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SYNOPSIS

The motion of starting plumes moving along an incline is investigated by large eddy simulations (LES).
The formulation of the model is based on the filtered two-dimensional Navier-Stokes equations and the
conservation of mass. The subgrid-scale turbulent stress is evaluated by the Smagorinsky model. It is found
that the model can give a good description of such flow characteristics of the front of inclined starting plumes
as the propagation speed, the growth rate of height and léngth, the entrainment rate and others over a wide
range of slope angle (10°< 6 <90°), when the Smagorinsky constant Cs = 0.06 + 0.1 sin 8 as well as the
subgrid turbulent Schmidt number Scs = 0.4 - 0.3 sin6. The computational results also provided a good
description of the internal flow structure of the front.

INTRODUCTION

When dense fluid is continuously released into
a less dense environment, the dense fluid will move
along an incline and spread under the action of its
own buoyancy force (see Fig.1). The motion of
this form is referred to as an inclined starting plume.
It consists of the front part characterized by a raised”
head and the body part characterized by a thinner
flow behind the front. The discharges of sediment-
laden water and dense wastewater into a reservoir or
coastal regions are typical examples of inclined.  Fig. ! Definition sketch of an inclined plume
starting plumes. )

A great deal of experimental and analytical studies on inclined starting plumes has been performed.
For example, Britter and Linden (1) have studied experimentally the flow characteristics of inclined starting
plumes over a range of slopes 5° = 6 = 90° and found the dimensionless front propagation speed as

Ur= U;/(Byqy)'*=1.5£0.2 , where U; is the front propagation speed; B, is the inflow buoyancy force
(= g(,oo - pa)/ p,); g the gravitational acceleration; p, the density of inflow; p, the density of ambient fluid;
q, the inflow rate. They also found that the rate of growth of the front height dH/dx and the aspect ratio of
height to length of the front H/L are linearly proportional to slope angle 8. Further experimental studies on
inclined starting plumes over the same range of slope angles have been performed by Akiyama et al.(2) and
more detailed and accurate information on the flows has been obtained. A theoretical model to predict such
plume characteristics as front velocity, height and density has been also developed by Akiyama et al. (3), (4).

In the aspect of the numerical simulations of inclined starting plumes, only few studies have been
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performed. For example, Michioku et al. (5)used the k- ¢ model to simulate the flow on a slope of
=5.71°, yet only made a few qualitative analyses on the flow characteristics of the front. Cheong and Young
(6) numerically investigated two-dimensional inclined plumes produced by a constant discharge of cold water
by solving the vorticity equation and heat transport equation. ' ,

In this study, the large eddy simulation (LES) is employed to simulate the flow characteristics of the
front of inclined starting plumes. The subgrid-scale turbulent stress is evaluated by the Smagorinsky model,
It is known that a large range of scales exists in turbulent flows and various scales make different contributions
to the Reynolds stress. In addition, large scales can not be always considered as isotropic. These lead the
fact that large-scale-averaging approach for turbulent simulation is not always satisfactory. The direct
numerical simulations (DNS), in which the whole range scales are computed by using very fine mesh, require
considerable computational time and computer memory. Instead, the LES appears to be a promising
approach to overcome these difficulties. In the LES only the effect of small scales is modeled, while the large
scales are directly computed. Since small scales tend to be more isotropic than the large ones, the modeling
of them should be simpler and more universal than the large-scale-averaging approach.

Since Deardorff (7) made his pioneer contribution, the LES has been developed further by Schumann (8),
Moin and Kim (9), Horiuti (10), Piomelli et al. (11), Yoshizawa (12), (13), Germano et al. (14) and others.
The results obtained by these investigators show that the LES with the Smagorinsky model can yield good
predictions for turbulent channel flows, thermal convection and other turbulent flows.

In present work, the operator-split algorithm is used to solve governing equations, that is, the filtered
two-dimensional Navier-Stokes equations and the equation of mass conservation. The advection terms in
governing equations are solved by the Hermitian interpolated characteristic method (HIC). The values of the
Smagorinsky constant Cs and the subgrid turbulent Schmidt number Scs in a range of slope angle (10°= 6 =
90°) are determined by detailed comparisons between computational and experimental results.

MODEL FORMULATION

In the LES, the large-scale quantities F(Y,t) (i.e. average values in local space) are defined by
convolution of the physical variates f(,t) with a filter function G(7,7'), where T is coordinate in space.

FG,t) = LG(' Y, )dE’ 1)

By applying the grid filter to the two-dimensional incompressible Navier-Stokes equations and the
equation of conservation of mass, ignoring Leonard and Cross terms (15), we can obtam the following
governing equations.

au,

L@ . )
%, (2)
oy, aU 10P U, 9 (=) Ao
it WSS § Bt PSRN LIRS TIANLA PPl 3
at ' iax, pax+”ax§+axj(“'“1)+g‘ ° @
aAp aAp d ( ' r)

. = —u: A 4
at o, ax, L uff “)

where U; = large-scale quantities of velocity component in the direction x;; P = large-scale pressure minus
the hydrostatic pressure at reference density po,; p = large-scale density; A o= density excess (= p- p, );

g; = i-component of gravitational accelation; u},Ap’ = fluctuating velocity and density excess. ujuf =
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Reynolds stress. By using eddy viscosity concept, we have
— U, ‘
_u;ugzvc(.?g_‘.+__._1}._._2.k 5“ (5)

where v, = subgrid scale eddy viscosity; k = turbulent kinetic energy ; §,, = the Kronecker delta function.

i3
The last term in Eq. 5 represents the normal stresses and can be absorbed in the pressure terms of the
momentum equations.

In the Smagorinsky model, the eddy viscosity v, is obtained by assuming that turbulent energy
production and dissipation of subgrid scale eddies are in balance. This leads the following well-known

expression
v, = (Cs &7 | ®)

where A = filter width, Cs = the Smagorinsky constaﬁt, and I§| = (2'8—l j—S—l j)w is the magnitude of large-scale

strain rate tensor in which §;; is defined by

- ) 8U
)

According to Miyake and Kajishima (16), the Smagorinsky constant needs some adjustments from flow
to flow and the values vary from 0.07 to 0.27. More specifically, Lilly (17) used Cs=0.23 for homogeneous
isotropic turbulence; Deardorff (7) used Cs=0.1 for turbulent channel flow; Piomelli et al. (11) also found the
optimum value of Cs to be around 0.1 for turbulent channel flow.

The term - uiAp in Eq. 4 is generally assumed to be

v, 04p

~ujAg =L — 8

07 Ses dx, ®

where Scs = the subgrid turbulent Schmidt number and is defined as the ratio of eddy diffusivity of momentum
to eddy diffusivity of matter. To the authors’ best knowledge, so far the universal expression on the values of
Scs has not been available. According to the studies by Reynolds (18), it can be assumed that turbulent
Schmidt number bears perfect analogy with turbulent Prandtl number, the ratio of eddy diffusivity of

momentum to eddy diffusivity of heat. Concerning subgrid turbulent Prandtl number Prs, Eidson a9
suggests Prs=1/2~1/3. ~

NUMERICAL SCHEME

In the operator-split algorithm, if the physical variates at t=n At , namely, Ul,P"and A p" are known,
U, P"! and A p"*'are calculated by the successive application of the following three steps:
1) Advection ‘

Wi,y 2Y;
ot ! ox;

=0 {nAtsts(n+§)At] ©)
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oA p dAp i
. T+Uj"5§j—=0 [nAtst<(n+)A] (10)
2) Diffusion
ou, FU, @ U,  0U; 1 2
Bdnd B Ly —tp 2 +=)At <t < —)At 11
ot vaxf ’ 3x,{vt[ 9x; * 0%, [ 3) (n+3) ] an
OAp d{ v dAp 1
Pl oSG G —)AtLt< DAt
ot 8Xj[Scs ax; ) [(IHZ) (nf) ] 12
3) Pressure
au,
Pt BN ) 13
o 13)

oy, 1 0P Ap

T e [(n+—§—)Atsts(n+l)At] (14)

By using the operator-split algorithm, different steps can be solved separately by the schemes suited for
each step. In the advection step, considerable unphysical oscillation and diffusion often occur when such
conventional difference methods as first-order upwind , QUICK and Lax-Wendroff scheme are used. To
overcome these difficulties, we used the Hermitian interpolated characteristic method (HIC) in the advection
step. k

The HIC scheme is described in the followings by considering a two-dimensional advection equation

of of af
—+U, —+U,—=0 15
at+ i ax+ Zay ( )

For Eq. 15, there are characteristic lines determined by

dx

2Z=U 16
dt ! {6
dy ' :

= ) 17
dt 2 . ( )

If AB is a characteristic line through node point B and scalar quantity f is transported from A to B
during nAt<t<(n+s)/t, we therefore have

£ (xp,y8) =" (X4, ¥a) (18)

where s = a parameter used to adjust time step to fit advection step in Eqs. 9 and 10; x, andy, can be

determined by integrating Eqgs. 16 and 17.
By differentiating Eq. 15, we can obtain

o, . 8f, . of, dU, . dU,
x x X f,+—=
at+U1 ax 26y+8x *o0x

£,=0 19
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Fig. 2 Comparison of some numerical schemes
for 1-D advection problem (=500 s)
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where f, =— and f, =——. Equation 19 is split into two steps
ax dy

of, af, af
Ist step: —*+U, —2%+U,—%=0 2
8! Sep at i 8x+ 2 ay (1)
o, dU,. U
tep: —%+—L1f +—2-f =0
2nd step at+ Ix o+ Fy 22

Equation 21 is a pure advection equation on f,, we therefore have

f:H(styB):f:(xA,yA) i (23)

Finally, f;*(x5,yp) is corrected based on Eq. 22 by explicit central difference scheme. f)™*(xz,y5)
is obtained by same approach. In order to improve accuracy, f"(x,,¥), fy(Xa,¥4) and f7(x,,y,)

are calculated by the two-dimensional Hermitian interpolation.
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For diffusion steps, Egs. 11 and 12 are discretized by central difference scheme. The pressure is
obtained by solving the Poisson type equation deduced from the algebraic manipulation of Egs. 13 and 14.
In what follows, the comparisons between the proposed scheme and the aforementioned conventional
(x=x%, )2

schemes are made by advecting a Gaussian profile: f(x)=exp(~ —2———2—»—), where x, =200m, o, =25m.
g ,

0
The other computational conditions are as follows: velocity U =1m/s, space step size Ax =10m, time ystep
size At=2s and Courant number Cr = AtU/Ax =0.2. Figure 2 shows that the HIC scheme yields much
better result than other three schemes.
The HIC scheme for two-dimensional advection problems is investigated by advecting a Gaussian hill
(Fig.3-a) with initial concentration distribution :

(wac)2 +(y—'yc)2
20]

f(x,y) =exp(- )

where X,y = coordinates of initial concentration distribution center. The steady rotational flow field is
Uy=-o(y-y,) and U, =w(x~x,),where w isan angular velocity in radians/sec and (x4,Y,) is the
axis of rotation. In particular, x, =500m, y, =750m, 0,=25m, x, =500m, Yo =500m, w=27/628.
The computational domain is a square with 100X 100 cells. The space step size Ax=Ay=10m. The time
step size At=ls. Because this is a pure advection problem, the concentration distribution should remain
constant throughout the rotation. Therefore we can evaluate the accuracy of a scheme based on its ability to
transport the concentration distribution without deformation. The numerical solutions after one revolution
(=628 s) by the HIC scheme and the first-order upwind scheme are shown in Figures 3-b and 3-c, respectively.
It is seen from these figures that the result by the HIC scheme has only a small undershooting and is free from
numerical oscillation, while the result by the Ist-order upwind scheme is very diffusive.

COMPUTATIONAL RESULTS

The computational conditions for calculating inclined starting plumes are summarized in Table 1. The
computational domain is a rectangle. The size of domain is selected depending on the slope angle 6. Grid
size is lem X lem. The time step size ranges from 0.001 s to 0.1 s depending on the slope angle 6 and the
inflow buoyancy flux B,q,.

By comparing such main flow characteristics as dimensionless propagation speed U;, the growth rate
of height dH/dx and the aspect ratio of the front H/L between the computational results and the
experimental data obtained by Akiyama et al.

(2), the optimum value of Cs within a range of

10°< 0 <90° is determined as Table 1. Computational conditions
Cs=0.06+0.1 sin 8 @4) O | Bo (oSl aoloms) | Ly (em) | Ly (em)
10 9.80 334 350 50
Cs ranges from 0.077 to 0.16 over this range of 20 9.80 2.16 250 60
slope angle and it is consistent with previous 30 9.80 2.16 250 80
studies (16). Similarly, the optimum value of 45 9.80 2.02 250 80
Scs within a range of 10°= 6 = 90° is 60 9.80 2.02 250 100
determined as 70 9.80 2.02 250 110
80 9.80 2.00 250 120
Scs=0.4-0.3 sin 6 (25) 90 9.80 2.00 250 120

* Lyand Ly are length and height of computational domain



0.4
L Cs  Scs -
03 F @007 0.19 - S
L @----0.13 0.10 )
L Q) ——0.13 0.19
s ORS 0.13 0.38
= 0.2 F 5 e
- ® 0.19
0.1 e
O‘ i i i i i i i
0 02 04 06 08 1 12 14 16
Xg (m)
(a)
2.0
15 F
B1of
m
05+
0.0 1 1 i i ] i i
00 02 04 06 08 10 12 14 16
X; (m)
®)
12
10
8 -
E 6f
= 2P
o QLo b
Z.
@é ®
2_
O i A, J. . i 1 i 1 i
0 02 04 06 08 1 12 14 16
X (m)
©

Fig.4 Effect of Cs and Scs on H, B and U;
(0 =45°, B;=9.8cm/s?, q;=2.02cm?/s )
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0.4 (m) 0.2 0.0
(a)Time=11.6s

0.4 (m) 0.2 0.0
(b)Time=11.6s

0.8 (m) 0.6 0.4
(c) Time=22.06s

0.8 (m) 0.6 04
(d) Time=226s

(e) Time=32.8s

1.2 (m) 1.0 0.8
(£) Time=32.8 s

Fig.5 Experimental and computational images of
front for 6=20° , b;=9.8cm/s?, q;=2.16cm?/s.
(a), (c)and ( e) are photographs from
experiment. (b), (d) and (f) are computational
images corresponding to (a), (c) and (e).

The sensitivity analyses of Cs and Scs are presented in Fig.4. Three values of Cs (0.07, 0.13 and 0.19)

and Scs (0.10, 0.19 and 0.38) are used in the analyses.

The solid line in Fig.4 is the computational results

using values of Cs=0.13 and Scs=0.19 that are determined by Eqgs. 24 and 25, respectively. Fig.4-a shows
that computational results of the height of the front H for Cs=0.19 is about 10% larger than that for Cs=0.13
and computed H for Cs=0.07 is about 10% smaller than that for Cs=0.13, when Scs has the same value of 0.19.

Fig.4-a also indicates that computed H is sensitive to Scs.

From Figs.4-b and 4-c, we found that

computational results of average buoyancy B and front propagation speed U have smaller values when larger

value of Cs and smaller value of Scs are used.



In what follows, the computational results by
using the above optimum values of Cs and Scs are
compared with experimental results.

ANplp, 10°~5%X10"

Comparisons between Experimental and
Computational Images

(a) 6=10° Figure 5 shows the comparisons of
: experimental and computational image of the flow at
the slope angle 6 =20°. In the computational
results, the region of plume is defined by
Ao /p,2107. They are in agreement in shape,
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size and front velocity. In the experiment, it is
observed that the flow at the wake of the front is
quite unstable and part of dense clouds is left behind
0.6m 0.4m when slope angle 6 is less than 20°. This

(b) 6=45° phenomenon does not appear in the computation and
it leads some difference between the experimental
images and the computational images.
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Figure 6 shows computed flow and density excess
patterns of the front for different 6 at time=16 s.
It shows that the front approximately keep the shape
of half-ellipse as reported in previous experimental
studies (1), (2), and its size increases with 6. The
flow pattern at the front is characterized by a large
Fig. 6 Flow and density excess pattern vortex motion centered near the top of the front.

(B, =9.8 cm/s?, q, =2.0 cm¥s) The vortex motion becomes stronger as 6
increases. By comparing these figures, we can find
that the entertainment of ambient fluid at the rear of

143588708
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0.6m 0.4m 0.2m
(c) 6=80°

the front becomes stronger as 6 increases. It is also observed that the density excess fields for small slope
angles are different from large slope angles. In the cases of such large slope angle as 6 = 45° and 80°, a peak
of density excess appears at the place little lower than the center of the vortex motion, due to the stronger
entrainment of less dense fluid from the back side of the front. On the other hand, for the case of 6 = 10° the

maximum of density excess always appears near the bottom.
U, Hand H/L as Functions of x;

An example of computational result of the front propagation speed Uy, the height of the front H and the
aspect ratio of the front H/L is plotted against the distance from inlet to the front position x, in Figs. 7, 8 and

9. Symbols shown in the figures are experimental results obtained by Akiyama et al. (2). It is seen that the
computational and experimental results are in good agreement. These figures also show that the values of
U, and H/L are nearly constant, and H increases linearly as x, increases. These results are consistent with

experimental findings (1), (2). - The same results are obtained for the flow at different slope angles.

U;, dH/dx and H/L as Functions of Bq,
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Britter & Linden (1) and Akiyama et al. (2) have experimentally investigated the effect of inflow
buoyancy flux B,q, on the front of inclined starting plumes and found U;, dH/dx and H/L are almost

independent of Byq, over a range of 2.5 cm’/s’ < Byq, <250 cm’/s’.

In order to confirm this experimental

finding, the computed U}, dH/dx and H/L at slope angle 6= 45° are plotted against B,q, in Fig. 10.

It shows that no evident dependence of U;, dH/dx and H/L on Bq, is found over a very wide range of

495 cm’/s® <B,q, <1.08 X 10° em’/s’.

observed at other slope angles.

The constancy of U;, dH/dx and H/L against Bq, is also
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U;, dH/dx and H/L as Functions of 6

Computed Ujp, dH/dx and H/L as well as experimental results obtained by Akiyama et al. (2) are
plotted against 6 in Figs. 11, 12 and 13, respectively. Figure 11 shows that the values of U; are nearly
constant and around 1.35 over a range of 10°<&<90°, which is very close to the value of 1.340.03
determined experimentally for 5°= 6 =90° by Akiyama et al. (2). As shown in Figs. 12, the computed
dH/dx increases linearly with 0 from 0.048 at 6 =10° to a maximum of 0.3 at 6 =90°. This is in good
agreement with the experimental results, which increases from 0.034 at 6 =10°to 0.332 at 6 =90°. Figure 13
shows that computed H/L increases linearly with 6 and no considerable difference is found between the
computational and the experimental results.

Overall Richardson Number and Buoyancy Force

_ (A pe/ py)gHeos 0

In Fig. 14, the computed values of the overall Richardson number R 02 , averaged
: fe
buoyancy force at the front B; =(A p,/ p,)g and dimensionless buoyancy force B; = % for the
090)

case of 6 =45° are plotted against X, where Uy, is mass center velocity of the front. It is found that R
and B; are almost constant and 1/ B; is almost linearly proportional to x;. These results are consistent

with experimental and theoretical results reported by Akiyama et al. (3), (4). The computed R and B; are
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plotted against 6 in Fig.15. It is found that the values of R, decrease with 6 and the values of B; are
around 1.55 over a range of 10°< 8 <90°.

Entrainment CoefTicient

= % , where q, is the rate of entrainment of ambient

£
fluid into the front part (= dA/dt—q;), and A is the area of the front part; g; is flow rate from the body part

H,
into the front part and is calculated by ¢, = j‘o ° [U;(y)-U,Jdy, in which H, is the height of the body part at

the section just behind the front, Uy(y) is the velocity component in x-direction at the section just behind the
front and U, is the propagation speed of the back side of the front.

Experimental studies by Akiyama et al. (20) have shown that E, increases linearly with 8 and an
empirical equation E,;~0.0045 6 is obtained based on a large number of experimental data for 5°< 6 <90°.
In Fig. 16, the computed E; along with the experimental results is plotted against 0 .- It is seen that the
computed values of E, fit well with the empirical formula given by Akiyama et al.(20).

CONCLUSIONS

In simulating an inclined starting plume, excessive accuracy is required in solving the equation of mass
conservation, because such density current as an inclined starting plume is essentially induced by buoyancy
force. The computational results show that the model overcomes the difficulties by using the HIC scheme in
solving the governing equations.

Through comparisons between the computational resuits and the experimental results obtained by
Akiyama et al. (2), (3), the optimum values of Cs and Scs for inclined starting plumes over a range of slope
angle (10°= 6 =90°) are determined as Eqs. 24 and 25, respectively. The model with the optimum values of
Cs and Scs gives a good description of the front of inclined starting plumes over a wide range of slope (10°=

6 =90°).

REFERENCES

1. Britter, R.E. and PF. Linden : The motion of the front of a gravity current traveling down an incline, J.
Fluid Mech., Vol.99, pp.531-545, 1980.

2. Akiyama, J., M. Ura and K. Sakamoto : Flow characteristics and entrainment of two-dimensional starting
plumes traveling down slope, J. of Hydroscience and Hydraulic Engineering, Vol.12, No.2, pp.1-16, 1994.

3. Akiyama, J., M. Ura and S. Wongsa : Unsteady numerical model of two-dimensional starting plumes
traveling down slope, J. of Hydroscience and Hydraulic Engineering, Vol.12, No.2, pp.17-30, 1994.

4. Akiyama, J.,, M. Ura and W. Wang : Physical-based numerical model of inclined starting plumes, J. of
Hydraulic Engineering, ASCE, V0l1.120, No.10, pp.1139-1158, 1994.

5. Michioku, K., Y. Fujikawa and H. Fuji : Analysis on buoyancy inflow behaviors in reservoir, Proceedings
of Hydraulic Engineering, JSCE, Vo1.40, pp.561-566, 1996, (in Japanese).

6. Cheong, H.B. and Y.H. Han : Numerical study of two-dimensional gravity currents on a slope, Journal of
Oceanography, Vol.53, pp.179-192, 1997

7. Deardorff, J.W. : A numerical study of three-dimensional channel flow at larger Reynods numbers, J. Fluid
Mech., Vol.41, pp.453-480, 1970.

8. Schumann, U. : Subgrid scale model for finite difference simulations of turbulent flows in plane channels
and annuli, J. Comp. Phys., Vol.18, pp.376-404, 1975.

9. Moin, P. and J. Kim : Numerical investigation of turbulent channel flow, J. Fluid Mech., Vol.118, pp.341-
377, 1982.



128

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Horiuti, K. : Large eddy simulation of turbulent channel flow by 0ne~equanon modeling, J. of the Physical
Society of Japan, Vol.54, No.8, pp.2855-2865, 1985.

Piomelli, U., P. Moin and J.H. Ferziger : Model consisitency in large eddy simulation of turbulent channel
flows, Phys. Fluids, Vol.31, pp.1884-1891, 1982.

Yoshizawa, A. : Subgrid-scale modeling with a variable length scale, Phys. Fluids A 1 (7), pp.1293-1295,
1989.

Yoshizawa, A. : Eddy-viscosity-type subgrid-scale model with a variable Smagorinsky coefficient and its
relationship with the one-equation model in large eddy simulation, Phys. Fluids A 3 (8), pp.2007-2009,
1991.

Germano, M., U. Piomelli and W.H. Cabot : A dynamic subgrid-scale eddy viscosity model, Phys. Fluids
A3 (7), pp.1760-1765, 1991.

Yasuhara, M. and J. Daiguu : Computational fluid dynamics, Press of Tokyo University, 1993, (in
Japanese)

Miyake, Y. and T. Kajishima : Numerical simulation of turbulent flows, Proceedings of JSME (B), JSME,
Vol.53, No.491, pp.1869-1877, 1987, (in Japanese) ’

Lilly, D.K. : On the application of the eddy viscosity concept in the inertial sub-range of turbulence,
NCAR Manuscript No.123, National Center for Atmospheric Research, 1966.

Reynolds, A.J. : The prediction of turbulent Prandtl and Schmidt numbers, Int. J. Heat Mass Transfer,
Vol.18, pp.1055-1069, 1975.

Eidson, T.M. : Numerical simulation of the Rayleigh-Benard problem using subgrid modeling, J. Fluid
Mech., Vol.158, pp.245-268, 1985.

Akiyama, J., M. Ura, S. Saito and N. Tomioka : Entrainment coefficients for gravity currents on inclines,
Journal of Japan Society of Fluid Mechanics, Vol.16, pp.149-161, 1997.

APPENDIX —~ NOTATION

The following symbols are used in this paper:

A = area of front part;

B, = buoyancy force of inflow;

B = dimensionless averaged buoyancy force of front part;
Cr = Courant number ;

Cs = Smagorinsky constant ;

E; = entrainment coefficient for front part;

g = acceleration of gravity;

H = height of front part;

L = length of front part;

Lx, Ly = length of computational domain in x-direction and in y-direction respectively;
P =  pressure;

Prs = subgrid turbulent Prandtl number;

Qo = flow rate of inflow;

Qe = entrainment flow rate of ambient fluid into front part ;



Gi =
Ry =

Scs =

X, ¥ =
X¢ =
At =
Ax, Ay =
Ap =
A pg =
, =
0 =

p, p()s pa‘ =
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flow rate from body part into front part;

overall Richardson number of front part;

subgrid turbulent Schmidt number;

time;

large-scale quantities of velocity component in x-direction (i=1) and y-direction (i=2);
front propagation speed;

mass center velocity of the front;

dimensionless front propagation speed;
longitudinal coordinate and transverse coordinate;
distance from inlet to front position;

time step size;

space step size in x-direction and y-direction;
density excess;

averaged density excess of front part;
eddy viscosity;
slope angle; and

density, density of inflow and density of ambient fluid respectively.
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