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SYNOPSIS

A streamflow sequence is considered as a filtered point process whose input is a daily rainfall
sequence. A daily rainfall sequence is assumed to be a marked point process in which the mark of the
process is the magnitude of daily precipitation amount and the number of daily rainfall occurrences is
a counting process represented by one of binomial, Poisson, and negative binomial probability
distributions depending on the ratio of mean to variance. As a pulse-response function for a filtered
point process, a tank model, called the model of 3-tanks with a parallel tank is developed. Thus, a
streamflow sequence and its cumulants are able to be derived from a daily rainfall sequence based on
the characteristic function of a filtered point process. Application of the proposed methodology to daily
rainfall-runoff data at Sameura Dam in Kochi Prefecture, Japan is illustrated.

INTRODUCTION

In planning, management and utilization of water resources, long-term historical streamflow data
is needed. However, many dam basins in the world lack such data. Even though some basins have
long-term historical streamflow data, streamflow statistics are unreliable because the homogeneity of
a streamflow time series is violated due to urbanization, development, and so on in such basins. Thus,
some methods for deriving streamflow statistics from a rainfall time series whose homogeneity is higher
than that of a streamflow time series have to be used. Up to the present, one method has usually been
used. In this method, firstly, a large amount of daily rainfall data should be generated by a rainfall
model; then, by using a suitable rainfall-runoff model, a daily rainfall time series can be transferred
to a streamflow time series. Finally, the streamflow statistics can be estimated based on the synthetic
streamflow time series.

In the present study, a filtered point process is used to derive the statistics of streamflow directly
from a daily rainfall sequence. Weiss (4) and Kanda (1) studied methods used to generate streamflow
data from a daily rainfall sequence based on a shot noise process—the simplest type of a filtered point
process by Parzen (2) and Snyder (3) with the following assumptions: (i) the counting process of a daily
rainfall sequence is a Poisson process; (ii) the distribution of daily precipitation follows an exponential
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distribution; and (iii) the response function for a filtered point process is one of the simplest
exponential functions. These assumptions appear to be too simple to express rainfall-runoff
characteristics. '

This paper describes a continuous streamflow sequence as a filtered point process where: (i) a
daily rainfall sequence is considered as a marked point process proposed by Snyder (3) in which the
mark of the process is the magnitude of daily precipitation amount assumed to follow a gamma
distribution and the number of daily rainfall occurrences is a counting process described by one of
binomial, Poisson, and negative binomial probability distributions depending on the ratio of mean to
variance of the daily rainfall occurrence number; and (i) the response function for a filtered point
process is expressed by the developed tank model. The methodology for deriving the cumulants of
streamflow directly from characteristics of a rainfall sequence based on the filtered point process, as
a generalized Poisson process, is initiated.

In addition, the proposed methodology can be used to evaluate impacts of global warming on
future water resources by developing the time series model for annual changes of monthly temperature
and by formulating the relationship between temperature and changes of rainfall characteristics.

STREAM FLOW AS A FILTERED POINT PROCESS AND ITS CUMULANTS
Definition

Let a daily rainfall time series {x,; 1=t} be a marked point process. Denote the n-th rainfall
occurrence day and daily precipitation amount (mark) by 7, and u , respectively, and let the number
of rainfall occurrences { N,; =1 } be a counting process that counts points independent of their marks.
The streamflow y, as a filtered point process can be represented by

yt:z::unh(t—fn) ‘ )

where h(t— T ) is the unit pulse linear response function (which is only the function of time 7 and has
no relationship to daily precipitation) for a unit pulse (unit daily precipitation amount) at time ¢, and
(¢ 7 )is the time lag since the pulse occurs at time T, . In particular, Eq. (1) is referred to as a shot
noise process with parameters 1, 6, and 9 in which 4 is the parameter for a Poisson process,
0 is the mean for a random vanable u, followmg an exponential distribution, and 6 is the parameter
for the response function /(s) being equal to exp(- 0 L5
In this paper, the probability distribution of the number of daily rainfall occurrences { N,; T =t}
in a period of one month follows one of binomial, Poisson and negative binomial probability
distributions according to the ratio of the mean (M,,) to variance (¥,) of N,

If N, follows binomial distribution, then

M,=kp, V,=kpg S M, >V (2a)
If &, follows Poisson distribution, then

M,=V,=\ S M=V, (2b)
If N, follows negative binomial distribution, then

M=% y=tk -y <y (2¢)

q q2 N N

where %, p, and g (=1-p) are the parameters of binomial and negative binomial distributions, and A
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is the occurrence rate of a Poisson distribution.
Characteristic Function

By using a conditional expectation, the characteristic function ¢ (z) =E[exp(izy)] for
streamflow y, is defined by '

(I)yr(z):Pr(NT“—'—‘O)-I—i P(N,=n) " E{exp[ iz * Xn: u h(t— 7 )] | N, =n} 3)
n=1 m=1

where the summation in the expectation is unchanged by a random reordering of the occurrence times 7

(t,=1, 2, ..., n). With this reordering, the occurrence times z, (t, =1, 2, ..., n)are
independent and identically distributed, thus the common probability density function can be given by
A, _ A, )
f(r)= “

[7 2,40 EQ)

0

where A _is the daily rainfall occurrence rate at time © . Since the mark variables u (m=1,2, ...,
n) are also independent and identically distributed, we obtain

E{exp[iz 'En:umh(t—‘cm)] INT:n }=

o

a n .
ltE{exp[iz‘u'h(t—t)]}dr} G
Substituting Eq. (5) into Eq. (3), we can obtain the characteristic function for a filtered point
process y,

Y

(byt(z):f:R(NT:n){E(NT)" f T?utE{exp[iz “u -h(t—r)]}dz}" )

Let A(t— t ) be equal to zero when 7 is smaller than © . Substituting Eqgs. (2a), (2b), and (2¢)
into Eq. (6), we obtain the characteristic function for y, based on the probability distribution of N, as
follows.

If N, follows binomial disftribution, then

¢yf(z)={l+k“f 12, CE{expliz *u *h(t— t)]"l}dt}k N
[Trias gy vy
( =2 = , P=
r p E(N,)

If N, follows Poisson distribution, then

o, (z)Zexp{ j'tltE{cxp[iz cuch(t—1)] —1}d‘c} (8)

o
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(EQV )-f’?u,dr)

(i

If N, follows negative binomial distribution, then

qSy‘(z):{l—k“f {2. CE{expliz *u*h(t— t)]—l}d’c}_k ®
r 'katd'c
‘ ; _pP EWN) _EWY
( k= ° = , P=
q q V(N

Cumulants of Streamflow

Let v, be the n-th cumulant for y, at time 7 (f,=¢ =T'). By usingi"y,=(d"In ¢, @dz"),
(z=0), the cumulants of streamflow y, are derived from Egs. (7), (8), and (9) as

¥,0,) =E(w) 'f’xrh(wr)dr | (10)
P 2

Vz(y,):E(uz) 'f ;Lth(t*"cfdr i—z-‘-g-')— (1
t 3

v, )=E(u?) f A h(@—tydrk 3 V2(y';y‘(y’) — y‘k(j}‘) 12)

and the covariance function for y, is
P 2
Cov(y,, y,.,)=E(u*) ‘f A _k(t—t) h(ttJ—1)dT i}—/—-’-;c(z’-z- 13

where a plus sign (+) is adopted if N, follows negative binomial distribution, a minus sign (-) is
adopted if N, follows binomial distribution, a term including k is absent if N, follows a Poisson
distribution, and E(u ") is the i-th moment about the origin of daily precipitation amount .

THREE-TANK MODEL
Pulse Response Function for a Filtered Point Process

Since a streamflow consists of surface, rapid and delayed subsurface, and groundwater runoffs,
a tank model consisting of three tanks, called the three-tank model (as shown in Fig. 1), is developed.
Based on the linear system of a filtered point process (see Eq. (1)), only one horizontal hole from which
runoff occurs is set up on the right side at the bottom of each tank. The sizes of the holes are denoted
by a,, a,, and a,. In order to indicate the infiltrations from Tank1 to Tank2 and from Tank2 to Tank3,
the vertical holes on the bottoms of Tank! and Tank2 are opened and their sizes are denoted by b, and
b,. InFig. 1, g¢,, g, and g, are interpreted as surface, subsurface, and groundwater runoffs occurring
from Tankl, Tank2, and Tank3, respectively; and f and f, are referred to as the infiltrations from
Tank] to Tank2 and from Tank?2 to Tank3, respectively.

- Assuming that g, =as, (i=1,2, 3)and f, = b,s,(i=1, 2)are the function of storage height s,
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Fig. 1 Schematic illustration of the three-tank model

in tank 7, we have the linear response function A(s)

h(s) =1-+D exp(-C, * 5)+D,exp(-C, * s)+D,exp(-a, *s) (O=s <1

h(s) =D,exp(-C, * s)+D,exp(~C, * 5)+D,,exp(-a, * ) (1=9)

where

a C *a—C *a b
C,=a+b ; C,=a,+b,; D,={ L1——1L 2 2 3 L._1
5, (C,—C)(Ca) | €

b (a,~a,) R _ b, b,

D= . D= s D =D _lexp(C,)—1]
21 (CI—C2)(C2“a3) 31 (Cl_a3)(cz_a3) 12 u 1

D,,=D, [exp(C,)—1] ; and D,,=D, [exp(a,)—1]

(14a)

(14b)
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From Egs. (14a) and (14b), it can be seen clearly that /(s) is given by the summation of some

exponential functions with different decreasing constants.

Furthermore, from the point of view of application to irrigation planning and so forth, a
streamflow time series { y,} is usually averaged over a given period of time (J), for example, five

days in Japan. Thus, the averaged {7,} is defined as

. t
K=J"‘f y, ds
I3

~J

Substituting Eq. (1) into Eq. (15) gives

(15)
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Nt
Y, =% u "h(t-t,) (16)
n=1
where h,(s) is expressed as follows:

DFor0<s<l1
hs) =h () =J" f "n(o)do
0

=E, TE, s +TE exp(-C, * s) TE,exp(-C, * s) TE, exp(-a, * ) (17a)

D Forl =s<J

hy(s) = h(s)=J"

flh,(o)do +f "n(0)do
0 1

=Ey, TE, * sTE, exp(-C, * s)TE,exp(-C, * 5) TE,exp(-a, * 5) (17b)

3)ForJ = s <(J+1)

h(s) = h(s)=J"

flhl(o)do +f "h(o)do
s=F 1

=Ey, TEy, * stE exp(-C, * $)TE exp(-C, * s)TE exp(-a, * ) (17¢)

4 For(J+1) =5

hy(s) = h, (s ‘-:J"fs h(0)do

s-J
=Ey,, TE,, * sTE, exp(-C, * $)TE,exp(-C, * s)TE, exp(-a, * s) (17d)

where E, EO, E, E, and E,, (i=1, 2, 3, 4)are the functions of D,. D,, D,, and D, L (U=
1, 2), and are also the functlons of g,and b,.

Therefore, the cumulants and covariance of ¥, can be obtained by substituting ¥, for y, and % ,(s)
for h(s) in Egs. (10), (11), (12), and (13).

In order to obtain the cumulants and covariance of ¥,, the deﬁmte integral of [ 4,"(s) has to be
calculated. Because this definite integral becomes too comphcated to be analytically solved without
help of a computer as the order » and the number of terms increase, the system REDUCE for computer
algebra is used to solve this problem. The covariance needs 150 lines and the 3-rd order cumulant
needs 260 lines in the form of FORTRAN output. Due to space limitations, the analysis results are
omitted from this paper.

Identification of Parameters for the Three-tank Model

In order to verify the applicability and validity of the proposed method, we make use of the daily
rainfall-streamflow data observed at an actual reservoir, Sameura Dam, which has a catchment area
0f 472 km?, and is located in the upper reaches of the Yoshino River Basin in Shikoku, Japan.

In identification of the parameters @, and b, of the three-tank model, two other correction
parameters also need to be identified. One is the parameter f, for modifying the evapotranspiration
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Table 1 Identified parameters for the three tank model

a,(1/day) | b,(1/day) | a,(1/day) | &,(1/day) | a,(1/day)
0.421 1.305 0.140 0.192 0.049
Table 2 Identified values of £, and f,
Season May - June July - September | October - November | December - April
fe 0.37 0.91 0.52 0.54
J 0.73 0.76 0.76
1000 '-!r' “["If'lli iid T --u! I LA LR 0§
Three tank model E
= — Observed B
E 1001 oo Estimated 200 e
B =
B Q =
B A <
(=3 =]
= % E
s
=
w2 S T |
JAN  FEB  MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Fig. 2 Daily streamflow hydrograph by the three-tank model

calculated by the Hamon method based on average monthly temperature, and the other is the parameter f,,
for modifying the daily precipitation error caused by substituting the point precipitation at Motoyama
located down stream from Sameura Dam for the areal precipitation in the Sameura Dam basin. Because
there is little snow-fall in this basin, the structure of runoff process is assumed to be invariant
throughout the year, so that the model's parameters are constant over a year. But the parameters f, and f,,
are assumed to be variant in different seasons (May —June, July— September, October —November,
and December— April).

The Simplex method is used to search the optimal values of the parameters that give minimum
values of the objective function F expressed by

— 2
F(fg’f;” ay, &y, a5, by, b )_n ‘zl:{ %}‘@J— }

(18)
where y(r) and Q(?) are the calculated and observed streamflow on day ¢, respectively; and # is the
number of days in a calculation period.

We calculate y(¢) by the method of finite differences and let the time 1nterval Atbeequal to 1/10
day because the parameters of the model may be larger than 1 in day. Based on daily rainfall-
streamflow data from 1977 to 1989, the parameters are identified and the averaged values of the
parameters for the three-tank model are shown in Table 1, and the averaged values of £, and f, are
shown in Table 2. The calculated daily streamflow time series is shown in Fig. 2.

By comparing the computed daily streamflows with the observed ones, it is found that the com-
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Fig. 3 Model of 3-tanks with a parallel tank

puted values fit the observed data well for low flow periods ( May —June, October—November, and
December— April ), while in the flood period ( July— September ) the computed peak flows are much
smaller than the observed peaks. The reason is likely to be that Tank]1 in the three-tank model shown
in Fig. 1 can not represent surface runoff adequately.

MODEL OF 3-TANKS WITH A PARALLEL TANK

In order to express surface runoff accurately, a tank is added parallel to the three-tank model to
receive the surface runoff overflowing from Tank1 where a storage height s, is higher than h_, as shown
in Fig. 3. We call this model as the model of 3-tanks with a parallel tank.

The response function of this model is given by the summation of two kinds of linear response
functions. One is the response function for the three-tank model, and the other is the response function
for the parallel tank like that of Tank3 in the three-tank model.

In addition, generally, in order to express surface runoff well, another horizontal hole is usually
set up on the upper tank (Tank1) and good results can be also obtained. But this tank model does not
belong to a linear system because the response function for the model is the function of not only time
¢, but also daily precipitation amount.

Cumulants for the Model

Adding the correction parameters for precipitation and evaporation, similar to that of the three-
tank model, we have the cuamulants for J-day averaged streamflow as

_ S E (D, M,)
D

t

Y (X)=1, (19)

E@u) A f ") ds+P_  Eu) f ", ()ds
0 0
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Vv, (¥)=£2 E@?) l[ thJ(s)zds +P, E(usz)f thjs(s)zds _5___3_’1’((_5’12 20)
1] . [ )
v, (Y) =1 | E@?) l[ ‘hJ(s)3ds +P, - E(uf)f thjs(s)3ds
0 0
i372(Ylt)yl(Ylt) — ’yl(Ylt)3 . (21)

k k2

E@) lf thj(s) *h(stNds+P, E(us)zf thjs(s) . hJS(S‘FJ)ds}
0 Jo

Con(Y,, ¥, ) =1y

22)

where P_ is the occurrence probability of surface runoff from the parallel tank; v (¥}) and v (¥, ) are
the mean and variance of J-day averaged streamflow from the three-tank model for P_=0; D,is the
number of days in an object month; M,, is the mean of the number of rainy days in an object month;
h,(s) is the response function for the three-tank model; #,(s) is the response function for the parallel
tank; E’ (i=1, 2, 3)is the i-th order moment of daily precipitation amount on rainy days when
surface runoff does not take place; and E(w) (i =1, 2, 3) is the i-th order moment of daily
precipitation amount on rainy days when surface runoff takes place (y,2(a, +5,) h, = 40.3mm/day)
from the parallel tank.

Identification of Parameters for the Model

The identification method of the parameters is the same as that mentioned in the three-tank model.
The parameters identified are shown in Table 3. The values of f; and f, are the same as those in the
three-tank model. The calculated daily streamflows are shown in Fig. 4. From this, it is clear that the
calculated flows fit the observed ones over a year. ‘

Table 3 Identified parametérs for the model of 3-tanks with a parallel tank

a,(1/day) h (mm) a, (1/day) b, (1/day) a,(1/day) b,(1/day) | a,(1/day)
4213 2222 0.269 1.545 0.094 0.038 0.022

L B LARLLE ‘1 T T g
Model of 3-tanks with B

—~ a parrallel tank | ‘ B
F 107 | — Observed ‘ M o
| 00 Estimated =
g z
E 0 ok g
= =
b adh

b
5 1 i

JAN TEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
Fig. 4 Daily streamflow hydrograph by the model of 3-tanks with a parallel tank



76

Estimation of Cumulants for 5-day Averaged Streamflow

In Japan, 5-day averaged streamflow data is usually used for water resources planning. Based
on Egs. (19), (20), (21), and (22), the mean, variance, coefficient of skewness, and auto-correlation
for 5-day averaged streamflow are able to be estimated. The calculation procedures and results are
summarized as follows:

1. Monthly characteristics of a daily rainfall sequence

(a) Daily rainfall occurrence number. The monthly mean and variance of the number of daily
rainfall occurrences are estimated from the observed data. Then, the distribution and its parameters
(p, g (=1-p), k, and A\ ) are estimated by Egs. (2a), (2b), and (2¢), as shown in Table 4.

(b) Daily rainfall amount. According to the condition of surface runoff occurrence (surface runoff
occurs when daily streamflow y, exceeds 40.3mm/day), the observed daily precipitation data is divided
into two groups—one without surface runoff occurrence and the other with surface runoff occurrence.
Their monthly mean and variance are estimated, respectively, as shown in Table 4.

2. The mean, variance, and skew coefficient of daily streamflow for each month are calculated
from the observed data. Daily streamflow probability distributions are approximated by gamma
distributions, and the surface runoff occurrence probabilities P, ( y,=40.3mm/day ) are computed
using these distributions.

3. The correction parameter f, is calculated from Eq. (19).

4. Substituting P_, f,, and values for a daily precipitation sequence into Egs. (20) (21)and
(22), the variance, coefficients of skewness, and auto-correlation of 5-day averaged streamflow for
each month are calculated as shown in Fig. 5.

From Fig. 5, it can be seen that the computed variances are almost the same as the observed ones
during the low flow periods, while during the flood period, the computed values are smaller than
observed ones, especially in August. The main reason is likely to be that a daily rainfall process is
assumed as a random process. It is thought that if the characteristics of a daily rainfall sequence is
modeled in a daily unit, even though heavy rain continues to fall for 2 or 3 days, the storm is separated
into independent daily rainfalls in detached days. Thus, the theoretical variances are smaller than the
observed ones.

In order to solve this problem, the authors (5) formulated the statistics of streamflow based on
a daily rainfall sequence modeled as a storm unit, where the cluster nature of continuous rainfall over

Table 4 Characteristics of a daily rainfall sequence

Daily precipitation
Month Daily rainfall occurrence number
Model of Parallel tank
3-tanks

M, | V, Distribution k p Ew) | Vw)"” | Ew) | V(u)"

1 8.3 | 15.5 | negative binomial 9.57 0.536 89| 122 0 0
2 931 74 binomial 4552 0204 | 11.01 153 0 0
3 12.0°] 20.7 | negative binomial | 16.55 0.580 | 154 | 193 0 0
4 1251 125 Poisson A=125 19.1] 219 0 0
5 12.2' | 22.3 | negative binomial | 14.74 0.547 | 19.6 | 25.1 1250 95.6
6 153 | 18.1 | negative binomial | 83.60 0.845 | 22.7 | 31.1}| 89.1 93.4
7 12.9 | 28.5 | negative binomial | 10.67 0.453 | 19.3 | 30.7| 843} 907
8 12.3 | 25.3 | negative binomial | 11.64 0.486 | 21.0 | 35.7 | 104.8 | 106.0
9 10.9 | 12.5 | negative binomial | 74.26 0.872 | 204 | 37.8 11029 98.1
10 8.7 1 12.7 | negative binomial | 18.92 0.685 | 154} 23.1| 633 54.4
11 7.3 9.4 | negative binomial | 2538 0.777 | 13.7 | 254 0 0
12 6.3 6.5 | negative binomial | 198.25 0.969 831 11.0 0 0
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Fig. 5 Estimated cumulants based on the model of 3-tanks with a parallel tank

a few days and auto-correlation of daily rainfall of the storm had been taken into account, and obtained
good fitness between estimated and observed values (mean, variance, skewness, and auto-correlation).

CONCLUSION

For the purpose of water resource planning and so forth, the basic statistics of daily streamflow
(mean, variance, skewness, and auto-correlation ) are formulated based on the characteristic function
and the suitable response function of a filtered point process. The proposed method was applied to an
actual data and we reached the following conclusions:

1. As alinear response function for a filtered point process, the three-tank model and the model
of 3-tanks with a parallel tank, are developed and compared. Tt is found that the model of 3-tanks with
a parallel tank is a suitable model for a basin where surface runoffs occur frequently.

2. If a daily rainfall sequence is modeled as a daily unit, then the cluster nature of heavy rain
continuing over a few days and the auto-correlation of daily rainfall in a storm are ignored.
Consequently, the theoretical cumulants are much smaller than the observed ones in months when
heavy rain occurs frequently.
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APPENDIX — NOTATION

The following symbols are used in this paper:

a, a, a = parameters of tank models;

b, b, = parameters of tank models;

C. C, = parameters for the linear response functions;

Cov(y,, ¥,.) = covariance function for daily streamflow y,;

Cov(Y,, Y, ) = covariance function for J-day averaged stréamﬂow Y;

D, (i=1,2,3,j=1,2) = pararﬁeters for the linear response functions;

D, = the number of days in an object month;

EOOX" Eﬂi’ Eli’ EZ!’ E3i’

(i=1,2,3,4) =functionsof D (i=1,2,3; j=1,2)

E(NT) = mean of the number of daily rainfall occurrences;

Ex" (i=1,2,3) =the j-th order moment of daily precipitation amount on the rainy days

when surface runoff does not occur;
E@w)) (i=1,2,3) = the i-th order moment of daily precipitation amount on the rainy days

when surface runoff occurs from the parallel tank;

Jor Jp = correction parameters for evaporation and precipitation respectively;

flT) = common probability density function defined by Eq. (4);

h(s) = unit pulse response function for the unit daily precipitation;
Ch(s) = J-day averaged response function for the three-tank model;

h,(5) = J-day averaged response function for the parallel tank;

k = parameters of binomial and negative binomial distributions, defined

by Eq. (7) and Eq. (9);

= mean of the number of daily rainfall occurrences in a month;

X

N, = the number of daily rainfall occurrences in a month;



NN

)

7,00 (i=1,2,3)
v,(0) (i=1,2,3)
Y,(0) (i=1, 2)
0, 6,

= parameter of binomial, negative binomial distribution;

= occurrence probability of daily rainfall;

= occurrence probability of surface runoff from the parallel tank;
= parameter of binomial, negative binomial distribution (=1-p );
= storage height of tank i ;

= the n-th daily precipitation amount;

= variance of the number of daily rainfall occurrences in a month;
= daily streamflow as a filtered point process;

= J-day averaged streamflow as a filtered point process;

= the i-th cumulant of y, at time 7; '

= the i-th cumulant of Y, at time £ ;

= mean and variance for the three-tank model when P _=0;

= means of exponential distributions;

= occurrence rate of N, for a Poisson process;

= occurrence rate;

= the daily rainfall occurrence day; and

= parameter for a Poisson distribution.
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