 10 480 205.3 6.71><106
Case 3 505 216.1 7.43%x10
Case 4 530 226.7 8.18x10°

Generation of Free Stream Velocity

Simulation of irregular wave has been performed to generate sufficiently long velocity time
series with number of waves being over 150 to facilitate computation of spectral properties. A
total of 250 component waves have been considered for which randomly generated frequencies and
phases have been used. The accuracy of generated velocity has been checked against input
spectrum. Fig.1 shows the comparison of input (Eq.2) spectrum with that from generated data for
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Case 1. The wave energy spread has been found to concentrate within a frequency range of
0.05Hz to 0.40Hz or equivalently within the period of 2.5s to 20.0s. Generated velocity spectrum
can generally be seen in very good agreement with the input one. For lower frequencies the
generated spectrum is slightly over-estimated, however, considering the frequency range with high
spectral wave energy, the generated wave series can be considered satisfactory.

Spectral properties of Turbulent Bottom Shear Stress and Free Stream Velocity

Under turbulent motion, the phase difference between the bottom shear stress and the free
stream velocity reduces substantially. Accordingly several researchers have suggested the possibility
of establishing functional relationship to evaluate bottom shear stress from free stream velocity.
Fig.2 shows the correlation between free stream velocity and k-£ model computed bottom shear
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Fig. 1  Comparison of input and generated velcoity spectrum, Case 1
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Fig. 2  Variation of bottom shear stress with free stream velocity, Case 1
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stress for Case 1. Although the correlating function can be satisfactorily estimated from such a
figure, data spread at lower velocities still indicates the importance of turbulent phase difference
between the velocity and the bottom shear stress.

One of the popular ways to evaluate wave energy dissipation at the bottom, is through
introducing wave friction factor. For irregular waves Hasselmann and Collins (1968) considered
energy dissipation by component waves contained in wave spectrum and applied quadratic friction
law of Jonsson (1966). It was later argued that while dealing with spectral components
Hasselmann and Collins (1968) could overcome the problem of representative waves, however, it
was not defined how the spectral wave friction factor is related to bottom roughness. Madsen et al.
(1988) proposed an equivalent monochromatic wave to describe the bottom shear stress spectrum
which was used along with linearized boundary layer equations and a linear eddy viscosity
description to calculate spectral wave attenuation.

In the present analysis a more generalized representation of correlation between bottom
shear stress and free stream velocity has been made. This is aimed at providing a description for
temporal variation of bottom shear stress. . To define the correlation, the authors propose following
relation for instantaneous bottom shear stress such that:

5O ywua
p

n—1

13)

where, To(t) = instantaneous bottom shear stress, U(t) = instantaneous free stream velocity and n = a
correlating exponent. In Eq.(13) the constant of proportionality and the exponent can be replaced
introducing an extended expression for the wave friction factor.

This functional relationship has been studies through spectrum analysis of generated
irregular wave velocity and corresponding k-& model computed bottom shear stress. Cross-
spectrum and coherence have been computed to determine the exponent, ‘n’, for maximum
correlation and, the importance of phase difference is further evaluated. As mentioned before,
introduction of wave friction factor can aid determination of the proportionality coefficient in the
functional relation, Eq.(13). However, selection of an appropriate wave friction factor for
turbulent motion itself becomes an important task to achieve a practically acceptable accuracy. To
facilitate this, a transfer function has been defined between the bottom shear stress and the free

stream velocity from the spectral analysis, and has been compared with that from k-£ model result.

The spectral density, coherence and phase difference have been computed for different
values of ‘n’. Fig.3, as an example, shows Syl‘ég(ﬁ, the spectral density for U(t)lU(t)lo‘68 (or for
‘n’=1.68), for Case 1. Corresponding variation in coherence and phase difference between bottom
shear stress and free stream velocity are presented in Fig.4 for different exponent values.
Computed spectral densities and subsequently the coherence and phase difference result in a range
of component frequencies with magnitudes from very small to very high. These extreme
frequencies sometime represent practically unrealistic values. In order to subjectively evaluate
spectral parameters within a practically meaningful range, frequencies corresponding to 99% of
velocity spectrum have been selected for the present analysis. This was also necessary to define
average quantities of the same spectral parameters over a suitable range of frequencies to facilitate
inter-comparison between different computational cases. The frequency range for 99% of velocity
spectrum is also shown in Fig.3. Considering the range of spectral energy spread, the assumption
of this limiting frequency seems quite reasonable from the figure.
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Fig.4 Coherence and phase difference for different ‘n’, Case 1

In Fig.4 it can be seen that within the selected frequency range the coherence is almost unity
for some exponent values. Whereas the phase difference shows a gradual decrease with increasing
frequency. These have been further elaborated by presenting average coherence and phase
difference for all cases and for different ‘n’ values as shown in Figs.5 and 6 respectively. Fig.5
shows that the maximum average coherence can be achieved when n=1.68, implying a maximum
correlation between 7o(z) and Ufz) with an exponent of 1.68. The average phase difference (4
shows only a small variation with ‘»’ (Fig.6) and, therefore, has been evaluated as an average from
all the cases at n=1.68 resulting in £=0.16 rad (=9.2 deg.).

PREDICTION OF BOTTOM SHEAR STRESS

Replacing the proportionality function with a wave friction factor representing temporal
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variation, f,(1), in Eq.(13), the instantaneous bottom shear stress can be evaluated as:
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It should be noted that the instantaneous friction factor introduced in Eq.(14) represents temporal

variation.

by Jonsson (1966) based on the maximum free stream velocity and bottom shear stress.

As such it is slightly different from the conventional wave friction factor (f,) proposed

Wave friction factor itself has been studied extensively by many researchers for sinusoidal

wave induced flows (Jonsson, 1966; Kajiura, 1968; Tanaka and Thu, 1984).

Fredsge and Deigaard

(1992) have computed f,, for sinusoidal waves integrating the flow momentum over the depth and
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have proposed that:
£, =0035Re™'® (15)

where Re = wave Reynolds number defined by Jonsson (1966). To facilitate computation for
instantaneous quantities, an alternative wave Reynolds number (RE) can be introduced
corresponding to instantaneous free stream velocity so that:

2
RE=£]-C(5—3- (16)

and subsequently f,(z) can be defined as:
£.,(t) =0035RE™*' a7

Now, substituting Eq.(16) in Eq.(17) and replacing fu(z} in Eq.(14), it is possible to obtain a
description for instantaneous bottom shear stress:

() = -g0.035(wv)°"6U(t)lU(t)[°‘68 (18)

It is interesting to note that the exponent obtained through spectral analysis matches exactly with
that from Eq.(18) when the instantaneous turbulent friction factor is assessed from that analogous to
the formulation of Fredsge and Deigaard (1992).

The proportionality constant, which is p/2 0.035 ( wv)*'®, alternatively can be evaluated by
defining a transfer function between the free stream velocity and the bottom shear stress so that:

H,(f)= § A (@)™ (19)

where A = a coefficient. The definition is analogous to defining the temporal wave friction factor
as, fu(t) = A RE®'®. The coefficient A then can be obtained from the comparison with
corresponding transfer function from k-£ model result. The later could be defined as:

_ 5.5
H,(f)= ,fsu,ﬁ ) 0)

where S«{f) = spectral density of bottom shear stress. The wave frequency in Eq.(19), @=27f, has
been considered both from component waves and from the frequency corresponding to significant
wave period (denoted as Method 2 and Method 3 respectively). From Eq.(19) and Eq.(20), and
considering both methods, the coefficient has been achieved as A=0.041. The comparison of
transfer functions from these methods along with that from k-¢ model is presented in Fig.7. Within
the frequency range defined earlier,-both methods show reasonably good agreement with k- model
result. i

Obtained magnitude of the coefficient then can be introduced to achieve a revised wave
friction factor description:
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Fig. 7 Comparison of bottom shear stress transfer funciton with k-e model result,
Method 2 and Method 3, Case 1

f.(t)=0041RE™*' T (2la)
and analogously,
f, =0041Re™'® (21.b)

The suitability of this revised friction factor formulation (Eq.21.b) and phase difference
(Fig.6) have been compared with available experimental and computation data for sinusoidal waves
(Sana, 1997; Jensen et al., 1989; Sawamoto and Sato, 1991), and with smooth turbulent friction
factor expressions by Jonsson (1966), Kajiura (1968), Fredsge and Deigaard (1992), and Tanaka and
Thu (1994). These are presented in Figs.8 and 9. To cover the range of Reynolds numbers
presented in this paper for irregular waves, additional computations have been performed for
sinusoidal wave friction factors and phase differences. Fig.8 shows that the friction factor
description obtained by spectral analysis is in very good agreement with experimental and
computational data. It also shows better prediction of turbulent friction factor than other methods
presented in the figure. Similarly the average phase difference (4 obtained through spectral
analysis also corresponds well with those from sinusoidal waves (Fig.9) for the range of Reynolds
number considered.

Determined proportionality function and the exponent now can be inserted in the functional
relation (Eq.13) along with the inclusion of turbulent phase difference to achieve an improved
description to compute irregular wave instantaneous bottom shear stress.

7t = Loositan ™ v U o 22

Application of Eq.(22) also requires an appropriate selection of wave frequency. As
mentioned earlier, it can either be determined from individual waves in the wave train or from that
corresponding to significant wave period. Apart from these, it is also possible to directly apply
proposed sinusoidal wave friction factor in Eq.(14) for individual waves to calculate the bottom
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shear stress. ~ As such, based on the selection of friction factor and wave frequency, three possible
methods to compute instantaneous bottom shear stress could be identified. These methods along
with the relationships to compute instantaneous bottom shear stress are presented in Table 2.

Time variation of bottom shear stress obtained by applying these methods have been
compared with those from k-¢ model results. In an effort to investigate the relative importance and
general applicability of the methods, a detailed accuracy analysis also has been performed. It can
be mentioned here that out of these three possible methods, Method 3 presents the most easy to use
formulation from practical application standpoint.

Accuracy of Prediction
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Bottom shear stress calculated through proposed methods have been compared with k-g
model results. As mentioned earlier, k-¢ models have mainly been proposed for unidirectional
flows and its use in oscillatory flow is relatively recent. However, its application to oscillatory flows
by different researchers showed very satisfactory results in bottom shear stress computation. For
sinusoidal wave computations Asano et al. (1988), Justesen (1988b), Justesen and Spalart (1990),
Sana and Tanaka (1996) very successfully applied k-¢ models and achieved very good results. A
comprehensive review of turbulence models applied to sinusoidal waves was published by Sleath
(1990). It was noted that k- models generally provide very good prediction of turbulent bottom
shear stress.

For non-linear waves Tanaka et al. (1998b) have applied low Reynolds number k-£ model of
Jones and Launder (1972) for flow computations in the boundary layer and showed satisfactory
prediction of flow properties. Sana and Tanaka (1996) also considered one case of flat crested
non-sinusoidal flow scenario for which DNS data from Spalart and Baldwin (1989) was available.
The prediction of bottom shear stress was remarkably well through k-£ model computation.

In view of these studies, the authors felt it appropriate to lay sufficient confidence on low
Reynolds number k-£ models in their ability to predict bottom shear siress within the range of
accuracy warranted for practical application. Such that, the accuracy of proposed methods have
been compared with k-& model results.

Comparison between obtained bottom shear stress time series and that from k-&¢ model
results for all the methods are shown in Figs. 10 and 11 for Case 1 and Case 4 respectively. The
figures suggest that the accuracy of prediction for Methods 2 and 3 are generally very good, whereas,
for Method 1 the deviation from model result is the maximum. In Method 1 the wave friction
factor (f,) for individual waves has been considered corresponding to the average of crest and
trough velocities. This might have contributed to the differences observed for Method 1. Also,
consideration of sinusoidal wave approximation for individual waves might cause discontinuity in
bottom shear stress between successive waves with very high and low velocity amplitudes as can be
seen in Fig. 11. During flow reversal the bottom shear stress is slightly underestimated
consistently by the proposed methods than those from k-¢ model result. However, considering the
prediction of peak bottom shear stresses, both Method 2 and Method 3 show very good results
indicating that the selection of wave frequency only has a small influence on the prediction.

Table 2. Summary of proposed methods to comﬁute instantaneous turbulent bottom shear stress.

Method Set of relationships used Remarks

F, :average between crest
and trough values for

]
T -2)= gf,,U(r)iUml

Methed 1 £, =0041Re 016 individual waves
oo @ : for individual waves
Re=U,’ /a)v Uy : from individual waves
o ,
Method2 | 7y(t~—)= «’230.041(mv) SUGUG™ | @ :for individual waves

6 ) = 30.04 (@, /3\;)0»16(](;)][/(;)!0'68 @y3 ¢ from significant wave

Method3 | To(f— .
Y3 period
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Figures 12(a), (b) and (c) show the comparison of predicted and computed bottom shear
stresses for Method 1, Method 2 and Method 3 respectively. It again can be seen that the level of
accuracy for both Method 2 and Method 3 are very high. As observed before, Method 1 shows the
largest deviation from the computed results.

A quantitative accuracy of proposed methods has also been performed through the following
accuracy factor.
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Fig. 12 Accuracy check for predicted bottom shear stress, Case 1;
a) Method 1, b) Method 2 and ¢) Method 3
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Case 1; a) Method 1, b) Method 2 and ¢) Method 3

F = T(lcamp (23)

a
Tok-e

The standard deviation has been defined as:

2

1 N
e

g =
with
1 N
F,=—YF, (25)
N 1

i

where Tocomp, Tore = proposed and k-g model computed bottom shear stresses respectively, F, =
mean accuracy factor, N = total number of data pairs and / = index subscript. The percentage of
the data falling in the range of +10% and +20% of the accuracy factor then has been computed.
For a perfect agreement with k-€ model result these percentages are 100%.

The accuracy factor has been computed for both instantaneous, %(z), as well as maximum
bottom shear stress, 7., in a wave cycle. During flow reversal, bottom shear stress becomes very
small and use of Eq.(23) could result in unrealistically small or large values for F, due to division of
two very small numbers in determining Fy (Tocomp, Tore in this case). Therefore, instantaneous
bottom shear stresses with values less than 10% of the significant bottom shear stress have not been
considered for accuracy factor computation. For all the cases a total of about 15000 data pairs
have been considered with a time step of 0.1s covering about 150 wave cycles. Out of which about
10000 data pairs have been selected for computation of the accuracy factor. Table 3 shows a
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summary of accuracy analysis. It shows that both Method 2 and Method 3 have high predictive
ability with about 65% 1u(1) values lying in £10% of the accuracy range. For 7. it is over 80%. It
can be seen that Method 3 is not only easy to use for practical purposes but also the most accurate.

It is worth mentioning here that the correlation character and the turbulent phase difference
between free stream velocity and bottom shear stress description have been achieved for very high
irregular wave Reynolds numbers simulating fully turbulent flow conditions. Accordingly
proposed wave friction factor is also applicable for corresponding high Reynolds number ranges.
Calculation of instantaneous bottom shear stress using proposed formulation is therefore valid for
fully turbulent flow conditions alone.

Table 3. Accuracy of predicted bottom shear stresé: % of data in the accuracy range
of £10% and +20%, and Standard Deviation (o).

Method 1 Method 2 Method 3
Instantaneous | Maximum | Instantaneous | Maximum | Instantaneous | Maximum
Model Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
Runs Range (%) Range (%) Range (%) Range (%) Range (%) Range (%)
+10 |£20 . +10 |£20 . +10 |+20 +10 [+20 ’0' +10 |20 . +10 {£20 .
% | % % | % %% | %% |% % | % % | %

Case 1 |23.0/51.5{0.19|40.1|71.2/0.23164.3/88.2/0.14|76.5/95.5/0.10{66.1|89.2/0.14|82.6/95.5/0.10
Case2 125.1{52.7/0.22|40.1]66.9].022164.9/88.20.14/82.2|96.8|0.09]66.8/89.8/0.13|86.7|98.1|0.09
Case3 121.2/51.5{0.22{29.9/69.5/0.26162.7|89.1|0.15/76.8/97.4|10.08167.2/89.9|0.14/86.198.0/0.07
Case4 |20.8/50.5/0.24|32.3167.7/0.24]63.3|88.4/0.14/81.1{96.810.09166.4/89.6|0.14/86.2196.9/0.09

CONCLUSIONS

A detailed spectral analysis has been performed on irregular wave k-g£ model results for
turbulent bottom shear stress and free stream velocity for plane bed condition. Their correlation
behavior has been analyzed to obtain a working relationship to compute irregular wave
instantaneous bottom shear stress from the free stream velocity variation. Obtained correlating
exponent and coefficient values also provide description for irregular wave friction factor which
corresponds very well with those obtained from sinusoidal waves. The average turbulent phase
difference between free stream velocity and bottom shear stress also falls in the same range of
corresponding sinusoidal waves.

Following the definition of wave friction factor along with obtained friction factor
description three possible methods to compute instantaneous turbulent bottom shear stress have
been identified. Prediction by all the methods generally shows very good agreement with k-&
model results. It has been observed that the selection of wave frequency in computing the bottom
shear stress has only a small influence on the accuracy of prediction. However, use of significant

wave period (Method 3) shows slightly better predictive ability. It is also the most convenient to use
in practical applications.
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APPENDIX — NOTATIONS

The following symbols are used in this paper:

A
Ay
f

Jw
Jul?)
F,
Fp
h

Hys o

Hy
Hy
k
L
n
N
p
Re

Reis

correlating coefficient;

= component wave amplitude;

= frequency of component waves;

= wave friction factor;

= instantaneous wave friction factor;

= accuracy factor;

=" mean accuracy factor;

= water depth;

= significant wave height;

= velocity transfer function;

= transfer function between free stream velocity and bottom shear stress;
= turbulent kinetic energy;

= wave length;

= correlating exponent;

= total number of data points in accuracy factor computation;
= pressure;

= wave Reynolds number;

‘= wave Reynolds number corresponding to significant free stream velocity;
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RE = Reynolds number corresponding to instantaneous free stream velocity;
S = reciprocal of Strouhal number;

Su = spectral density of free stream velocity;

Sy = spectral density of irregular wave water surface elevation;
S = spectral density of bottom shear stress;

t = time;

T3 = significant wave period;

u = velocity in x- direction;

~u’v’ = Reynolds stress;

U’ = free stream velocity;

U() = instantaneous free stream velocity;

Uy = maximum free stream velocity in an individual wave;

Uiz = significant free stream velocity;

x = co-ordinate along the flow;

z = co-ordinate perpendicular to the flow;

Zn = normalizing depth outside boundary layer;

Af; = frequency increment between successive wave components;
& = component wave phases;

£ = dissipation rate of turbulent kinetic energy;

n = water surface elevation;

v = kinematic viscosity of the fluid;

| = turbulent viscosity;

6 = turbulent phase difference between free stream velocity and bottom shear stress;
P = mass density of the ﬂuiq;

o = standard deviation of accuracy factor;

T = shear stress;

T, = maximum bottom shear stress in an individual wave;

To = bottom shear stress;

To(t) = instantaneous bottom shear stress;

w = angular frequency of component waves; and

w3 = angular frequency corresponding to significant wave period.
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