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SYNOPSIS

This study presents a flood forecasting procedure by integrating LTF(Linear transfer function),
ARIMA(Auto regressive integrated moving average) model and ANN(Artificial neural network), we
call it integrated ANN model. The proposed procedure allows one to accurately forecast the flood
discharges at a downstream gauging station. For illustrative purposes, the proposed integrated
procedure and a stand-alone ARIMA model are applied to Wu-Shi basin, Taiwan. The simulated
results obtained from these two models are then compared in this study.

INTRODUCTION

Time series ARIMA (Auto Regressive Integrated Moving Average) models have been
extensively used in hydrology and water resources to model the annual and periodic hydrologic time
series since the early 1960°s (4). These models have highly promising hydrological application
because [1] the auto-regressive form has an intuitive type of time dependence (the value of a variable
at the present time depends on the values at previous times), and [I1] they are relatively easy to be
applied. In this study, we adopt the SCA (1) (Scientific Computing Associations) statistical system
to construct ARIMA based flood forecasting models of Wu-Shi basin, Taiwan. -

In flood prevention analysis, reference points are normally focated on a densely populated
region at the downstream. These tributaries affect the mainstream in watershed encompassed
tributaries. Therefore, this study constructs a flood forecasting model capable of accurately
representing the complex relation between downstream and upstream. The artificial neural network
(ANN) makes such a consideration. )

ANN, a means of solving nonlinear dynamic problems, can accurately represent an internally
complex relation between input and output variables (8). In light of above concern, this study
presents a flood discharge forecasted model by applying an artificial neural network to identify the
relationships between the flood discharges at downstream and upstream gauging stations.

ANN has been successfully applied to forecast flood discharge. M.L. Zhu and M. Fujita (7)
forecasted the hourly discharge in flooding events by ANN.  Although obtaining acceptable results,
their investigation lacked a systematical procedure to determine an appropriate number of neurons
for an input layer of ANN, thereby limiting the range of forecasting time step to the next three
forecasting hours; Therefore, their model can be viewed as a preliminary application for flood
forecasting. )

Hsu et al. (2) recommended that a forecasting model should design many ANN combinations
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having different numbers of neurons at input, hidden and output layers to simulate daily discharge.
Their investigation then used RMSE( root-mean-square error ), AIC( Akaike's information criterion ),
and BIC( Bayesian information criterion )to select the optimal combination. However, their models
could not objectively determine the number of processing units in input layer owing to some
anticipated assumptions may mislead the selection of the optimal combination.

Huang (3) also adopted AIC and BIC criteria to establish ANN hourly discharge forecasting
models. However, their models did not have a fixed structure for all hourly forecasting because

each model had its own design (Different forecasting range requires different ANN model).
Above investigations generally rely on a subjective means of designing ANNs and select the

optimal one by RMSE, AIC and BIC. However, their methodologies lack an objective means of
selecting the input elements. Therefore, this study estimates the impulse response weights of
gauging stations of a watershed by LTF and performs a parameter significance T-test for impulse
response weights, thereby allowing us to determine an appropriate number of processing units in
input layer of ANN.

With historical data used as the only input data, forecasting range for those models is limited
as well. To obtain a fixed ANN structure and extend the forecasting range, this study integrates the
ARIMA and ANN as a hybrid watershed ANN flood forecasting model.  The proposed method only
uses the historical data when forecasting the discharge of the next hour, while the time series
ARIMA model provides the predicted input values (upstream discharges) for the next several hours.

More specifically, this study integrates three methods, LTF, time series ARIMA model and
ANN, to accurately forecast the flood discharges for a downstream gauging station, we call it
integrated ANN model. For illustrative purposes, the model proposed herein is applied to Wu-Shi
basin in which the results obtained the forecasted discharge of the next one to three hours are
satisfactory. The simulated results obtained from integrated ANN model and stand-alone ARIMA
model are compared. i

METHODOLOGY
Artificial Neural Network ‘

ANN consists of many artificial neurons (commonly referred to as processing units or nodes).
The output signal is determined by the algebraic sum of the weighted inputs, i.e.,

Yi:f(gWiiXinj) (0
where, Y, : output signal of the node ;-
f - transfer function ;

: weights of the node ; Wij is the connection from the ith neuron in the input layer to the jth

neuron in the second or hidden layer.
X, :input signals ;
0, : bias: k

ANN has two faces of neural processing: [1] Learning process, in which all knowledge in
ANN is encoded in the interconnection weights which are determined through learning process from
a set of examples, and [IT] Recalling process, in which the recalling process attempts to retrieve the
information, based on the weights obtained from learning process, and to forecast the output data of
new examples. Besides, the learning process can be categorized into two types: [i] Supervised
learning (also referred to as learning with a teacher). Supervised learning gradually adjusts the
weights of the ANN, thereby minimizing the error signal between the known answers and the
responses of ANN. [ii] Unsupervised learning, which does not rely on an external teacher.  Without
a known answer, this approach is expected to identify features, categories or class memberships in
-the input data and associate them with the corresponding outputs (8).

After introducing basic structure and neural processing, this study describes the characteristics
of a neural network. The characteristics of neural network can be summarized as follows: [1]
Parallel distributed processing: neural network has a highly parallel structure which lends itself
immediately to parallel implementation; [II] Fault tolerance: neural network has a highly fault
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tolerance. A negligible amount of wrong information, if exists in input data, can still reach a
collective decision. Although some nodes lose their efficacy, neural network does not stop working;
and [III] Learning and adaptation: the neural network can be trained and adapted using the
information from the system without a prior knowledge of the system. It provides a model-free
controller design approach to cope with complex systems. [t can be adapted on-line as well.
Back-propagation network (BPN), a widely used neural networks, contains three layers (Fig

1): input (receives the input signals from the external world), hidden (represents the relation between
input layer and output layer), and output (releases the output signals to the external world) layers.
The appropriate number of hidden layer nodes in this study are determined by the following rule:
(the number of input layer nodes + the number of output layer nodes)/2. Belonging to supervised
learning, BPN gradually adjusts its weights, thereby minimizing the error between the known
answers and actual responses (8).

Output

Output layers

‘ Hidden layers

Input layers

Fig. 1 Structure of back-propagation network

Linear Transfer Function

If the time series of interest, say X:, is related to one or more other time series, a model called
linear transfer function (LTF), can be constructed. Such a model uses the information content in
these other time series to help forecast X:. In addition, LTF applies the least-squares method to
estimate the impulse response weights and can be expressed as follows:

Y(=C+(Uo+UiB+UzB2+ ------ +U#‘B()X+a4 @)

where B denotes the backward shift operator; Y represents the output time series; X: is the input
time series; C denotes the constant; a:represents the white noise process; and the unknown

weightS(u._vruw__“_u)ax‘e called the impulse response weights (4).  In this study, we estimate impulse

response weights of every gauging station of a watershed by LTF and evaluate those weights by
parameter significance T-test. Those processes are proposed in this study to determine the
appropriate number of network input elements.

ARIMA

This study designs a representative ANN structure for fixed numbers of input layer processing
and extends the range of the forecasting time step. Therefore, time series ARIMA model at every
upstream gauging station is constructed to provide the data for the input layer of ANN in future
forecasting. Box and Jenkins proposed ARIMA in 1976, which is capable of representing
characteristics and meanings of stationary, non-stationary, and seasonal time series. The structure of
ARIMA consists of auto regressive. moving average, and mixed processes:

$(B)V* Y. =0(B)a, 3)
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where Yo denotes the time series; B represents the backward shift operator and BY=Y.

B.lezym;a‘ is the white noise process and G/NN-D-(OJ?'), N.D. is normally distributed with
\Y

s 2 . . v -1 Bu
mean zero and variance Ou is difference operator , and Y. ={-B})Y.

O(B)=(1=¢,B=....0,B") 1 (B s autoregressive parameters and 8(B)=(1-6B-.....0, B"

ol

]

In this study, we apply the SCA(Scientific Computing Associations)(!)(see appendix — SCA)
statistical system to construct/develop the time series ARIMA models.

STATEMENT OF THE APPL[CAT!ON«
Data Arrangement

The Wu-Shi basin, as depicted in Fig 2, is selected herein for testing the time series ANN
model with Chien-Feng Bridge as the upstream gauging station (as gauging stations of tributaries,
His-Nan Bridge of Da-Li River and Nan-Gang Bridge of Mao-Luo River), and Da-Du Bridge as the
downstream gauging station. Five scenes of flood events were selected, as summarized in Tablel

(6).

Location Map of The Wu-Chi basin Gaguing Station - é% e

® Disclarge station
1. Da-Du Bridge
2 His-Man Bridge
I Man-Gaog Bridge
4. Chien-Feng

B8 o ] 158 Kiometefs
e e e = ]

»

Fig2 The Wu-Shi basin

Table. 1 Flood events in this study

No. Date Cause of Flood Peak Uses
Events (cms[m?¥/sec])
1 1993.5.26 Storm 1780 learning ; calibration
2 1993.6.2 Storm 2430 learning ; calibration
3 1990.4.16 Storm 1850 verification ( recalling)
4 1992.7.6 Storm 2100 verification ( recalling)
5 1992.8.30 Baoli(Typhoon) 2810 verification ( recalling)
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Construction of Integrated ANN Model

First, representative time steps of every gauging station are chosen by the following
procedures:

1.Wu-Shi basin has an average velocity of 4.95m/sec and the time of concentration of 5.8 hours (5).
Therefore, in this study. one to five time steps are selected as the candidate of the representative
time steps of every gauging station. .

2.Next, impulse response weights of one to five time steps of every gauging station are calculated by
LTF and proceed parameter significance T-test of impulse response weights, i.e..in Table 2. If
the absolute value of the T value of any time step exceeds 1.96, it indicates this time step is
significance in statistics and should be adopted as input neuron in the model.

Table. 2 Parameter significance T-test of impulse response weights

Time | His-Nan Bridge |Nan-Gang Bridge|Chien-Feng Bridge| Da-Du Bridge
Steps| (T VALUE) (T VALUE) (TVALUE) (T VALUE)
1 1.35 -3.67 4.90 1.97
2 1.45 3.03 -3.30 -2.70
3 0.64 0.04 3.35 2.25
4 0.33 1.40 -1.44 -1.41
1.54 -0.51 -1.60 -0.69

3.According to the T-test, the representative time steps are 1~2 time steps for Nan-Gang Bridge, 1~3
time steps for Chien-Feng Bridge, 1~3 time steps for Da-Du Bridge. However, all T values of
His-Nan Bridge are smaller than 1.96. Finally, 1~2 time steps are selected herein as the
representative time steps of the His-Nan Bridge by comparison (T values of 1~2 time steps are
larger than 1, but those of 3~4 time steps are smaller than 1)and physical meaning (If the velocity
of flood is smaller than 4.95m/sec, the traveling time of flow between His-Nan Bridge and the
downstream gauging station is within 3 hours).

According to above results, the number of input layer nodes are three (I;—I'a]}—zsI}—S) for His-
Nan Bridge, three (J_,.], ,.], ;) for Nan-Gang Bridge, four (Iieplip I3 Ii_s) for Chien-Feng Bridge,
and four (0.,,0.,,0.,,0,_)for Da-Du Bridge. The sum of all input layer nodes is 14 while the
number of the output layer nodes is single ( O;) .  The appropriate number of hidden layer nodes is
nearly 8. Finally, input vector (X;) and objective vector (T) are shown as follows:

Ko T T d T o 0.0,0,.0.) @
T= 0, '
where » N . the transposed input vector of x;
| ST P inflow discharge of His-Nan Bridge » 7t-i” is previous i hours of
t hour.
I'(_x.li_z~l'§,3 ¢ inflow discharge of Nan-Gang Bridge

| S PSS PRSP inflow discharge of Chien-Feng Bridge
0..0,,.0.,,0,_, : outflow discharge of Da-Du Bridge

0, - outflow discharge of t hour of Da-Du Bridge

With determined processing number for each layer, learning training process is displayed by
the following organizational flow chart Fig 3.



42

{ input layer hidden layer output layer

Wlu

O (estimated )| V't (observed)

S 1E

( toral < otil
es 11‘1}7 ated ) \(7&;5”/3(
judging the error between total

estimated and total observed meets
our requirement or doesnot

mod i1y mod /fy mod ity mod iy

w1, 61, W2, @,

Fig. 3 Organizational flow chart of learning training process

The first two flood events (May 26, 1993 and June 2,1993) are adopted as a leurning data set

with requirements with respect to accuracy of the learning process, i.e. error function (Error function

is
0.

expressed as follows: £ = (1/2)§(Tj‘0j)Z where Tj is target output; Oj is network output.) is less than

1. With ultimate actual accuracy E=0.0844 (illustrated in Fig 4 ), the learning training process

helps us obtain representative weights and biases.
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Fig. 4 Results obtained from learning process (May 26,1993 and June 2,1993).
[Data 1~59 of this fig belong to the first event (May 26,1993).]
[The others belong to the second event (June 2,1993).]

Via these parameters, the recalling process can be designed to accurately forecast the outflow
discharge in the next hour. When proceeding with the outflow discharge forecasting in the next
several hours, the predicted discharges at the upstream gauging stations are required. . In this study,
we construct a time series ARIMA models at every upstream gauging station and every gauging
stations of tributaries to provide the forecasting discharges which are input data for forecasting at
downstream outflow of the next several hours. Time series ARIMA models at every gauging station can
be estimated as follows:

(1) Verify whether if the learning data set at every gauging stations of tributaries and upstream are stationary
series.  If not, try successively for the appropriate orders of differentiation until the stationary behavior is
achieved. ' .

(2) With stationary series, proceed to estimate the auto-regressive process of order p and moving average
process of order q. Then establish any probable forecasting models at every gauging station by
combining different p,q items and obtaining each BIC ( Bayesian information criterion ) value.

By BIC rule (if the model has the smallest BIC value than others, it means the model which has the best
performance in forecasting than others), the optimal forecasting models at every gauging station and their
representative p,q items can be obtained. After p,q items and their parameters have been confirmed, a
decision can be made of the time series ARIMA models at every gauging station.

Above relative information and parameters needed can be obtained by SCA statistical system. The time
series ARIMA models at every gauging station and the flow chart of integrated ANN model are
expressed as follows:

His-Nan Bridge VY, =0.5876V Y, +0.2962+ ¢, —-0.2578¢, ~0.2450g,, (5)
Nan-Gang Bridge VY =14375Vy, —0.7087VY, ,~0.0421+ g, ~0.50054,, (6)

Chien-Feng Bridge VY =0.4213V Y, +1.6117+4 01737, +03337g,, (7)
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Fig. 5 The flow chart of integrated ANN model
Criteria of Comparing the Models

Three indicators are used herein to evaluate the proposed model’s accuracy:

(1) Coefficient of efficiency, CE



45

_ Z (Q()b.s' “7?&‘1 )2’ ( x)
Z (Qa[)y - Q(}hx )

CE=1

where ¢, denotes the estimating flood discharge (cms); g, represents the observed flood
discharge (cms); and O 418 the mean value of the observed flood discharge (cms). The closer
value of CE to | implies a more accurate model.

(2) Error of peak discharge, EQ)»
_ _Qpe.s‘t B onbs

EQ,=—"—vw " )
} r Q;mbs

where Q. and Q ey AT€ the peak discharges of flood of observation and estimation, respectively.
The lower value of EQp implies a more accurate model.

(3) Error of time to peak, ETp
p !
E 2;) = T;)e.s'l - 7;)0[7.;' . ‘ (IO)

where T, and T, denote the times to peak discharge of estimation and observation, respectively.
The smaller value of ETp implies a more accurate prediction of occurrence of peak discharge.

CALIBRATION AND VERIFICATION

According to the calibration results (Table 3), the average value of CE is 0.961 and the
average value of EQp is 0.071.  For ETp, the second flood events (in June 2,1993) is within 1 hour,
while the first one (in May 26, 1993) is up to 8 hours for the close discharges of eight hours before
and after the peak.  Overall, the calibrated results of the proposed model are satisfactory.

Table. 3 Calibrated results

No. Date Cause of Peak CE EQp ETp
Flood Events | . (ems) [hr])
1 1993.5.26 Storm 1780 0.9699 | 0.0379 -8
2 1993.6.2 Storm 2430 0.9522 | -0.1054 !

Tabled indicates that the average value of CE is 0.894. the average value of EQp is 0.075, and
the average value of ETp is within 2 hours for the verified results at the next hour. - However, the
average values of CE are 0.663 and 0.509, the average values of EQp are 0.093 and 0.118; and the
average values of ETp are within 2.75 and 4 hours for the next two and three hour, respectively.
Obviously, the above results are acceptable. However, the verified results at the next three hours are
not as satisfactory as those at the next one and two hours, but still have acceptable simulations in
terms of the trend of outflow hydrograph.



46

Table. 4 Verified results

No. Date Cause of Peak Forecasting
Flood (ems) hours CE EQp ETp
Events [hr} [hr}
3 11990.4.1 Storm 1850 one 0.9259 0.0298 N
6
two 0.7204 0.0622 2
three 0.5954 0.1779 3
4 11992.7.6 Storm 2000 one 0.9209 -0.0550 2
(Peak 1) two 0.6358 0.0200 3
three 0.3764 0.1750 4
4 11992.7.6 Storm 2100 one 0.9209 -0.0644 !
(Peak 2) two 0.6358 -0.0950 o
three 0.3764 -0.0335 4
5 11992.8.3 Baoli 2810 one 0.8070 -0.1531 4
0
two 0.6601 -0.1950 5
three 0.6894 -0.1924 5

From the calibrated and verified results, we can infer that the integrated ANN model is
practical for flood forecasting in Wu-Shi basin.

Besides, the simulated results for verification in final typhoon event (in August 30, 1992) are
worse than the other events because the peak discharge of final event is 2810cms and the numbers of
discharges over 2000cms are seven. However, the maximal discharge of the learning sample is
2430cms and the numbers of discharges over 2000cms for learning sample are three. Being a
disadvantage of supervised learning, the proposed model cannot accurately forecast the discharge
over the range of the learning sample.

Comparison of models

This study also proceeds with flood forecasting at the next one ~ three hours by the ARIMA
model at Da-Du Bridge as follow:

Da-Du Bridge VY, =02234VY +4.8829+ 4 +0.38060, (I

Finally, this study compares the results between these two models (the time series ARIMA
model at downstream gauging station and the integrated ANN model) from Tables. 5~7. In CE, they
are not difference obviously in the performance of CE compared Time series ARIMA model with
integrated ANN model. However In EQp, although the time series ARIMA model for downstream
gauging station is better than the integrated ANN model in general, it appears more likely to under-
estimate the peak discharge. In the practice of flood damage reduction, the under-estimation of
peak discharge will incur serious damage for inhabitant at downstream area. In ETp, They are not
difference obviously in the performance of ETp compared Time series ARIMA model with integrated
ANN model. : '



Table.5 Verified results of two models ( CE)

No. Date Cause of Peak [Forecasting| integrated |time series ARIMA
Flood (cms) hours ANN model model
Events [hr] (CE) (CE)
3 ]11990.4.16 Storm 1850 one 0.9259 0.9027
two 0.7204 0.6890
three 0.5954 0.4171
4 1992.7.6 Storm 2000 one 0.9209 0.9217
(Peak 1) two 0.6358 0.7712
three 0.3764 0.5949
4 1992.7.6 Storm 2100 one 0.9209 0.9217
(Peak 2) two 0.6358 0.7712
three 0.3764 0.5949
5 11992.8.30 Baoli 2810 one 0.8070 0.9210
two 0.6601 0.7583
three 0.6894 0.5302
_ Table. 6 Verified results of two models (EQp)
No. Date Cause of Peak |Forecasting| integrated |[time series ARIMA

Flood (cms) hours ANN model model
Events [hr} (EQp) (EQp)
3 11990.4.16 Storm 1850 one 0.0298 -0.0264
two 0.0622 -0.0261
three 0.1779 -0.0233
4 1992.7.6 Storm 2000 one -0.0550 -0.0492
(Peak 1) two 0.0200 -0.0578
three 0.1750 -0.0573
4 1992.7.6 Storm 2100 one -0.0644 0.0174
(Peak 2) two -0.0950 -0.0347
three -0.0335 -0.0331
5 11992.8.30 Baoli 2810 one -0.1531 -0.0133
' two -0.1950 -0.0146

three -0.0131 -

-0.1924 -
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Table.7 Verified results of two models (ETp)

No. Date Cause of Peak |Forecasting| integrated |time series ARIMA

Flood (cms) hoM‘s ANN model model

Events [hr]} (ETp) (ETp)
3 1990.4.16 Storm - 1850 one 1 2
two 2 3
three 3 4
4 1992.7.6 Storm 2000 one 2 1
(Peak 1) two 3 2
three 4 3
4 1992.7.6 Storm 2100 one | 1
(Peak 2) two 1 2
three 4 3
5 1992.8.30 Baoli 2810 one 4 I
two 5 2
three 5 3

CONCLUSION AND DISCUSSION

This study presents a novel flood forecasting procedure by integrating LTF(Linear transfer
function) ~ ARIMA(Auto regressive integrated moving average) model and ANN(Artificial neural
network). Based on the results presented herein, we conclude the following: Compared with
previous investigations, our design of the model proposed herein not only has a simple structure but
also does not contain the anticipated hypothesis. On account of the satisfactory results at the next
one hour through the next three hours of flood forecasting, we believe that the integrated ANN model,
which consists of ANN, LTF and ARIMA model, is appropriate for watershed flood forecasting.

In this section, then we compare the differences in model construction, selection of the input
elements and application between the time series ARIMA model and the integrated ANN model.
1. Model construction

The construction of the time series ARIMA model is relatively simple. While, the integrated

ANN model is complex because it consists of ANN LTF and ARIMA model. :

2. Selection of the input elements

The time series ARIMA model analyses the characteristics of the time series by autocorrelation

function (ACF) and partial autocorrelation function (PACF) to select several kinds of possible
combinations, each having different numbers of the input elements; In the integrated ANN model,
we propose the linear transfer function method and parameter significance T-test to determine the
number of network input elements.

3.Modeling Considerations )

The time series ARIMA model can only discuss the characteristics of single gauging station
because it only conducts analysis on the historical trend of the variable. On the other hand, the
design of the integrated ANN model considers the input to output relationship between at the
upstream and downstream gauge stations. Restated, the integrated ANN tries to simulate the
mechanism of the flood routine for the selected watershed.
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APPENDIX - NOTATION

The following symbols are used in this paper:

a = white noise process;

B = backward shift operator:

C = denotes the constant;

f = transfer function ;

LiotoTioasTis = inflow discharge of His-Nan Bridge » t-i” is previous i hours of t hour;
]'t' 1’1: 7_1'1' ) = inflow discharge of Nan-Gang Bridge;

inflow discharge of Chien-Feng Bridge;

LrleaTes Ty
Ow— 1 =O(~z *Ox»F *04-4

Il

outflow discharge of Da-Du Bridge;

0, = outflow discharge of t hour of Da-Du Bridge;
Ot = estimating flood discharge (cms);
Oois = observed flood discharge (cms);
pobs = the peak discharges of flood of observation ;
Qpest = the peak discharges of flood of estimation;
T = the times to peak discharge of estimation ;
pest p g
T = the times to peak discharge of observation, respectively:
pobs p g
W, = weights of the node ;
X, = input signals ;
X, = input time series;
X = the transposed iiput vector of x; .
Y. = output time series;
Y; = output signals ;
v’ = difference operator;
(s t,) = autoregressive parameters:
g p
(010 64) = moving average parameters;
& = bias; and

(00,01 eveees 1) = impulse response weights.
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APPENDIX - SCA

SCA  Scientific Computing Associales

The SCA Statistical System was designed and developed by Lon-Mu Liu with the assistance of
the SCA programming staff. The SCA statistical system used to Forecasting and Time Series Analysis
(Liu, L.M. : Forecasting and time series analysis using the SCA statistical system, Scientific
Computing Associates, U.S.A., 1992.). The SCA System is also available for use on personal
computers having A DOS. OS/2 or Macintosh operating system. The Scientific Computing
Associates Corporation (SCA) provides several self-contained modules in its statistical software
system. At present, the SCA Statistical System includes the SCA-UTS module for univariate time series
analysis and forecasting, the Extended UTS module for univariate time series analysis and forecasting with
automatic outlier detection and adjustment, the SCA-MTS module for econometric modeling and forecasting,
the SCA-ECON/M module for econometric modeling and forecasting, the SCA-GSA module for general

statistical analysis, and the SCA-QPI module for industrial quality and process improvement.
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