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SYNOPSIS

The tank model is useful for runoff analysis since it can represent a
non-linear stream flow behavior. It is difficult to properly identify a lot
of model parameters from observed data. The genetic algorithm (GA) is a
search procedure based on the mechanism of natural genetics and is effi-
cient for global optimization. Uncertainty of the identified parameters,
which may significantly affect the prediction of stream flow, should be
taken into account.

This paper describes the statistics of the identified parameters using
GA. The statistics are evaluated by the bootstrap method applied to simu-
lated data fluctuations. Furthermore, the EIC (Extended Information Crite-

"rion), which is derived from the bootstrap method, is introduced and ap-
plied to select the best tank model.

INTRODUCTION

The in-line four-tank model proposed by Sugawara and others(1l) is
structurally simple and can represent a non-linear flow behavior. There-
fore, it is widely used for long-term runoff analysis. In this model, 16
parameters generally need to be estimated from the volume of runoff in one
catchment, and the calibration of the model demands experience. To facili-
tate calibration, the development of an automation procedure is studied
(2),(3).

Studies to estimate parameters by replacing the calibration of the
tank model with an optimization problem of a non-linear function, which
minimizes the errors in catchment runoff volume, have long been conducted.
Kobayashi and Maruyama(4) applied Powell’s conjugate direction method to
the problem. Watanabe and others(5) suggested to use the Newton'’s method.
Nagai and Kadoya(6), (7) proposed the SP method and the SDFP method incorpo-
rating a normalization form into the Powell method and the DFP method.
Yasunaga and others(8) tried sequential estimation using the Kalman filter.
Since these methods were likely to end in local suboptimum solutions, stud-
ies involving global search methods were made. Wang (10), for example, in-
troduced GA into a conceptual rainfall runoff model, and Tanakamaru(11)
incorporated GA into a tank model, and both examined applicability. Duan
and others(12), and Sorooshian and others(13) proposed the SCE-UA method,
which incorporates a GA-like concept into the Simplex method, and applied
it to a conceptual rainfall runoff model. Outlines of these studies are
given in the paper by Tanakamaru(14).

Parameter estimation in the tank model, if it is regarded as an in-
verse problem, is an ill-posed problem without uniqueness of the solution
or continuity. In this study, therefore, the accuracy and validity of less
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subjective analytical methods are examined for the purpose of environmental
assessment and in order to obtain an optimum solution for engineering ap-
plications which not necessarily coincides with the optimum mathematical
solution. Genetic algorithm (GA) suitable for global searches is used as an
analytical tool because an objective function that minimizes the errors in
catchment runoff volume becomes a multimodal problem of optimization with
multiple local solutions. At the same time, the uncertainty of parameters
estimated by GA is evaluated by the bootstrap method(15), and the estab-
lishment of the optimum number of tanks in the tank model using an informa-
tion amount criterion is also considered.

ANALYTICAL MODEL AND PARAMETER ESTIMATION
Analytical method

In the development of a runoff analysis model transferring observed
rainfall data into runoff volumes, it is crucial to obtain accurate param-
eters of the model. The tank model is a runoff analysis model frequently
used for representing a non-linear flow behavior. The estimation of its
parameters is, however, difficult. The target here is, therefore, set at a
- certain level of estimation achievable with a minimum level of subjectiv-
ity. Since GA, which is effective in global

searches, handles discrete values, an increase in ﬁﬂl

accuracy requires an increase of bit-strings of 4 a
parameters. This results in an increase in the — 0.(1)
number of combinations, and thus an increase in h(®) cI ;[}z

the calculation time reguired. Here, little refer- — 049

C.

2

ence is attention to GA setting conditions but b,l'f
1@

rather the degree of dispersion of the parameters

estimated by GA under certain conditions is exam-

ined. h (1)
. 2

Iank‘model

In this study, an in-line four-tank model as
shown in Fig. 1 is used as runoff analysis model.
In the figure, r denotes rainfall (mm/hour), h, EXG
the water depth in the tank (mm), a, the coeffi-~
cient of runoff from side hole of the tank (1/
hour), b, the coefficient of seepage from the bot-
tom hole of the tank (l/hour), and ¢, represents v
the height of the runoff hole on the side of the -
tank (mm). h()
Then if runoff from the side of the tank, and
seepage volume from the bottom of the tank are
represented by Q, through Q (mm/hour), and by I,
through I, (mm/hour), respectively, the following
equations are obtained. model

as
= 009

Fig. 1 In-line four-tank

i

Q3 (t)
Qz{t) = az(hi(t)-cz) U{hy(t)-c3)

a;(hy{t)-cy) Ulhi(t)-cy)

Q3(t) = azl(hy{t)-c3) U(hz({t)-c3)

Qg4(t) = ag(hi(t)~cy) Ulhz(t)-cq) (1)
Qs(t) = ashy(t)

I:(t) = bihy(t)

I,(t) = byhy(t)

I3{t) = bshs(t)
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where, U(x) is a unit step function represented by the following eguation.

{1 {x 2 0)
Ulx) =
0 (x < 0)

Equations of continuity for individual tanks are represented as follows.

dh,/dt

= r(t)-Q1(t)-Q(t)-I;(t)

dh,/dt = Ty(t)-Qs(t)-I,(t) | (2)
dhz/dt = Iz (t)-Qq(t)-I3(t)

dh,/dt = I3(t)-Qs(t)

Total runoff Q(t) is represented by the following equation.

5
o) = Y Q,(t) ' (3)

i=1

Definition of objective function

For error evaluation, various functions have been used such as those
expressed by the following equations. The first shows an error criterion
based on least squares, and the second is the logarithm of the first crite-
rion, the third is a chi-square error criterion, and the last one is a
relative error criterion. The second and the last equations produce the
gsame criterion.

1< 2
Jus = ¥ (0.4) - 9,(1)
i=1
1< 2
Ty = = 2, (log Q1) - Llog Q,(1)
M i=1
(4)
Gu= L3 (Q.() - 9,(1)°
B et Q,(4)
_ 1 o) - 0.y
Tee T 2; Q,(1)

where, Q, = observed runoff; Q. = calculated runoff; M = number of data
items.

For functions having a peak such as those for runoff, the last three
evaluation criteria can reflect the agreement more accurately than the
first criterion based on least squares. Here the second criterion, the
logarithm of the criterion based on least squares, is used. No penalty
functions such as constraints are considered.

Genetic algorithm (GA)

Described below are methods of searching the parameter vector x (= xi,
X2, ..., ¥Xp) which minimizes objective function £(x;, X2, ..., Xi), ® ™ < %y
< x;™*, i=1, ..., n, by GA. GA represents x by N strings of symbols using 0
and 1 bits. That is, when handling a continuous guantity, the x; search
range is discretized into 2* points. The continuous quantity is represented
by strings of N=n x L bits, where n times L-bit binary codes are connected.
Based on a parameter vector regarding these bit strings as genes, the indi-
vidual minimizing the objective function is searched by an algorithm con-
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sisting of three types of genetic operations, namely, selection, mating,
and mutation.

First, the individuals for which the value of the objective function
to be minimized is small, are considered to have a large fitness. Selection
is a process for random selection of a parent for producing descendants
based on a selection probability proportional to the fitness. In this
study, what is known as the elite conservation strategy is adopted for
selection, in which higher-fitness individuals are conserved for following
generations unconditionally. Mating is the creation of a new individual
from two selected individuals by exchanging their specific parts. In muta-
tion, a given bit value of an individual selected with a small probability
is reversed with a predetermined probability.

APPLICATION OF THE MODEL
Area of application

The data used for the analysis is the daily precipitation averaged
over a catchment of the M dam. The analysis was made for five years start-
ing with 1991. Fig. 2 shows daily runoff and precipitation. Snowfall is
insufficient to affect runoff. Since this study focuses on flood runoff
volume, no evapotranspiration is considered. The four-tank model is applied
to simulate the daily runoff volume, and 16 parameters including the ini-
tial water depth in the tank are estimated.

Analytical conditions

Upper bounds of search by GA for 16 parameters are defined based on
existing references(14) as shown in Table 1. And lower bounds are also
defined as 0. The bounds of search are set based on the result of an ap-
plication of the four-tank model, and are considered large enough for prac- .
tical purposes.

In GA, the parameter p; is discretized as shown below.

pi = Apyz;
zZ; = (pi_pilower)/(piupper.,pilower) (5)

Api - (piupper._pilower) / (27..1 )

where, z; = integer(0 € z;, z;, ...,z < 27-1 =127); Ap; = width of
discretization of p;.

Table 1 Upper bound of search

210° [ W o Parameter | Upper bound
o F “” ] E ! ] 8y, 8y, 85 0.635
1510 | 200
5 ~ 1™ a 0.127
£ i e as 0.0127
3 1 400 3 b, 0.635
5 X , 3 b, 0.635
G 510 by 600 & b, 0.127
A C, 127.0
0 10° 1 800 C,~Cy 63.5
] 500 1000 1500 2000
Elapsed time (day) hyo~hag 127.0
Fig. 2 Daily runoff and precipitation hao 1270.0
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Here a GA population of Table 2 Result of analysis
1,000, a mating rate of
0.6, and a total number of Parameter | Estimated | Parameter | Estimated
trials of 100,000 are used,
and the effects on the value vaiue
search results are studied. a 0.175 C4 108.0
The probability of mutation
is set at 0.01. 8 0.120 C; 15.0
Analytical results 3 0.180 Ca 41.0

The results of analysis & 0.019 Ce 1.5
by GA are shown in Table 2. a 0.0001 {1 42.0
The logarithmic least
sqguares error Jy;, is repre- b, 0.205 hao 17.0
sented by ¢=0.3105. Param-
eters obtained by GA, b, 0.490 hso 97.0
though requiring ?ur?her b, 0.014 heo 750.0
improvement, can indicate a :
general tendency. A com- o, 0.3105
parison between estimation
results and observed data
is given in Fig. 3.

Differences between 2‘°srv"u~y!, Y TR W”’"WFO
observed and estimated - i ! 1 {f !
logariFhmi§ errors are ' 15{MZJ mmi _2m)y
shown in Fig. 4. They dis- 5 s g
play a normal distribution 3 1 o observed E
defined by the objective s 110°f 400 &
function, and can be é 1 ; I
handled as least squares g 1 3
estimates. Here the errors @ 510°] s 800 &
are represented as the : ML i ; £
units of runoff volume from 0 10° ke dumtsih AR N E At 800
the tank model. The average 0 100 200 300 400 500
value is -0.022, and the Elapsed time (day)

variance is 0.101. The
autocorrelation function of

the logarithmic error is 2 10° A LR 0
shown in Fig. 5, leaving A l * , 1” L I'!L
problems with whiteness. N :
. o
However, the model error is G~L5m ] 2m’g
handled as a white noise, o _ estimated g
and a bootstrapping method ; PRSI observed 1400 &
is used for the analysis. k] . ) ] N
E A i 1 3
4 2 s E l ) 2
Uncertainty of parameters & 510 ; |4 600 &
r Y H 1
. 1 . H )
The error of the esti- - | k | TR
mated parameters in the 0 10° e e

2t 800
500 600 700 800 900 1000

Elapsed time (day)

tank model is evaluated by

the objective function de-

fined based on the runoff Fi 3
. g.

volume. Here, the error is

assumed to be a normal dis-

tribution of N{(0.0, G.2),

and the uncertainty of the model parameters estimated by GA is calculated

by a bootstrap method. The bootstrap method can create a bootstrap sample

by incorporating a model error into time series in estimated runoff volume

by a Monte Carlo method, and evaluate its dispersion based on the parameter

estimation by GA.

Estimation results and observed data
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Fig. 4 Histogram of the logarithmic Fig. 5 Auto-correlation of the

errors

logarithmic errors

Fig. 6 shows a histogram of a part of the results. The initial water
depth in the tank h;,; is uniformly dispersed, and can be an optimum param-
eter at any values. In conclusion, many parameters are strongly influenced
by the search area, and the estimated set of parameters is a non-unigue
solution.

Parametérs obtained by the bootstrap method are expected to be corre-
lated to each other. Such a tendency is expected especially between the
water depth in the tank h;., and the height of the runoff hole on the side
of the tank c¢;. According to the parameter correlation coefficient shown
in Table 3, however, no strong correlation is observed.

Table 3 Parameter correlation coefficients

hig Pog  Byy My oy ) a ] 3 b, by b g < G G
hzﬁ 1.000 -0.226 -0.271 0.024 -0.045 0.017 0.063 -0.136 -0.078 -0.211 0.034 -0.194 0.017 0.128 0.204 0.15!
hZ:O -0.226 1.000 -0.375 -0.045 -0.041 -0.090 0.020 -0.126 0.109 -0.03! -0.080 -0.119 -0.042 0.198 -0.018 0.252
h%) -0.271 -0.375  1.000 -0.094 0034 -0.006 0.064 -0.152 0.144 -0.112 0.164 -0.07% 0.149 -0.055 0.038 0.377
hd;{) 0.024 -0.045 -0.094 1.000 0000 -0.213 0.044 -0.117 -0.256 -0.14} -0.008 0.103 -0.024 -0.028 0.139 0.043
2 -0.045 -0.041  0.034 0.000 1.000 0.232 0111 0.162 02350 0.150 -0.110 -0.051 0.409 -0.192 -0.07! 0.000
) 0017 -0.090 -0.006 -0213 0232 1.000 0.084 0.546 0498 0440 -0.236 0.068 0.198 -0.226 -0.171 -0.075
3y 0.063 0.021 0064 0044 0111 0.084 1.000 0224 0.195 -0.201 0.225 0.043 0.096 0.097 0.460 0.186
a 1-0.136 -0.126 -0.152 -0.117 0162 0.546 0.224 1.000 0687 0318 -0.241 0419 -0.165 0.017 0.066 -0.015
a -0.078 0.109 0.144 -0.256 0250 0.498 0.195 0.687 1.000 0.274 -0.166 0.239 -0.097 0.119 0.028 0.463
by {-0.211 -0.031 -0.112 -0.141 0.150 0.440 -0.201 0318 0274 1.000 -0.337 0.074 -0.113 -0.25% -0.678 -0.219
b, 0.034 -0.080 0.164 -0.008 -0.110 -0.236 0.225 -0.241 -0.166 -0.337 1.000 -0.138 0.083 0.094 0.139 0.090
by |-0.194 -0.119 -0.079 0.103 -0.051 0.068 0.043 0419 0239 0074 -0.138 1.000 0.074 -0.145 0.228 -0.307
< 0.017 -0.049 0.149 -0.024 0409 0.198 0.096 -0.165 -0.097 -0.113 0.083 0.074 1.000 -0.654 0.079 -0.053
o | 0128 0.198 -0.055 -0.028 -0.192 0226 0.097 0.0i7 0.119 -0.259 0.094 -0.145 -0.654 1.000 0.230 0.255
c, | 0204 0018 0038 0.139 0071 0.171 0460 0066 0.028 -0.678 0.139 0.228 0.079 0.230 1.000 0.178
G | 0051 0252 0377 0043 0000 0075 0.186 -0.015 0463 -0.219 0.090 -0.307 0053 0255 0.178 1000

AIC (Akaike’s Information Criterion),

selection criteria,

rameters.
however,

CRITERION FOR MODEL SELECTION

one of the most well-known model

uses an average logarithmic likelihood, which is ob-
tained by a maximum logarithmic likelihood according to the number of pa-

cable only by a maximum likelihood method. EIC

rion),

an extension of AIC,
according to the data by a bootstrap method.
large applicability (16).

and

The model which minimizes AIC is considered appropriate. AIC is,
a criterion based on maximum likelihood estimates,

thus appli-

(Extended Information Crite-

correctes biases in logarithmic likelihood
It is time consuming but has a
It can be expressed by the following equation.
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EIC = -2 log £(X | §) + 25,{log £(x" | 8") - log £(x | ] e

where, X* = a bootstrap sample; 8 = an estimated parameter vector.

Using EIC, the four-tank model shown in Fig. 1 and a 12-parameter in-
line three-tank model, created by removing the third tank from the top from
the four-tank model, are compared. Histograms of the objective function
errors of the four- and three-tank models are shown in Figs. 7 and 8, re-
spectively. Smaller dispersion is observed for the four-tank model. As a
result of comparison in the estimated error between estimated three- and
four-tank models, it was found that the first term on the right side of the
above equation was larger, and the correct term, the second on the right
was smaller for the three-tank model than for the four-tank model. Finally,
the parameter vector was 498.87 for the four-tank model, and 1002.15 for
the three-tank model when EIC was used. Thus the four-tank model was con-
sidered superior appropriate and selected.

CONCLUSIONS

Calibration of a runoff analysis model by GA was conducted in a catch-
ment of the M dam, and the statistical uncertainty of the model was evalu-
ated. An in-line four-tank model was used as a catchment runoff analysis
model, and estimation of its parameters without prior information was per-
formed. As a result, it was possible to obtain an optimum solution for
engineering use, and identify its uncertainty although it is a multimodal
ill-posed problem without uniqueness or solution continuity. Problems left
to be tackled include the dispersion of identified parameters and the defi-
nition of the objective function.
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