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SYNOPSIS

The critical-occurrence-condition of a debris flow due to rainfall is
described in terms of concentration time of rainfall and cumulative rainfall.
Since the occurrence-condition may vary stochastically with time, statistical
analysis is required. As there is little information available concerning the
distributions of concentration time and critical cumulative rainfall, a nonparametric
method is a valuable means of investigation. In this paper, the EM (Expectation-
Maximization) algorithm is used in order to obtain a nonparametric estimation of
distributions of concentration time and the critical cumulative rainfall. The
method is applied to the data of the Mizunashi River near the Unzen Volcano.
Demonstrated here is that the distributions of the concentration time and the
critical cumulative rainfall can be approximated by lognormal distribution.

INTRODUCTION

Debris flows have frequently occurred in the Mizunashi River since the
eruption of the Unzen Volcano in 1990. Recently, the occurrence condition of a
debris flow seems to have changed with dormancy of the volcano. The critical
condition of the occurrence of a debris flow can be described in terms of
concentration time of rainfall and cumulative rainfall(2). In the case of an
unsteady occurrence condition of a debris flow, it is difficult to estimate this
critical conditions by deterministic method. In this paper, a statistical method
for estimating the critical-occurrence-condition of a debris flow is introduced
and the probability of the occurrence of a debris flow is estimated. This needs
the distribution functions of the critical factors, concentration time of rainfall
and cumulative rainfall. But there is 1little information on them. .In the
following, a non-parametric method, like the Kaplan-Meier method, is used in order
to survey the form of a distribution function which has two variables, the
concentration time and the critical cumulative rainfall.

THE OCCURRENCE CONDITION OF A DEBRIS FLOW
The occurrence condition of a debris flow is described by assuming that a

debris flow occurs with the collapse of a slope when the depth of subsurface flow
exceeds the critical value as(2)

1=k T sind /A h
and
t
Rc=—>¥—H°—s r{u) du
cos 0 le -2 (2)

where 1 is the length of slope, 8 is the angle of inclination of slope, k is the
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hydraulic conductivity, » is the void content, H, is the critical depth of
subsurface flow at which slope failure will begin, r is the rainfall intensity at
the time t and T is the concentration time of rainfall.

From Egs. (1) and (2), one obtains

t

rc=Eci£tan65 ra =1 r(u) du (3)
T

it - T
Concentration time of rainfall on a slope is given by

= _h1 (4)
k sin 0

These equations describe the occurrence criterion of a debris flow as
functions of concentration time T and critical cumulative rainfall R, (or critical
rainfall intensity r ). It is possible to estimate these values by measuring H , 1
, k and 0 in the field, but the estimated values will not be accurate enough for
practical use due to the large errors in the measurements. It is therefore
preferable to estimate T and R, from rainfall and debris flow data.

The cumulative rainfall between time t-T and t defined below is calculated
from time series of rainfall and the maximum value of R(%T,t), R (7) is obtained.

t
R('l?, t) = r(u) du (5)

it - x

If there are no errors in the data and above assumption about the occurrence
criterion of a debris flow is quite true, the plotted line of R (T) on the
coordinate of T-R (T) as shown in Fig.l should exceed the critical point, (T, R)),
when a debris flow occurs, and should not exceed it when a debris flow does not
occur. Thus the envelope of the infimum of R (T} curves with occurrence of debris
flows and the supremum of R (T) curves without occurrence of debris flows will
cross near the point (T, R.) as shown in Fig.l(a). In fact, since the field
condition varies with time, the occurrence criterion is not described as a point
but should spread on the T-R (T) field as shown in Fig.l(b}.

Rm(T Rm(T)
§ i o
Supremum of P / Supremum of
non-occurrence
non-occurrence \
Infimum of \
occurrence Infimum of
occurrence
. e
T T
(a) (T, Rc) is constant. (b) (T, Rc) varies with time.

Fig.l Schematic illustration of supremun and infimum curves for occurrence of
debris flows.
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STATISTICAL ESTIMATION OF THE OCCURRENCE CONDITION OF A DEBRIS FLOW

Estimating the distribution of the occurrence condition by maximum likelihood
method

It is assumed that T and R, are distributed with a joint probability density
function £(T, R,; 9), where ¢ is a parameter vector of f. The procedure to
estimate ¢ by using the maximum likelihood method is following.

The probability that a debris flow occurs with the i-th rainfall event, P, is
expressed by the probability that (T, R,) is located in the area under curve of
R,(t) on T-R (T) plane.

Pi=i{

where R (T) is R (T} in the i-th rainfall event.
Loglikelihood function L($) for whole rainfall events is given by

o) = 3 (3 o) + (1 - 8) [1 - 24)) (7)

Rt (T}

£(T, Re ; ¢) dRe } dT (6)

o

where n is the number of rainfall events, 6 is 1 if a debris flow occurs and 0 if

does not in the i-th rainfall event. The maximum likelihood estimate, ¢ is the
value of ¢ which gives the maximum value of L(¢).

Nonparametric estimation of distribution of the occurrence condition of a debris
flow

Since there is little information available about the distribution of (T, R,)
or (T, r,), the nonparametric method is efficient for estimating the distribution
curves. As rainfall data are generally recorded as discrete values, TR (T) plane
shown in Fig.l is divided into JXK discrete points, where J is the number of
points along the T axis and K represents that along the R (T) axis. For
nonparametric estimation, it is assumed that (T, R,) follows the multinominal
distribution that probability that (T, R,) appears at the point of number (j,k) on
discrized T-R (T) plane is m, at once rainfall event. By replacing b with © = {7n|
j=1, 2, ..., J; k=1, 2, ..., K } in Eq.(7), the probability P, that a debris flow
occurs with the i-th rainfall event is expressed as

J
= 2 ZM Tk (8)
3¥1 k, Ro=Rmi(1)

The maximum likelihood estimate of % is obtained by equalizing every partial
derivative function of L(®) with %, to zero, where L(#%) is obtained by substituting
Eg.(8) into P1(¢) of Eg.(7). Since it is difficult to solve this in the explicit
form, the maximum likelihood estimate of 7 is calculated by the iterative method
using the EM algorithm(1l). The procedure is as follows:

First, if (T, R,) in every rainfall event was observed completely, log
likelihood function L (%) corresponding to Eq.(7) should be

J-1K-1

L, (m) = Z;;Cﬂc In Ty + kzlcgk 1n @y
J-1K-1 J-1 K-1
ZCJK 1n Tk + Cox in 1 - Z,Z, Tk - anx - Z“Jk} {(9)

where Coe is the number of times that (T, R,) at the discrete point of number (j,k)
was observed through whole rainfall events. In Eq.(9), terms with no effect on m,
are omitted, and the following relationship about parameters of multinominal

distribution L is used.
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In actual observation, data about maximum cumulative rainfall R (T) and
records of the occurrence/mnon-occurrence of a debris flow are obtained. We define
R,(T) and the occurrences/non-occurrences of debris flows through whole events, as
data M = {(T, R,(¥)), 8; i =1, 2, ., n }.

Using data M and approximation of %, n™, in expectation step of the EM
algorithm, conditional expectation Q(m, ®®) of L,(®) is expressed as

B | n, ]
J=1K=1

K-1
Zg E[Cjk | M, n®)] 1n 7y + Z&E[cak | M, a®] 1n mg

* zl E[Cix | M, n®] In my
= J=-1R-1 K-1 K-1

+ECox | M, w®] ln ZZ ik - ]Z;Tﬁjx - ;;“Jk} (11)

and E[Cjc | M, %] is expressed by using 8, in Eq.(7) and P, in Eq.(8).

o(m, m'*)

i

ik
ECi | M, )] 2‘16 — +913_)6’; 7 (12)

where g, (j,k) is

gi(jlk) = { ; 2:

1A

Rmi(t), 8 = 1 or Re > Rmi(T), & =

(13)
Rni(t), i = 0 or Re > Rui(T),

IA
i

]

The maximization step on the EM algorithm is to obtain % which gives maximum
value of Q. This is obtained through equalizing partial derivative functions of Q
by m, to zero.

E[Cix InM' ] (14)

ﬂfjk

Due to the characteristics of the EM algorithm(l), T is adjusted from the
prev1ously given njk“” to a value closer to the maximum likelihood estimate of Tr
njk. Repeating the substltutxon of =, obtained from Eq.(14) into Ty ® in Eq.(12),
njk converges into thk. At the first step on the iterative calculation, the values
of m, ® on the points (j,k) where the values of R, (T) do not appear in the
rainfall data {(T, R,(%)); i =1, 2, .,n } are given zero and those where the

values of R, (T) do appear are given same value satisfying Eq.(10).

THE RESULT OF THE ANALYSIS

Nonparametric joint distribution functions of concentration time, T and
critical cumulative rainfall R, as well as T and critical rainfall intensity r,
are estimated using data at the Mizunashi River near the Unzen Volcano. Rainfall
data for ten minutes collected at the Unzen Meteorological Observatory from May
'91 to September '96 are used. The occurrences of debris flows were recognized
using seismographic data for the same period. Because the occurrence condition of
a debris flow along the Mizunashi River is considered to have changed significantly
since July '93(3), distribution functions before and after July '93 are determined
separately.

The results are shown in Figs.2, 3 and 4 and Table 1. The figures illustrate
the estimated cumulative probabilities of T, R, and r,. Straight lines in these
figures indicate lognormal distribution with same averages and standard deviations
as those of estimated nonparametric joint distribution functions shown in Table 1.
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Table 1 Statistics calculated from nonparametric estimated distribution functions.

Variable Average Standard Correlation
deviation Coefficient
T in T
T before Jul.'93 49.2 min. 36.5 min.
after Jul.'93 43.8 min. 35.4 min.
R, before Jul,'93 9.4 mm 5.5 mm 0.33
after Jul.’'93 26.9 mm 33.8 mm 0.66
r, before Jul.'93 3.2 mm/10min. 2.0 mm/10min. -0.67
after Jul.'93 6.3 mm/10min. 3.6 mm/10min. -0.03

In T | before Jul.'93 3.52 (= 1n 33.9) 0.93 (= 1ln 2.54)
after Jul.'93 3.41 (= 1n 30.2) 0.89 (= 1ln 2.44)

1n R, | before Jul.'93 2.02 (= 1n 7.53) | 0.72 (= 1n 2.06) 0.50

after Jul.'93 2.73 (= 1n 15.4) 0.94 (= 1n 2.55) 0.70
1n r, | before Jul.'93 0.90 (= 1n 2.46) 0.75 (= 1n 2.11) -0.62

after Jul.'93 1.64 (= 1n 5.15) 0.70 (= 1n 2.01) ~0.31
99.999 99.999 T

99.99 |- 99.99 May '91~Jun.'93 )
~ 99,9 ~99.9F — — -Jul.'93~Sep.'96
% )
o ~ 99
f{ 3‘ 95
— = 90
o 80
q a 70
3 g %
Y
5
A s 30
= s 18
Bt
4 D
r:_lu 1r i 1
E 1k May '91~Jun.’'93 g 1
O g1k —-—-Jul.'93~Sep.'9|6 8 .o1
.001 L bbb b L0071 buw N Y vl
10 100 1.0 10.0 100.0
T (min.) R, (mm)
Fig.2 Estimated distribution Fig.3 Estimated distribution
functions of T ‘ functions of R,
(Straight lines are (Straight lines are

lognormal distribution.) lognomal diatribution.)

Correlation coefficients between T and R, and between T and r_ , are also
shown in Table 1,
Figure 2 shows the estimated marginal distribution functions of T as
b

K
cumulative probabilities, II; = an., where nj = ank. Comparing the stepped
m= K=

curves  of the nonparametric distribution functions with the straight lines of
lognormal distribution, they appear to be approximated by lognormal distribution.
No significant change between the distributions of T before and after July '93 is
seen in Fig.2 and Table 1.

The estimated marginal distribution functions of R, are shown in Fig.3 as

X g
cumulative probabilities, Iy = Zn‘m, where my = ank. This figure and Table 1
& £

show that the distribution of R, have changed considerably since July '93. The

estimated distribution function of R, seems to be approximated by lognormal

distribution before July '93, but it can not be approximated after July '93.
Figure 4 shows that the distributions of r_ , both before and after July '93,
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can also be approximated by lognormal
R X . 99.999
distribution. 99.99}-

THE PROBABILITY DISTRIBUTION OF THE
OCCURRENCE CONDITION OF A DEBRIS FLOW

The above mentioned analysis, by using
the EM algorithm, illustrates that marginal
distributions of T, R, and r, can be
approximated by lognormal distribution. This
is consistent with the fact that T, R, and
r, are defined by the products of many
factors, as seen in Egs.(2),(3) and (4),
leads to the conclusion  that their
distributions are close to lognormal

distributions due to the central limit

1k May '91~Jun.'93
L01F — = ~Jul.'93~Sep.'96

Cumulative probability (%)

| B Loyl |

theorem. If the joint distribution of X1 = .001 bl 10
In T and X2 = 1ln R, is expressed by ! r s
bivariate normal distribution, joint o (mm/10min.)
distribution of (T, R,) is given as following Fig.4 Estimated distribution
function of Eqg.(15). function of r_

If the parameters in this function are (Straight lines are

given by a certain method, the probability lognormal distribution)

that a debris flow occurs can be calculated
by the integration of this function.

£, Re) =  —
27X Ox1 Oxz Y1 - 53. T Re
% exp’— 1 (in T - pa) _2p (In T - pa) (In Re =~ x2) . (in Re - szY]\
‘ 2(1 - p?) og? Ox1 Oxy Og2?

(15)

CONCLUSION

The nonparametric distribution functions of concentration time T and critical
cumulative rainfall R, which the occurrence condition of a debris flow follows,
have been estimated using the EM algorithm. The estimated values of T and R, are
distributed lognormally. At the Mizunashi River, a significant change in the
occurrence condition between before and after July '93 is confirmed. The
probability that a debris flow occurs can be calculated from rainfall data using
the estimated distribution function.

Detailed analysis of the joint distribution of concentration time and
critical cumulative rainfall, as well as the introduction of a parametric method,
is all required in order to describe the probability that a debris flow occurs.

REFERENCES

1. DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. : Maximum Likelihood £from
Incomplete Data wvia +the EM Algorithm, Journal of the Royal Statistical
Society B(39), pp-.1-38, 1977.

2. HIRANO, M., HIKIDA, M. and MORIYAMA, T. : Occurrence Criterion and Discharge
Prediction of Debris Flow in the Active Volcanic Area, Proceedings of the
Japanese Conference on Hydraulics, JSCE, Vol.30, pp.181-186, 1986(in Japanese).

3. HIRANO, M., HASHIMOTO, H. and KAWAHARA, K. : Characteristics of Debris Flow at
the Mizunashi River in Mt. Unzen, Annual Journal of Hydraulic Engineering,
JSCE, Vol.40, pp.1027-1032, 1996(in Japanese).



69

APPENDIX -~ NOTATION

The following symbols are used in this paper:

Cy

£(?, R;; $)
g9; (3.k)

<

s I e

L($)
L(m)
L, (®)

the number of times that (T, R ) of discrete point number

(j.k) on T-R (T) plane is observed through whole rainfall events;
joint probability density function of T and R ;

defined by Eq.(13);

critical depth of subsurface flow at which slope failure will
begin;

discrete point number along the T axis;

the number of discrete points along the T axis;

hydraulic conductivity (used at p.l and 2});

discrete point number along the R (T) axis (used from p.3 to p.5);
the number of discrete points along the R (T) axis;

length of slope;

log likelihood function for whole rainfall events;

log likelihood function given the data M;

log likelihood function if (T, R ) in every rainfall event is
observed completely;

discrete point number along the T axis or the R (T) axis;

data of R (T) and the occurrences/non-occurrences of debris flows
through whole events, {(T, R, (%)), 8; i =1, 2, ..., n };

the number of rainfall events;

probability that a debris flow occurs with the i-th rainfall
event;

conditional expectation of L (%) given data M;

rainfall intensity;

average rainfall intensity;

critical rainfall intensity;

cumulative rainfall between time t-T and t;

critical cumulative rainfall;

maximum value of R(T,t);

R (%) in the i-th rainfall event;

time;

concentration time of rainfall;

in T;

In R ;

1 if a debris flow occurs and 0 if does not in the i-th rainfall
event;

angle of inclination of slope;

void content;
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Px1
Hxa

avarage of X1;
average of X2;
parameter vector of multinominal distribution

{ﬂjk[ j=1, 2, ceeyg J; k = l, 2, caep K };

probability that (T, R ) appears at the point of number (j,k) on

discrized T-R (T) plane at once rainfall event;

maximum likelihood estimate of T i

marginal nonparametric probability distribution of T at point of

number j;

marginal nonparametric probability distribution of R, at point of

number k;

approximation of @ on the iteration of the EM algorithm;
marginal nonparametric distribution of T as cumulative
probabilities;

marginal nonparametric distribution of R, as cumulative
probabilities;

correlation coefficient between X1 and X2;

standard deviation of X1;

standard deviation of X2;

cumulative time; )

parameter vector of £(T, R ; ¢); and

maximum likelihood estimate of ¢.
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