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SYNOPSIS

A non-linear k-¢ model is applied to 3-D computations of unsteady flows in compound open channels
with horizontal vortices generated by the shear instability and the secondary currents of the second kind.
It is pointed out that the typical flow features such as the horizontal vortices and the secondary currenis can
be simulated numerically by using the non-linear ke model including the effect of the strain parameter on
the eddy viscosity, though further refinements of the model are needed to reproduce the 3-D flow structures
more precisely. In view of the model refinement, it is tested to include the cubic terms in the constitutive
equations of the non-linear k-e model on trial. It is shown that the calculated flow patterns of the
secondary currents are improved qualitatively compared with the previous experimental studies, though the
effect of cubic terms on the Reynolds stresses and the numerical values of model constants should be
examined in detail.

INTRODUCTION

Flows in compound open channels are characterized by the steady secondary currents of the second
kind induced by the anisotropy of the Reynolds stresses and the unsteady large-scale horizontal vortices
generated by the shear layer instability, which are observed at a junction of the main channel and the flood
plain (Tamai, Asacda and Ikeda(17)). It is known that the horizontal vortices increase the resistance to
flow due to the large momentum transfer through a junction (Fukuoka and Fujita(2)).

As for the secondary currents in the rectangular and compound open channels, the applicability of the
algebraic Reynolds stress models have been verified by Naot and Rodi(12), Naot, Nezu and Nakagawa(13)
and Sugiyama, Akiyama and Matsubara(16), considering the existence of water surfaces. On the other
hand, it was shown that the horizontal vortices with long periods generated by the shear instability can be
simulated by the two-layered depth averaged model (9).

The computational model to simulate the 3-D unsteady flow structures with both the secondary
currents and the horizontal vortices is developed in this paper. Since the observed periods of horizontal



vortices are much longer than the turbulence time scale, Reynolds averaged turbulence models should be
applicable to the generation of vortices by the shear instability due to transverse velocity distributions. A
non-linear k- £ model seems to be applicable to the secondary currents of the second kind in open channel
flows if the existence of the water surface is taken into account, because the model is equivalent to the
algebraic Reynolds stress model as shown by Pope (15) and Gatski and Speziale (3).  Pezzinga(14) verified
the applicability of the non-linear k- ¢ model with the quadratic terms and the Oldroid derivative of strain-
rate tensors to the steady flow patterns of the secondary currents in a compound channel. Lin and
Shiono(11) also calculated the 3-D steady flows in a compound channel by using the non-linear k- £ model
with a part of the quadratic terms.

It was also shown that the non-linear k-¢ model is also applicable to the flow induced by shear

instability (6), if the relation between the proportional constant, C,, and the strain parameter, S, is

us
considered to evaluate the Reynolds stresses. In the study, the functional form proposed by Kato and
Launder (8) was used as the relation between C, and S, tuning the model constants. It was shown that
the generation of shear instability depends on the model constants of the relation (6).

In this paper, the numerical model based on a non-linear k- ¢ model is tested for the calculation of
flows in a compound open channel, and the model performances such as 3-D flow structures near a vortex

and secondary currents are examined.
BASIC EQUATIONS AND NUMERICAL MODEL
The basic equations are composed of the continuity equation, the momentum equations, and the k-

¢ equations, described below:
[Continuity equation]
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where x;: spatial coordinates, 1: time, U;. components of time averaged velocity vectors, u,:
components of turbulent velocity vectors, p: pressure, p: density of fluid, %: turbulent energy, &:
turbulent energy dissipation rate, v: molecular dynamic viscosity, o, : model constant(=1.0) and o, :
model constant(=1.3).

The Reynolds stresses are evaluated by the following equations based on the non-linear k- £ model
with the quadratic terms proposed by Yoshizawa (19), which is equivalent to the expression by Pope(13)
and Gatski and Spaziale (3). The relation between the non-linear k- £ model and the algebraic stress model
was made clear by Pope (15) and Gatski and Spaziale (3).
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Fig.1 Schematic illustration of simple shear flow
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Smeeit was pointed out that the vortices generated by the shear instability cannot be simulated without
mncluding the effect of the strain parameter (Hosoda et al. (6)), the relation between C '« and the strain
parameter, S, is also included in the model using the following functional form (Kato and Launder (8)).
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For the sake of simplicity, the rotation parameter is not considered in the model. Because the strain
parameter is equivalent to the rotation parameter, in case that the instability is induced by the transverse
velocity distribution like a simple shear flow, which is uniform in the stream-wise direction.

CONSIDERATIONS OF RELATION BETWEEN C « AND §

The ranges of model constants to satisfy the realizability conditions for various simple flow patterns
such as a simple shear flow, which guarantees the positive turbulent intensities, were considered by Fu,
Rung and Thiele (1). In the case of a simple shear flow shown in Fig.1, applyving the same procedures to
Eq.3. the constraint for C . 1tself can be derived as follows:

The turbulent intensities in the transverse direction ( x, ) are reduced to Eq.7.
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The condition of positive turbulent intensities requires the constraint denoted by Eq.8.
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Eq.8 with the model constants, C; =0.4,C; =-0.13 shown in Fig.2 indicates that Eq.6 with 4, =05, 4, =03
used in the computations satisfy the realizability condition for a simple shear flow.
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OUTLINE OF CALCULATIONS

The common finite volume method is used with the iterative procedure to calculate the pressure (Hirt
and Cook (4)). The QUICK scheme is utilized as the finite difference form of the convection term in the
momentum and k- ¢ equations.  The free surface elevation is calculated by solving the continuity equation
integrated over the fixed control volume at the surface layer.

The 3-D unsteady flow analysis was carried out under the conditions of the laboratory tests by Ikeda
et al(7). The cross section of the flume (the bottom slope, 1/1000) is shown in Fig.3. The flow domain is
divided into the 10(depth-wise direction) , 40(transverse direction) and 200(stream-wise direction,
Ax = 4(cm) ) control volumes as shown in Fig.3. The time increment, A7, is 0.002(sec).

The model constants are listed in the Table 1. The constants, Cy~C,, are adjusted examining the
calculated flow patterns of the secondary currents, though the calculated results are not compatible with the
qualitative characteristics of the previous laboratory tests vet. 4, and A, are tuned checking on the
generation of horizontal vortices at the junction, because the instability could not be detected by using the
original constants of Kato- Launder model (8). )

The relation between the proportional constant, C,, and the strain parameter, S, is shown in Fig.2.
When the wall function method is applied as the wall boundary condition, the numerical value of S
evaluated by the wall function is 1/4/2:0.09~2.36. In this case, it is indicated that the non-linear k-
smodel does not change the near wall boundary condition, because C 4« =009 ar §~2.36 as shown in
Fig.2.

To consider the rapid attenuation of turbulent intensities in the depth-wise direction near the water
surface. the following dumping function, f,, is multiplied by the eddy viscosity (5) and the turbulent
intensity in the direction perpendicular to the water surface is also forced to be zero in the control volume of
water surface layer (16). The turbulent dissipation rate at the water surface layer, &, 1s evaluated by the
following formula (16).

- e, C;(<)3/4 R

Sy =Lmep (B, 6 = (B=10,C = 0.09) ©

5

where h: depth and sub-s indicates the value at the surface layer.
CONSIDERATIONS OF CALCULATED RESULTS

The plan views of flow patterns (t=130sec.) observed in the moving coordinate with the constant
velocity. 15(cm/s), are shown in Fig4. The spatial development of the large scale horizontal vortices
generated by shear instability can be observed from the middle part to the downstream-end of the flume.
Fig.5 shows the same flow patterns in the downstream part at t=90(sec.). Since the lengths between these
vortices at different two times are the same, the spatial equilibrium state seems to be realized in the
downstream part of the flume.

The flow patterns at several cross sections in the transverse direction indicated in Fig.4 are shown in
Fig.6. The secondary currents of the second kind and the flows induced by the horizontal vortices can be
observed in these cross sections. The strong upward flow is gencrated in the central part of a horizontal
vortex as seen in Fig.6(c)

The calculated three dimensional flow structure is in good agreement with the schematic illustration
of flow shown in Fig.7, depicted by Ikeda et al. (7) using the flow visualization.

Fig.8 shows the depth variations along the junction. The positions of minimum depth almost
coincide with centers of vortices. The calculated length between vortices, 60(cmy), is a little shorter than
the observed length, 73.3(cm). The calculated amplitude of depth variations, 0.3(mm) is also smaller than
the observed one(0.4mm).
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Table 1 Model constants used for the calculation
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Fig.6 Flow patterns at several cross sections
(Positions of cross sections are indicated in Fig.4.)
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Fig.7 Schematic illustration of 3-D flow Fig.8 Depth variations along the junction
structure by Tkeda et al(7) (t=130sec.)
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Fig.10 Transverse distribution of depth averaged velocity (Exp. and Cal.)

The cross-sectional flow pattern averaged spatially in the downstream part of the flume is shown in
Fig.9. The upward flows around the central part of - main channel, which was not observed in the
previous experimental results (18), are induced in the figure, though the common secondary flow patterns
are also reproduced near the corners of the cross section. Fig.10 shows the transverse distributions of
depth-averaged velocity (stream-wise component).

Through the considerations of calculated results, it is indicated that the model refinement is needed to
reproduce the 3-D flow structures and the secondary flow patterns more precisely.
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Fig.11 Spatially averaged flow patterns with the cubic terms

MODEL REFINEMENTS

To improve the model performance concerning the flow pattern of secondary currents, it is tested to
include the cubic terms (3) given by Eq.11 in the constitutive equations 5 on trial.

5
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The numerical values of model constants, C, =-0.03 and (5 =0 are tested on trial. The cross
sectional flow pattern is only calculated by using the large Ax, and is shown in Fig.11. The downward
flows induced by the secondary currents can be seen around the central part of main channel, as indicated in
the previous numerical and experimental studies (13,16,18), though further investigations are needed to
verify the effect of the cubic terms on the Reynolds stresses and to tune the model constants.

CONCLUSIONS
The main results obtained in this study are summarized as follows:

(1)  The computational model based on the non-linear % ~& model with the quadratic terms and the effect
of the strain parameter, S, on C, is tested to calculate the typical features of compound open
channel flows. It is pointed out that the 3-D flow structures with both the horizontal vortices
generated by the shear instability and the secondary currents of the second kind are reproduced
qualitatively.

(2) To improve the model performance concerning the spatially averaged flow pattern of secondary
currents, it is tested to include the cubic terms in the constitutive equations on trial. It is shown that
the calculated results are improved qualitatively compared with the previous experimental studies,
though the effect of cubic terms on the Reynolds stresses and the numerical values of model constants
should be examined in detail.
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APPENDIX -~ NOTATION

The following symbols are used in this paper:

AL A, = constants of non-linear k- & model;
B = constant used in Eq.9;
€,¢,y = constants of LRR model;

C,C,,C5,C,,Cs, Cu = constants of non-linear k- £ model;

fu = dumping function defined by Eq.9;
k = turbulent energy;
p = pressure;
N = strain parameter defined by Eq.6;
S5 = components of strain rate tensors;
t = time;
u; = components of turbulent velocity vectors;
U, = components of time averaged velocity vectors;
x; = spatial coordinates;
£ = turbulent energy dissipation rate;
v = molecular dynamic viscosity.;
o = density of fluid;
04,0, = model constants of k- & model;
Q; = components of rotation rate tensors.
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