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SYNOPSIS

Geometric and migration characteristics of bar in meandering channel are investigated.
Depth-averaged flow model coupled with bed deformation model is applied to meandering
channels with a wide range of hydraulic and geometric conditions. From the results of the
numerical experiment, a series of figures are presented, which show the effects of each parameter
to the bar migration characteristics and finite amplitude bed topography. An empirical formula
is proposed to estimate the finite amplitude bar height.

INTRODUCTION

Prediction of finite amplitude bed topography in a given hydraulic and geometric con-
dition is an important subject in river engineering works. Among the various scales of bed
forms of alluvial channels, this paper mainly deal with the meso-scale bed form, in which the
characteristic length is represented by flow depth, channel width, or meandering wave length
of channel geometry. Free bars, like alternate bars and forced bars in bends, are very impor-
tant factors to determine the meso-scale bed configuration of rivers. These two phenomena
have been discussed in many previous studies. Investigations of the interaction between free
and forced bars, were pioneered by Kinoshita and Miwa(1). Hasegawa and Yamaoka(2) ap-
plied a quantitative treatment. This was followed by theoretical methods in which both free
and forced bars develop resonantly at a given frequency of meandering channels, like in the
theoretical studies by Blondeaux and Seminara(3) and by Parker and Johannesson(4).

Numerical models have also been proposed by several researchers, e.g., Nelson and Smith(5),
Shimizu and Itakura(6), to predict meso-scale bed configuration of meandering channels. It
seems that most of the previous studies have succeeded to predict bed topography to a certain
extent, however, these studies have only concerned with some limited condition of flow and
channel geometry. In this paper, a series of numerical experiments are conducted while each



parameters such as non-dimensional meander wavelength, non-dimensional maximum curva-
ture and non-dimensional width of the channel are changed individually. The finite amplitude
bed topography in each condition is calculated, and the effect of each parameter on finite bed
topography as well as the migration characteristics of bar is clarified. Through this study, gen-
eral characteristics of meso-scale bed topography is summarized more comprehensively than the
previous studies. Based on all the calculated and experimental results, an empirical formula to
predict finite amplitude bar height is proposed.

PROCEDURE OF STUDY

In this paper, the notation symbols denote non-dimensional values, and dimensional ones
are expressed with ~. The mathematical model used in this study is a semi-three-dimensional
numerical model of flow and bed deformation proposed by Shimizu et al.(7), which have been
verified in terms of various experimental results. The channel geometry is represented by sine-
generated curve along the non-dimensional axis s normalized by half channel width B as;

@ = g cos (—2.[/13) (1)

in which s = axis along the channel centerline (=5/B); ¢ = meander angle; L = meander wave
length of channel along s axis (=L/B); and ¢, = value of ¢ at § = 0.

The channel geometry, and flow and bed conditions can be represented by the following
normalized parameters of channel meander wave number A, maximum channel curvature v,
channel width f, grain size diameter d,, shear stress 7, and Froude number F.,.
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in which Rp = the minimum radius of curvature of channel; B; = averaged depth; E; = diameter
of bed material; U, = mean velocity of flow; § = the acceleration of gravity; Sy = averaged
channel slope in flow direction; p, = deunsity of bed material; and g = density of water.
Among the six parameters defined by Eq. 2, A and » represents the channel geometry,
B represents the channel cross-sectional shape, d, represents the bed roughness through the
bed material size, 7,0 represents the quantity of bed load, and F, represent the flow regime.
Most of the given condition of flow and geometry can be expressed by the combination of these

parameters. L and ¢, in Eq. 1 can be described in termf of X and v as,
v

L= '2{-{ Po= 15— 3)
By the combination of A and v, various channel geometry can be specified as shown in
Fig. 1. Straight channels are defined as ¥=0 and L=00, resulting A=0 using the relation of Eq.
3.
In order to investigate the characteristics of bed topography and bar migration depending
on the channel geometry, A, v and f are chosen as parameters for the sensitivity analysis.
Combination of 5 values of A and 6 values of v represents 30 channel geometry as shown in

Fig.1. Over each geometry shown in Fig. 1, four different values of 3 (5, 10, 15, 20) are applied,
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Fig. 1 Plane geometry of test channels by combination of lambda and v
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Fig. 2 Time change of non-dimensional maximum bar height H,
(v =0.03, A\=0.1~0.5,8=05~ 20)

and thus 120 series of numerical experiments are conducted in this study. In order to test the
pure effect of A, v and 3, the other parameters are kept constant as d, = 0.05, 7y = 0.08 and
F, = 0.83. Conditions with 8 = 10, 15 and 20 are classified in alternate bar condition according
to regime criteria proposed by Kuroki and Kishi(8), while § = 5 is classified in no-bar condition.

MIGRATION CHARACTERISTICS OF BAR

Series of numerical experiments were conducted until steady bed topography was obtained
under the condition defined in the previous section. Most of the calculated results reached
equilibrium state after some calculations, however, depending on parameters, calculated results
showed some oscillating movement. For example, Fig 2 show the time dependent variation
of calculated maximum non-dimensional bar height, H;, when v = 0.03. In which, Hj is the
difference between highest and lowest bed elevation over the channel with the set up condition.
Horizontal axis of Fig 2, t is the non-dimensional time, ¢ = - IT'D / E’, in which 7 is the time.
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Fig. 3 Time change of most eroded point along test channels
(v=10.03, A =0.1~05, 3=5~20)

In every result of Fig 2, H, tends to increase with the increase of 8. Hj, becomes stable
when the value of A = 0.2, however, showing an oscillating nature in other cases. The amplitude
of the oscillation is smaller when ( is small. In order to see the relation between the oscillation
and bar migration, temporal change of the deepest point in each calculation is plotted in Fig.
3. The horizontal axis of Fig. 3 is non-dimensional longitudinal axis s, and each line shows
the temporal change of the deepest point along left-hand side bank. Bar migration is not
observed when A = 0.15 and 0.20, and it takes place when A = 0.30 and 0.50. The migration
velocity is faster when the value of A becomes more distant from the value of A = 0.15 and
0.20. The examples shown in Fig.3 are data of channels with very gentle curvature as v = 0.03.
It seems that one wave length of free bar fits into one wave length of channel meander when
A=0.15 ~ 0.2. On the contrary, when A = 0.1, bar starts to migrate with increase of 8 which
amplifies the migration characteristics of free bar.

The temporal change of the most eroded point is shown in Fig. 4 when the curvature of
meander is large as v = 0.2. In this case, since the effect of channel curvature is dominant, bar
migration is not seen in most cases. It is only observed when A = 0.5 and 8 = 20, in which
meander wave length is very small and free bar effect is dominant. In this case, free bar can
propagate through the channel meander. Plural eroded points in one meander wavelength are
observed when A=0.1. It is because that the meander wave length of channel geometry is much
longer than that of free bar, and more than one free bar can exist in one channel meander.

Kinoshita and Miwa(1) had proposed a regime criteria for the bar migration from a large
number of experimental data. All the results of numerical experiments in this study are plotted
in Kinoshita and Miwas’ figure in Fig. 5. ~

The vertical axis and horizontal axis of Fig. 5 are £/2b (£ is meander wave length and b is
channel width) and 26 (8 is meander angle), respectively, which can be represented using the
non-dimensional parameters as 7/2x and 2v/), respectively.

In the symbols of Fig. 5, O denotes the bar migration regardless with the value of § and
X denotes no migration. A and [ are the experiments with bar migration when g is larger
than 15 and 20, respectively. All the results generally agree with Kinoshita and Miwas’ criteria,
however, in the neighborhood area of the Kinoshita and Miwas’ curve, bar migration is only



7
267 o % * Numerical Calculation
£ A4 o Toyabe et al. (1993)
%5“ , iy y 2 Nino and Garcia (1992)
8, S = Colombini et al. (1990)
2 o x JSCE Hydraulic
Bs- X 8 Committee (1982)
g1 x °
2o
Jrugy P
7 X
0 LA S R DR EA N S RN N B RN R
0 1 2 3 4 5 6 7

Hb(Predicted by Eq. 4)

Fig. 8 Comparison of bar height between Eq.(4)
and numerical experiments and physical experiments

Hy = {10 +0.10 + (~18.4 + 15.60Q — 2.507 + 0.120%)v
+(0.1 — 0.0040)8} (0.3 + 19.0d, — 88.1d%) (4)

in which @ = 1/X and d, = non-dimensional grain size of bed material normalized by averaged
flow depth. Parameter d, is introduced because it is another important parameter for the
prediction of H, [Shimizu et. al (7)]. All the results of numerical experiment in this study are
compared with Eq. 4 with symbol @ in Fig. 8. In the figure, experimental results by Toyabe
et. al(9), O, Nino and Garcia(10), A, Colombini et. al(11), and experimental data summarized
by JSCE (12), X, are also plotted. Some data by Toyabe et al., O, show disagreements with
Eq. 4. These experiments are with condition of §=20, in which multi row bar is developed in
the channel. Except these, the data shows the good agreement with Eq. 8.

CONCLUSION

Large number of numerical calculations were conducted to investigate the finite amplitude
bed topography in meandering channels with a wide range of geometric and hydraulic condition.
Some important characteristics to determine the bed topography and bar migration are clarified,
including the critical meander angle at which the free bar cease to migrate. Using the data set
obtained from the numerical experiments, a practical formula to predict finite amplitude bar
height is proposed. The formula is verified using the data obtained from numerical calculations
as well as large number of experimental results. It was shown that the finite amplitude bar
height can be predicted to some extent by a simple formula without compléx calculation or
physical experiment.

This study is supported by Foundation of Hokkaido River Disaster Prevention Research
Center.
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Fig. 5 Criteria for bar migration

seen when the value of § is large. Bar migration is also seen in the potion far from the curve
as symbols of A (A = 0.10 and »=0.02~0.03). In these cases, free bars are not trapped by the
channel meander, but they pass through the channel bends.

NON-DIMENSIONAL BAR HEIGHT

Among various parameters of bed topography, bar height is one of the most important
parameter from the view point of river engineering. From the series of numerical experiments in
this study, relationship between finite amplitude bar height Hy and other hydraulic parameters
are discussed. When the bar height shows an oscillating nature in time as shown in Fig. 2,
finite amplitude bar height is defined as the maximum bar height.

Fig. 6 shows the relation among Hj, v, A and 3, in which each panel shows the results in
terms of different v. A=0 denotes the straight channels. In every panel of Fig. 6, peaks of H}
is seen when A=0.1~0.2, and these are higher when v is larger. These suggest the occurrence
of resonance between free and forced bars. The resonance is not very dominant when the value
of v is small and it becomes remarkable with the increase of v. H), tends to increase with
increase of 3, and this tendency is more conspicuous when » is large. These characteristics
can be explained as, the development of free bar is promoted by increase of 3, however, it is
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Fig. 7 Relationship among Hy, 8, v and A in meandering channels

restrained by the effect of forced bar with the increase of ». And it can be summarized that
the growth of finite amplitude bar height is controlled primarily by the basic linear effect of v,
and effect of channel bend, and is damped or promoted nonlinearly by the effect of A and .

Fig 7. shows the relation of H; and 3, in which the data are the same as in Fig. 6. Hp is
linearly increasing with increase of 3, in which the ratio of increase is larger when v is small.
It is suggested that the effect of B on H, is almost linear, and it is slightly depressed by the
combination of v and A, which represents the channel geometry.

PRACTICAL FORMULA OF BAR HEIGHT

The finite amplitude bar height is affected by both the geometric and free bar effect, as
mentioned in the previous section. The prediction of finite amplitude bar height therefore can
be enabled only when the time dependent calculations are conducted taking into account for
these nonlinear effects. However, a practical formula to predict the finite amplitude bar height
is desired from engineering purposes. Taking into account for the characteristics of v, A and
H; shown in Fig. 7 and 8, the following empirical formula to predict H; is proposed.
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APPENDIX - NOTATION

The following symbols are used in this paper:

= half channel width;
=  averaged depth;

S

channel width;

[V~

@

= normalized grain size diameter;

= diameter of bed material;

=. Froude number;

meander wave length;

= ' normalized meander wave length of channel along s axis;

meander wave length;

@S e &)
i

=  acceleration of gravity;

=

= - the maximum non-dimensional bar height;
=  the minimum radius of curvature of channel;
averaged channel slope in flow direction;
axis along the channel centerline;
= non-dimensional time;
mean velocity of flow;
normalized channel width;
= normalized channel meander wave number;

=  normalized maximum channel curvature;

density of water;

MUY 2wyt oe a oy

density of bed material;

Te = normalized bed shear stress;
© =  meander angle;

©wo =  value of ¢ at §=0; and

Q = 1/A
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