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SYNOPSIS

Resonance conditions of a bed in a meandering river channel are discussed through the
comparison of the experimental data with the linear theories of Parker and Johannesson (10) and
Hasegawa (5). The experimental data used in the analysis are provided by Toyabe et al. (13,14)
investigation of bed topography in channels of varying radii and meander length. Conclusions from
the analysis are : (1) the amplitude, as predicted by linear theories, of a resonant bed wave of
fundamental mode is not significantly different from those under other conditions; (2) a bell-shaped
frequency response of wave amplitude is evident from both the experimental data and the results of

- theories applied to cases of both formation and nonformation of bars; and (3) the linear solution for
phase lags between the channel meander patterns and the river bed waves agrees reasonably well
with the experimental data.

INTRODUCTION

When alternating bars form coincidentally with the effect of bends in a meandering channel, a
so-called resonance phenomenon occurs. Early, Kinoshita (8) pointed out this interactions between
alternating bars and channel bends as the inherent nature of river channels, and Engelund (3)
discussed the coexistence of alternating bars and point bars. However, neither researcher referred to
this as resonance. Blondeaux and Seminara (1) and Struiksma et al. (12) almost simultaneously
discovered the phenomenon of resonance. Blondeaux and Seminara (1) showed the existence of a
resonant frequency, in which the amplitude goes to infinity in the linear equations for the deformation
of the bed topography in meandering river channels. Struiksma et al. (12) reported over-deepening
of bed at the entrance to a bend being based on their measurements and numerical analyses. Later,
Parker and Johannesson (10) formulated a spatial oscillation equation that is easily understandable
for the response of bed forms, and showed that the equation can describe the resonance phenomenon.
According to their analyses, deformation of bed topography in meandering channels results in a forced
oscillation problem where an external force, produced by the channel bend, acts on the free oscillation
of bed related to the formation of alternating bars. Over-deepening is a transient response problem,
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in which a step function is incorporated into the forcing terms, at an entrance to the bend.
Previously, Hasegawa (5) conducted a very similar linear analysis, but did not point out a resonance
phenomenon,

The linear equation predicts that the response amplitude approaches infinity for the resonant
wavelength. This is contradictory to the real phenomenon. Seminara and Tubino (11) developed
the nonlinear analysis by using perturbation method around a singular point, which is corresponding
to the resonant wavelength and the resonant width-depth ratio. They obtained an amplitude response
that was close to the actual values. This study was based on a finite amplitude theory of the bar
height of Colombini et al. (2) and on a nonlinear theory of the interactions between alternate bars and
point bars of Seminara and Tubino (11). However, the equations they formulated involve an
excessive number of terms and are very complex. Linear analyses are superior to those nonlinear
theories in the plain explanation of the mechanism of sand bar formation in a channel bend.

In the Civil Engineering Research Institute of the Hokkaido Development Bureau, Toyabe et
al.(13, 14) conducted 80 experiments, consisting of varying wavelengths, maximum curvature, and
width-depth ratios. They also made quasi-three-dimensional numerical analyses which retain all
nonlinear terms and summarized the characteristics necessary to confirm the significance of the
resonance phenomenon for river training. Their experimental results (hereafter referred to as "the
experiment”) and numerical analysis showed an increase in depth of the scour in meandering
channels with the resonant wavelength. However, the increase scour depth was not significantly
larger when compared with other typical scours.

In this paper, the experimental results of Toyabe et al.(13,14) are compared with the more easily
comprehensible linear theory to re-examine the mechanism of resonance phenomena, and to clarify
the limit of the application of the linear theory.

CHARACTERISTICS OF WAVENUMBERS OF THE EQUILIBRIUM BED TOPOGRAPHY

The experiments were comprised of two different radius of curvature-channel width ratios B /B
( R: the radius of curvature, B the channel width) of 5.0 and 10.0. In each case, the channels with
eight different wavelength-channel width ratios 1/B ( 7 : the meandering wavelength) ranging from
6.28 to 31.4 were used. The channel width was fixed at 30 cm. Centerline planforms of the
channels were sine-generated curves. The type of sand used was constant for all experiments and
had an average grain diameter of 0.056 cm. The discharge and river bed gradient were adjusted to
yield channel width-flow depth ratios B/H (H': the average water depth) of 10, 20, 30 and 40 . Thus,
both R /B ratios were studied under conditions with and without alternate bars. After reaching
equilibrium, the water surface and bed topography were measured by an automatically controlled bed
profiler.

A double Fourier analysis was applied to the bed topography data. In the analysis, the primary
wavelength in the transverse direction was set at twice the length of the channel width, and the
primary wavelength in the downstream direction was set at the wave length of the channel meander.
Mode numbers in the transverse and the downstream direction are represented by i and j, respectively.
Dominance of the amplitude components was often observed at (i, j) = (1, 1), (2, O), B, L), (2, 2
(Hasegawa and Nakamura (6, 7)). These results agreed with the experimental results of Hasegawa
(5), but they did not completely agree with the results of Garcia et al. (4), which indicated that (1, 1),
2,0, 1, 2, (1, 3) were dominant. Comparing all the experimental values of these major amplitudes
normalized by the water depth, the (2, 0) and (3, 1) waves had almost consistent features regardless of
the conditions of the channel, Their amplitude increased as B/H increased, while the (2, 2) wave was
largely affected by the topography of the channel, such as 1 /B and B/H, The (1, 1) wave, which
had the largest amplitude, also varied with 1/B. The amplitude was large when 1/B was
between 10 and 20, but it decreased as 1 /B moved away from this range. This wave is meaningful
since it is directly affected by the curvature of the channel. Indeed, this is the only component wave
which has a resonance relation against the meandering channel form from a view point of the linear
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theory. This is discussed later.

Now, bed topography formed in a meandering channel is thought to be composed of two
components: [1] deformed alternating bar influenced by the channel bend, and [2] bed scouring caused
by the spiral (secondary) flow in a channel bend. Fig. 1 shows the overall concept for a forming
process with respect to each dominant wave amplitude in a meandering channel. The lateral axis
indicates the degree of sinuosity of a channel bend, and the vertical axis presents the influence rate of
bend effects and bar growth effects on the bed wave forming. The dash line shown in the figure isan
imaginary boundary to divide the extension where effects of bend on the bed are dominant ie.
influences of spiral (secondary) flow prevailed over those of an alternating bar formation. Symbols
like A4,;, A, etc. mean the amplitude of (1,1) wave, (2,0) wave etc., respectively. Subscripts T, F and C
mean effect of alternating bar formation in a straight channel, effect of alternating bar formation
affected by a channel bend and effect of a channel bend itself, respectively. The amplitudes of the (2,
0) and (3, 1) waves in the meandering channel (A,)r and (4,)r are scarcely influenced by the bend.
They differ very little from the amplitudes of the straight channel (4,)r and (4;)7. But the value of
(A,)r is not equal to (A,)r because of indirect effects of the bend. The amplitude of the (1,1) wave
(4,) is composed of the amplitude of the sand bar (4,)r which is affected by the bend, and (4;)¢
which is caused by the direct influence of the bend. Only (A4,)r is subject to resonance. The effects
of channel bends and alternating bars can be independently treated with the linear theory, which
allows a linear summation of the two solutions later.

THE LINEAR THEORY AND RESONANCE CONDITIONS
Resonance Conditions of Parker and Johannesson

Parker and Johannesson (10) formulated linear equations of meandering channels. They
produced these equations by combining the depth-averaged longitudinal and transverse momentum
equations, the continuous equation of flow, the continuous equation of sediment, and the bed load
function. They succeeded in comprehensive explanations easily understood by dividing these linear
equations into the "F" problem, where alternate bars are treated as affected by the bend, and the "C"
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problem, where sand waves are regarded as directly influenced by the bend. The equations in the "F"
problem are written as follows:

rup'+2Puy + P =0 @
TUg '“‘m)«"uf% =0 @
on
. aUF 62nF ’ ¥ *
rMup'+rM g+ —= =T —=F = —r(M ~ Yuc'+r(M, +1h, @
on on
B on
vFln:il - ! %;LE_ n=tl @

Where, the used symbols are defined as follows: The prime denotes the differentiation with respect
tod;d=2ns/ A ; §'= the longitudinal coordinate along the centerline of channel;x=the meander
length; n=7/b ; f= the transverse coordinate; b = the half width of the channel:

r=2nH/ (?N»C 0); H = the depth of the base flow; C,,= the frictional coefficient for the mean flow;

Wp,vp,p) = (s 1y U, 0 Iy U Ly H); (liy,0,,7M,) = (the perturbations of flow velocity in
the longitudinal direction, those in the transverse direction and displacement of the bed topography,
all of which are affected by the deformed sand bar due to the bend);y,= b/T, . ; 7 . = the
minimum centerline radius of curvature; U/ = the cross-sectional mean velocity of the base flow;
U =g 1 yoU = n(@, cosdp+b, sind); hy =hy /y,H =(A+F¥)nsing; (U.he) = (the
perturbation of the longitudinal velocity and water depth affected by the channel bend);

(@, ,gc )= the parameters of the secondary approximate solution of Engelund (3) related to Ty the

excess velocity from the cross-sectional mean velocity, and they are described as follows,

~ 2P+A . ~ 92PA-r* ~ 751 +2/7) .
= ] ] = AsBFP+A)+A, -1, A=22AT2 D F = the Froude
cTTEapT T 4P D By
number of the base flow; P~ 1; B =1+5/C,; 4 _1g 2K 4n/5+1/15,
’ (b/H)*y,
1 1 1+op f'c'c ..
= —— X=% == B= e M=3/(1-1:/7T0); M, =25/C, . M;
i 13,[(3,0 '3 fop T 80 ! 0
B ; o, =0856; p= the dynamic Coulomb coefficient; f, =119 (when u=043);

s ——— )
GIHYC,,

o . N . * . .
T . =the dimensionless critical shear stress; T . = the dimensionless shear stress for the base flow.

The system composed of Eqs.(1); (2) and the homogeneous equation for Eq.(3) completely agree
with the linear equations formulated to express the flow with alternate bars in straight channels.
However, the right hand side of Eq.(3) (the forcing term), which is not equal to 0, gives the
deformation effects of channel bending on alternate bars. FEq.(5) below is obtained by eliminating
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vy and vy from the above three equations and by substituting
. (7 )
Nr =Mp Sln(‘z‘ n) @)
derived from the approximation of 1~ (n®/8)sin(nn/2), for ny.

Although, Parker and Johannesson (10) did not expand these equations with respect to 1 . Then, the

authors formulated Eq.(5), referring Kishi'(9) similar expression that was used in an analysis.
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here, D, = r{(M1 +1)(A + F2)—(M - Db, }; D, = (M -1)d,

Eq.(5) gives the spatial force oscillation. The resonance requirement is that the coefficient of the
third term of the left hand side is equal to 1, which gives the wavenumber of the force oscillation. As
a result, the resonant wavenumber is determined as follows:

(©)

The natural resonant state occurs when the coefficient of the damping term (the second term in the
left hand side in Eq.(5)) is equal to zero (equivalent to the neutral condition where the development of
the sand bar is halted). Therefore, Parker and Johannesson (10) suggested the following equation as
an additional condition for resonance.

2
I, = (-2-) (P,(M -1)-2P(M, +1)} @
.y
Each value of I in the experimental conditions is not always realized to coincide with the value of
I, calculated from Eq.(7). Thus, the resonant wave number calculated from Eq.(6) by using an

ordinary value of I' is not natural resonant one, However, the resonant wave number obtained from

I' different from T, has the content of the resonant wavenumber in a damping oscillation.

Comparison Between the Linear Solutions of Parker and Johannesson
and the Experimental Values
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The following equation can be obtained by solving Eq.(5) for mp,:

2 2
VB +E, sin(¢ +¢,) ®

e = JE oD+ (K, -1)*

where,
1
X —2P(M1+1)—P1(M—l)+zn21" . nZPF E =_8_2PD,+rD2 )
Lo r(M, +1) TR+ R (M 1)
8 2PD, -rD J K B
E,=—""2 7L, =tan {—- ! )+ ; =t ’l(ml.)
© ot rf(M,+1) b K,-1 boi 4 =tan E,

The curvature-driven bed topography of the bed scoured by the spiral flow is given as follows:

2
Ne = —%—A sin¢ -sin(g—n) C)

After substituting equation (8) into 1, of Eq.(4) and then incorporating M, with Eq.(9), the

linear meander bed form 7j, can be obtained by:

~ 2 2 2 2 2 2 2
ZZ—E-:: .7[—A +“.ELL€L~_.7£~A ...._._E_L..i....E_L___.COS
H "’“\/[8 ) KP+(K, - 4 VK +(K,-1)° Z a0

e sin(g + ¢2)sin(i2[— n)

2 2
[BES .,
K’ +(K,-1) an

where,

The amplitude 4, of the wave (1, 1) of the measured bed topography can be compared with the

amplitude of Eq.(10). Because the amplitude varies depending on the coefficient of the damping term,
the experimental values are compared in the cases with different values of B/H. Figs. 3 - 6

compare the theoretical values with the experimental ones of r/r,, and A, /H which are taken as

the horizontal and vertical axes, respectively. At B/H=30, the experimental value of g, is close to

zero, a natural resonance state theoretically arises and the theoretical value of the amplitude goes to
infinity. However, the experimental values of amplitude are distributed with a bell- shape to have
the vertex near the resonant wavenumber, where the maximum is about 1. This value is close to
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Conversely, at B/H =40, where the formation of alternate bars is theoretically

possible (k,(0), the theoretical values approximated by a finite curve has the maximum at the

resonant wavenumber.
values.

cannot form.

the measured values are located around the theoretical values.

Also, distribution of the measured values is similar to that of the theoretical

Interesting cases are B/H =10 and 20, whereg, > 0 and theoretically alternate bars

In both cases, theoretical results take a maximum near the resonant wavenumber, and
This demonstrates that the

meandering wavelength, which causes the dangerous bed scouring, can exist even under conditions
where alternate bars are not formed. Even so, the meandering wavelength
has been believed to arise only when the formation of the sand bar and bed scouring due to bending

occur simultaneously.
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However, the acceleration term and the transverse gradient term of the water surface in the flow
motion equations were neglected in the theory of Parker and Johannesson (10) to address the
resonance phenomenon straightforward. As a result of this gross oversimplification, the factors
related to alternate bars, such as the absence of the dominant wavelength of alternate bars, can be
roughly discussed. At B/H =20, the formation of weak alternating bars was evident in the
experiment. The experimental values in this case are considered to indicate the coexistence of
alternate bars and meandering. To answer these questions, the experimental values are compared
with the theoretical solutions by Hasegawa (5) in the next section.

Comparison of the Theoretical Values of Hasegawa with the Experimental Values

Parker and Johannesson (10) neglected dv/0ds and O / On (transverse water surface gradient)

in the equations, but Hasegawa (5) retained them in the éxpansion of the equations. Additionally,
the alternate bars had a dominant wavenumber. Differing from Parker and Johannesson, Hasegawa
used an approximation method of Galerkin and the different ways of expressing the secondary flow.

Sincen is directly calculated from one of his equations, a clear understanding of n, and n. is

difficult, unlike the force oscillation equation. Due to space limitation, only the results can be
mentioned and the equation for the (1, 1) wave is shown as:

s 2 2 ’
17]5 = %éﬁ cos{k(s - o)}sin (g n) 12)
K

here, . _ a7 (p ___S./C +Z e peiMa -Td __?i___ﬂe*_. ;
P =33C ) 27k " BT T R e,

' 27H L
) T H _V ? Uy % ; = —— = ] tudinal
K = './‘/-'O—[Mb” + —2—-;’-];-6‘“) A——}/—O(Ma“ 'E;‘k“d” +5-;k-N”) k ;(, S ongitudina

coordinate normalized by H ; N, = the coefficient of the strength of the secondary flow, to which a
value of 14 was assigned; a, ,a/ ,b,,5/ ,c, ,c, ,d, and d/ are complicated equations with
respect to k,M,y,F and Cfo, those correspond to the coefficients of the solutions foru, and vy;

¢ = the phase lag taken in s-axis. The other notations are the same as the previous ones.

The conditions corresponding to the state of resonance for Eq.(6) can be obtained from A * = 0.
This will be accepted from the comparison of equation (8) with Eq.(12). It is difficult to find &

analytically to fulfill these conditions, because @,; involves higher order terms for k. Therefore, k

was directly assigned to the horizontal coordinate to compare the amplitude of Eq.(12) with the
experimental values ( Figs. 7-10 ). The figures show that resonance occurs at B/H = 20.0, which
differs from the previous case, because the neutral line for the formation of alternate bars shifted due
to the rescaling of the model. Additionally, because a weak sand bar formation was observed in the
experiment, the solutions of Hasegawa (5) are closer to the actual phenomenon. Thus, the natural
resonance state arises at B/H = 20.0 according to the linear theory. The experimental values
produce an upward convex curve, but the maximum value is only as large as 1.0, which is not
particularly different from other cases. At B/H= 10, the non-formation of alternate bars, the
solutions of Hasegawa (5) also produce an upward convex curve, which supports the validity of the
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experimental values. However, the maximum point of Hasegawa (5) deviated slightly from the
experimental one. This tendency can also be seen atB/H = 30 and 40, where alternate bars are
formed in the Hasegawa theory. The greater the parameter affecting the growth rate of the alternate
bars (A¥) is, the smaller the theoretical maximum value becomes, which is comparable to the
solutions of Parker and Johannesson. This may appear illogical and is discussed later in this paper.

PHASE LAGS IN THE LINEAR SOLUTIONS AND THE EXPERIMENTS

The phase lag of the (1, 1) wave in the solutions of Parker and Johannesson (10) is given by ¢,

of Eq.(11), which was compared with the experimental values. In the experiment, an apex of the
meandering bend was assumed to be the origin. The distance between the origin (apex) and the bed
scouring downstream was measured as positive and upstream was measured negative in the
horizontal direction. In addition, the bed scouring was positive in the vertical, downward direction.
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The theoretical values were also adjusted accordingly. The theoretical phase lag ¢, was converted to

¢, , whichisequal to (m—¢,), to compare them with the experimental values.

The results are shown in Figs. 11-14. Except when B/H = 10, where alternate bars do not form,
the results are almost consistent. The experimental values show that with non-formation of
alternate bars, considerable bed scouring occurs downstream, sometimes reaching the point of
inflection and even to the vertex of the convex bank. The theoretical convex curves, however, do not
go beyond the inflection point (approximately = /2).

Both the theoretical and experimental values show that at B/H = 20, 30 and 40 with formation
of alternate bars, bed scouring takes place only near the apex of the concave bank. It is interesting
that on the bed topography where alternate bars formed, bed scouring occurred upstream from the
apex in the meandering channel whose wavelength was longer than the resonant wavelength, which
is also supported by the experimental values.
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DISCUSSIONS

In damping term of Eq.(5), factor k, is a parameter of the growth rate of alternate bars.

Therefore, at g, =0, where the natural resonance state appears, the bed topography is neutral and

is stable against disturbance. This can be interpreted that when external forces are exerted, the bed
topography is deformed by the force without any resistance.

When g, is positive, the bed topography is stable against disturbance and negative acceleration

acts against the deformation caused by external forces. However, the response amplitude has a
maximum value at a certain wavenumber. Thus, the resonant nature inherently exists in alluvial
meandering channels. And also, in this case, the homogeneous solutions of Eq.(5) (free oscillation)
corresponding to the self-excited wave of the river bed damp together with the distance from the

origin, because the homogeneous solution has the form  _ .., {1 / 2(_ K, K - 4K, } Therefore,

only the particular solution of Eq.(8) should be considered.

When g, is negative, the river bed is unstable and alternate bars begin developing. In this

case, the homogeneous solutions increase together with the distance from the origin. Asa result, the
self-excited wave of the bed disproves the solution of Eq.(8), and they lose their significance, which
technically indicates that the linear theory cannot strictly be applied in this case. The experimental
values in the regions where alternate bars form are apparently consistent with the solution of Eq. (8),
probably because the formation of the alternate bars is halted by other factors (nonlinear factors) and
creates a situation equivalent to the homogeneous solutions not being used. The high applicability of
the phase solution implies that this interpretation is somewhat legitimate. In other words, an
inherent peculiar system acts to cease the growth of alternate bars at a limited amplitude, which
might deter deformations of alternate bars caused by external forces, as if it was a damping effect.

SUMMARY

A total of 80 experiments were conducted in meandering river channels, combining different
maximum dimensionless bend curvatures, dimensionless meandering wavenumbers, and the width-
depth ratios, The equilibrium bed topography data obtained in the experiments were analyzed by
linear theories. As a results, the following conclusions were reached:

(1) In the major waves to comprise the bed form, the amplitudes of (2, 0) and (3, 1) waves were not
particularly affected by the bend. However, they varied with the parameters relevant to the growth
rate of alternate bars, such as the width-depth ratio. The amplitudes of the (1, 1) and (2, 2) waves
changed primarily with the dimensionless meandering wavenumber and had a maximum value at a
certain wavenumber. In the context of the linear theory, the resonant state should be discussed only
on the sand bar which is influenced by the curvature of the (1, 1) wave (excluding the portion of bed
scour with the direct influence of the curvature).

(2) The linear solutions of Parker and Johannesson (10) and Hasegawa (5) show the natural resonance
wavenumbers under neutral conditions where the growth rate of alternate bars is zero. However,
the experimental values of the amplitude under these conditions do not largely exceed unity in
normalized scale with mean water depth. They are differ little from the values of the amplitude under
other conditions.

(3) The convex curves representing the amplitude tended to show peaks near the resonant
wavenumbers, even under the conditions where alternate bars do not grow. This is regarded as an
inherent nature of alluvial meandering river beds.

(4) The linear solutions were essentially invalid for condition with the formation of alternate bar, but
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the experimental values agree well with the particular solution. This may be due to non-linear
factors influencing the prevention of sand bar growing.

(56) The phase solutions of the linear equation corresponded very well with the measured phase of the
(1, ) wave. The agreement was better in areas where linear solutions were problematic where
alternate bars grow. Conversely, it was worse in areas where linear solutions were not problematic
where alternate bars did not grow.

Since this paper discusses linear theory, the (1, 1) wave inevitably is the only wave subject to
discussion. Nonlinear analyses are absolutely necessary for a discussion of the other component
waves. For such a discussion, the formation of alternate bars and the nonlinear effects of
meandering should be dealt with separately. This will be subject of future research for the authors.
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APPENDIX --- NOTATION

The following symbols are used in this paper:

e, b = parameters of the secondary approximate solution of Engelund related to ug;
A, = dimensionless coefficient concerned with correlation between the main flow and
secondary flow;
A = dimensionless bed scour factor;
Ay = amplitude of (i,j) component in bed topographical waves;
(Ayr = A of the alternating bar in a straight channel;
ADr = A of the alternating bar affected by a channel bend,;
(A = A, of the bed form scoured by the secondary flow in a channel bend;
b = half-width of a channel;
B = width of a channel;
Cp = frictional coefficient for the mean flow;
D, D, = dimensionless parameters in (5);
E, E, = dimensionless parameters in (8) ;
F = Froude number of the base flow;
B, b = perturbation of water depth affected by the channel bend, the dimensionless form
made with WA,
H = depth of the base flow;
k = dimensionless wavenumber of a meandering channel 27 H/7 ;
K, K, = dimensionless parameters in (8);
M, M, = dimensionless coefficients in the equation of sediment continuity;
W, n = transverse coordinate, and the dimensionless form with the channel half-width
b,
Ny, = coefficient with respect to the secondary flow intensity near the bed;
P, P = dimensionless coefficients in the equation of downstream momentum balance;
r = dimensionless wavenumber of a meandering channel 27 H/(1 Cp);
Lros = dimensionless resonant wavenumber;
X Gomin = minimum centerline radius of curvature;
5,8 = longitudinal coordinate along the centerline of a channel, and the dimensionless
form with the base flow depth §/ H;
uc, up . =scaled dimensionless longitudinal velocity perturbations in the “C” and “F”
problems, respectively;
g, Up = longitudinal velocity perturbations in the “C” and “F” problem, respectively;
U = cross-sectional mean velocity of the base flow;
Vo, Vi = gcaled dimensionless transverse velocity perturbations in the “C” and “F”
problems, respectively;
Vo, Vr = transverse velocity perturbations in the “C” and “F” problem, respectively;
B = coefficient in transverse sediment transport;
y = ratio of half-width to base flow depth b/ H;
' T = coefficient of gravitational diffusion B/(v2Cy), and value of T" in resonant state;
g = displacement of bed topographical surface from the mean bed elevation in a
meandering channel with alternating bars;
n¢ = gealed displacement with W, of bed topographical surface from the mean bed
elevation in “C” problem;
e, NF = displacement of bed topographical surface from the mean bed elevation in “F’
problem, and the scaled form with ¥,H;
7o = amplitude function with respect to ¢ in 7y
£ ,K = dimensionless parameter in (12) of Hasegawa theory;
A%, A = dimensionless parameter in (12) of Hasegawa theory;
Z = meandering wavelength;
i = dynamic Coulomb frictional coefficient;
g = phase lag taken in s-axis;

T*, = dimensionless critical shear stress;



T %0 = dimensionless shear stress for the base flow;

¢ = dimensionless longitudinal phase coordinate 27 §/1 ;
b = phase lag given by tan'{E,/E,} ;

¢y = phase lag given by tan'{— K, /(K,— 1)} ;

Oy = phase lag given by (11);

¢ =71 T ¢y

v, = dimensionless maximum centerline curvature b/ rgy;, ;
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