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ABSTRACT

Velocity distribution of flow with deformed vegetation and deformation of plants due to shear flow
are analyzed, and the hydraulic resistance of open-channel flow on a flexible vegetation-covered bed is
discussed. The vegetation layer constituted by deformed plants is characterized as a layer with spatially
heterogeneous permeability. On the other hand, the deformation of a plant is analyzed by assuming a
constant flexural rigidity. Furthermore, the insitu values of flexural rigidity of real plants in rivers are
measured to evaluate hydraulic resistance of flow there.

INTRODUCTION

Most of studies on flow with vegetation treated rigid vegetation because of simplicity, but in reality
many of plants deform by flowing water, and such deformation changes the flow from that predicted
under assumption of non-deformable plants. In this study, flexible plants are treated, where only the
deformation of plants is taken into account. The effect of organized behavior of group of plants such as
"honami” is here neglected, though the organized behavior of vegetation layer might change the turbulent
structure appreciably (Tsujimoto ef al. (1), Tsujimoto & Nagasaki (2)).

The authors proposed a method to calculate the flow with vegetation by using a k-¢ turbulence
model, where geometry of individual plants as boundary of the flow was neglected but it was taken into
account by adding the locally averaged drag force and turbulent energy production corresponding to its
work done (Shimizu & Tsujimoto (3), Tsujimoto et al. (4)). The effect of inclination of plants was
investigated to modify the drag term (Tsujimoto ef al. (5)). However, the deformation of plant due to
the hydrodynamic force influenced by the deformation of plant is not considered, though it forms a feed-
back system.

Kouwen et al. (6) and Kouwen & Unny (7) studied the relation between the plant deformation and
hydraulic parameters by flume experiments with many model plants with different rigidity and density,
and they proposed an empirical relation to predict the deformation of plants. Because of their
dimensional expression, it is not reasonable from the view point of similarity. Murota & Fukuhara (8)
used a cantilever model with finite deformation in calculation and tried to couple the analyses of velocity
distribution and deformation of plant, but the effect of plant deformation on turbulent structure was not
taken into account completely. ;

In this study, the plant deformation by shear flow and the velocity distribution of flow with
deformed vegetation are calculated simultancously, and the several aspects of calculation process are
extracted to be verified by flume experiments. Furthermore, the calculated results are simplified to
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deduce a resistance law of flow with flexible vegetation layer. The representative parameter to the plant
deformation is the flexural rigidity, and thus, the method to measure its insitu value is tested in a river.

MODEL FOR FLOW
In calculation of flow with vegetation, the individual plants are regarded as negative momentum

sources and additional turbulent energy sources. Then, the vertical two-dimensional steady uniform
flow is described by the following equations:

ol 1y 9U*y oP*

(1 R) Gyl e B0 M
* *

sos(o e) + Pe 4 CRFU® % = 0 @)
* Jp* * :

5‘67; g g—yg; +£‘;[C1(Pk* +CfeFx*U*) -Cze*] =0 ?3)

The equations are made dimensionless by using the flow depth % as the length scale and the depth-
averaged velocity Um as the velocity scale, in which p=mass density of water; x and y=longitudinal and
vertical directions; U=flow velocity; Re=Umh/v; Um=depth-averaged velocity; A=depth; v=kinematic
viscosity; P=pressure; Fx=longitudinal component of locally averaged drag force acting on plants per
unit mass of water; vr=kinematic eddy viscosity; k=turbulence energy; £=dissipation rate of turbulence
energy; Px=turbulence energy production due to locally averaged velocity gradient; ok, ¢, Ctx, Cfe,
C1, C2=model parameters; and * indicates the non-dimensional quantities normalized by velocity scale
Um and length scale A.
The turbulent energy production due to the locally averaged velocity gradient is written as,

aU*\2
P = vr(57) @
The kinematic eddy viscosity is related tok and ¢ as follows:
k2
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in which Cp=a numerical parameter.
The longitudinal component of drag acting on plants

per unit mass of water is written as ,
‘ 10
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in which lp=length of plant; C*=CpAly; Cp=drag
coefficient of a plant; A=projected area of plants to the
vertical plane perpendicular to thex axis per unit mass of

water; and O=inclination angle of plant (6=0 means the *lg'=075

vertical). The standard values for the numerical constants 10° ‘ T

are employed such that, Cp=0.09; C1=1.44; C2=1.92; 1072 10 10° 10
0k=1.0; and 0¢=1.3. The parameters Crk and Cfe are C'
determined such that the numerical calculation agrees with ~Fig.1 Hydraulic resistance of
the experiments for flow with rigid vertical vegetation vertical rigid vegetation

(Tsujimoto et al. (4)), as follows: Cix=1.0; and Cfe=1.3.

The calculated results for flow with vertical rigid vegetation (6=0) are depicred in Fig.1 to
demonstrate the relation between Um/ux0 and C* with lo* as a parameter, in which uxo=Vghl;
g=gravitatinal accelaration; and Je=energy gradient. The solid lines to connect the calculated results are

approximated by the following equations, and they represent the hydraulic resistance of flow with rigid
vertical vegetation. :
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In _ acwm (0.01=C*<4.0) %)

@ =1.46-1.55Inlo* ;  m = -0.17-0.34lp* (0.1sl0*<0.75) (8)

MODEL FOR PLANT DEFORMATION

Each plant might be regarded as a cantilever with finite deformation. The following assumptions
are employed to calculate the plant deformation: (i) the cross-section of plant is perpendicular to the
neutral axis even after deformation; and (ii) the only hydrodynamic force causes the deformation of the
plant. ‘

The longitudinal and the vertical components of hydrodynamic force acting on a plant per unit
length in the vertical direction are written as,

2 * 2 :
Dx* = %CDd*(U*COSB) = C*IOT(U*COSQ) 9)
* = lCDd”‘(U *cos@)zt 6 = -C*I—Oi(U*cose)zt 6 - (10)
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in which y=l0®No; No=number of plants per unit area; d=diameter of plant; and these forces are made
dimensionless by Um, / and 0. The moment to bend M is given by

H I*
M) = [{r 9 De {8 (0)-6+ 6 )0y () an® ()
y
in which /=height of inclined plant; d=longitudinal A
displacement of the plant (see Fig.2); and & is written as y o(n)
follows:
77*
n e
dé*
8%y = J(a;:)dy* (12)
y
The following relation exists between M and flexural
rigidity EI: J »
25+ s(y) sm) 9
M* dy*2 Fig.2  Definition sketch

(ED* = [ i@i 2]3/2 (13)
1 +( dy* )
in which (EI)*=EI/(oU, mzh“). The following geometricai‘ relation should hold:

l*
(9972
lo* =J 1+(g%) dy* 14

The boundary condition is as follows:

6% ; ;
37?*5“0 at y*=0 (15)
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When the velocity distribution is given, the deformation of the plant is calculated by solving
Eqgs.9~13 numerically with Runge-Kutta method. The value of lo* which satisfies Eq.14 is obtained by
trial and error: the procedure is iterated until Eqs.9~15 are satisfied simultaneously.

When only one plant is set into the flow, it hardly disturbs the velocity distribution. If there are no
other vegetation in the flow over a smooth bed, the log-law profile of velocity distribution is still valid.
Such a situation was tested in a flume, where a filament made by a transparent sheet for an over-head
projector (EI=867dynescm?, lo=4.6cm, d=0.2cm, Cp=2.0) was used as a model plant. Figure 3 shows
the experimental results on the velocity profile and the deformed geometry of model plant. They agree
with the calculated results reasonably. :

Even if a vegetation layer is prepared, the velocity distribution is known to be almost uniform
when the flow with vegetation has a water depth smaller than the vegetation height. The deformation of
the model plant in such a flow was measured and compared with the calculated results in Fig.4.

These experiments demonstrate the applicability of the method proposed in this paper to calculate
- the deformation of plant of which flexural rigidity is known in advance.
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Fig.3 Comparison between the calculated result of defomation of plant
and the experimantal result in the flow with log-low profile
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Fig.4 Comparison between the calculated result of defomation of plant
and the experimantal result in the flow with qusi-unifom profile

COUPLING OF MODEL FOR FLOW WITH PLANT-DEFORMATION MODEL

The model for flow and the model for plant deformation are coupled with each other to predict the
velocity distribution of flow and the deformation of plants simultaneously. The procedure for
calculation is as follows: [i] Assume the deformation of vegetation, [ii] solve the flow field, [iii] and
calculate the deformation of vegetation under the condition of the solved flow field. [iv] If the new
solution is well approximated by the previous assumption (the error of the vegetation height was here
employed to check the convergence of the iterate calculation), the calculation is stopped. Otherwise,

return to [i}.
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'For calculation, the following 4 parameters should be known in advance: (EN*; y; C*; and lo*

(combinations of flexural rigidity, diam

vegetation density).

Figure 5 shows an example of the ca

eter, initial height (length), drag coefficient of the plant, and

lculations on the deformed geometry of the plant, the velocity

distribution and the Reynolds-stress distribution. Comparing them with the results for vertical rigid
vegetation, one can recognize the following features: When the vegetation is so flexible to be inclined by
the flow, the inflection of the velocity profile near the vegetation boundary becomes unclear and the peak

of the Reynolds stress at the vegetation boundary is no longer sharp.
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Fig.5 Calculated result of flow with flexible vegetation

The decrease of the vegetation-layer thickness due to inclination of plants was focused, and the
relation between /lo and the special parameter y EI/(oux0%lo*) was investigated. The calculated results in
Fig.6 suggest a unique relation between them, and it is consistent to the experimental data (Murota &
Fukuhara (8), Tsujimoto et al. (5)). The solid line fit to the calculated result is approximated by the
folowing equation.
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Fig.6 Decrease of the vegetation-layer thickness

The calculation suggests a relation of the hydraulic resistance by deformation of vegetation,
because the inclination of plants decreases the vegetation-layer thickness. As for the relation between

Um/ux0 and 7 EIf(pux0%lo®), the predicted relation where only the decrease of vegetation-layer thickness
is taken into account (Eqs.7 and 8 have been applied) is depicted by a dotted line in Fig.7. The
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calculated results obtained by coupling the flow model with the model for plant deformation are plotted
in Fig.7, and one can recognize that the dotted line underestimates Um/ux0. The reason of such an
underestimation implies the fact that the reduction of drag due to plant inclination is more appreciable
than the decrease of the vegetation layer-thickness. To take such an effect into account, the following
convenient method to predict the hydraulic resistance is proposed: Replace 8 and C* to 6e and C*e
respectively in Eqgs.7 and 8, which are defined as follows:

dmeos'(D) 0 crmcreottemci(b) an

The solid curve in Fig.7 to express the above-mentioned approximated method is well consistent
to the plots to represent the calculated results by coupling the flow model with the model for plant
inclination. ~

In Fig.8, the relations between Um/u0 and yEl/(Pux00*) obtained by the above-mentioned
convenient method are depicted for several values of lo*, in which the experimental data by Tsujimoto et
al. (5) are also plotted. The agreement between the curves and plots suggests that the present method is
useful to predict hydraulic resistance of flow with deformable vegetation.
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INSITU SURVEY OF FLEXURAL RIGIDITY AND DENSITY OF PLANTS
AND PREDICTION OF HYDRAULIC RESISTANCE OF VEGETATION IN RIVERS

In order to predict the hydraulic resistance of vegetation in rivers, it is necessary to know the
height, diameter of representative stems, flexural rigidity and vegetation density of the real plants. Such
a survey was performed in the flood plain of the Kizu River and the Katsura River (Kyoto Prefecture) in
August 1994, Yoshi (Reed, P. communis Trin.) and Seitaka Awadachiso (Tall goldenrod, S. altissima
L .) were chosen, because they are representative plants in flood plain of sand-bed rivers and they make
obvious colonies. The observations were conducted for the respective colonies in the areas which are
submerged about once a year. The vegetation density was measured by counting the stems in the
prescribed areas of a few square-meters. The height, the diameter and the flexural rigidity of the stem
were obtained as respective means of 10 representative sample plants in the prescribed area. The
diameter of the stem was measured at the level 1m high above the ground.

The flexural rigidity was estimated through a bending test of stems, where the horizontal and
vertical displacements, 0B and /, were measured by changing the horizontal tractive force W (see Fig.9
and Photo 1). The horizontal force W was measured with a spring balance. Assuming that the diameter
and the rigidity are constant from the foot to the top of the stem, one can use the theory of finite
deformation of a cantilever (9): the following relation between /lp and a is expected:

i% = %lzcoswo ; ‘ (18)

in which
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Photo 1 Test of flextual rigidity of plant
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Figure 10 shows the relation between //lp and a given by Egs.18~21 with field data. The flexural
rigidity EI is estimated by the comparison between the field data and the theoretical curve. The estimated

values of EJ are summarized in Table 1 along with other data.
Figure 11 shows the relation between the value of EI and the diameter of sample plants. One can

expect a unique relation between the rigidity and the diameter of the stem for each species of plants.
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Fig.10 Estimation of flexural rigidity of plant
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Fig.11 Relation between measured values of El
and diameter of the plant
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According to the above-mentioned survey; the representative values for respective species of
plants have been chosen as shown in Table 2 in order to discuss the hydraulic resistance. The predicted
relation between Um/ux0 and h/lo (initial relative depth) is shown in Fig.12. Furthermore, it is
converted to the relation between Manning coefficient # and h/lp as shown in Fig.13. Both of them

change with the energy gradient Je. One should be aware of the fact that the Manning coefficient would

Table 1 Result of the field test of the physical properties of plant

No (7Y | Longan (M) | Loy (M) | Ay () | Ay (m) {E T, (N0) | B, (Na)
a-1 1 38.3 | 1.782 | 0,123 |0.0067|0.0009] 0.970 0.330
A-2 | 40.0 | 1.482 | 0.114 |0.0062|0.0007| 0.675 0,290
a-3 | 27.7 | 2.060 -| 0.134 |0.0085]0.0012| 0©.720 0.310
B-1 | 21.3 | 2.112 | 0.141 |0.0088{0.0009] 0.830 0.330
B=2 | 25.7 | 1.657 | 0.1160.0071|0.0009| 0.430 0.25(5
B-3 | 22.3 | 1.700 | 0.140 |0.0081]0.0007] 1.280 0.330
1994.8.9-8.11 A ¢ Tall Goldenréd B : Reed

change appreciably with the energy gradient.

Table 2 Representative values by the field survey

No(m™) | Lo(m) | d(m) [EI(em®) | c* ¥
Tall Goldenrod | 35.3 |1.775/0.00713| 0.788 |0.447] 111.2
Reed 23.1 |1.823/0.00800| 0.847 |0.337| 76.8
Tall Goldenrod
1g=11190__
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Fig.12 Predicted hydraulic resistance
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Fig.13 Predicted Manning coefficient
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CONCLUSIONS

In this study, the velocity distribution and the deformation of vegetation have been analyzed in
order to estimate the hydraulic resistance of flexible vegetation. The flow with vegetation has been
analyzed by using k-¢ turbulence model where the vegetation has been treated as a rather porous layer.
On the other hand, the deformation of individual plants has been analyzed by using the finite
deformation theory of a cantilever. These two are coupled with each other, and the velocity profile and
deformation of vegetation are simultaneously solved. The result has been summarized as a resistance
law. A convenient method modify the parameters in the method for flow with rigid vegetation has been

roposed. .
P Furthermore, insitu measurement of the characteristic parameters of vegetation was conducted in a
flood plain of rivers. By using the data obtained by the field study, the hydraulic resistance of flow with
vegetation has been discussed, and it has been found that the resistance coefficient changes appreciably
with the energy gradient as well as the relative depth (the ratio of the depth to the vegetation height).
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APPENDIX - NOTATION

The following symbols are used in this paper:

Cp = drag coefficient of vegetation;

C1,C2,Cp = model parameters for turbulence model;

Cx, Cke = model parameters for turbulence model with drag term;
c* = dimensionless Vegctatibn density defined by CpAlo;

*

Ce - = effective vegetation density;

Dx, Dy = longitudinal and vertical components of hydrodynamic force acting on a plant
per unit length with vertical axis;

d = diameter of plant; ‘

El = flexural rigidity of plant;
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Fx = longitudinal component of locally averaged drag force acting on plants per unit
mass of water;
g = gra\?ity acceleration;
h = water depth;
Ie = energy gradient;
k = turbulence energy;
M = bending moment;
m = constant;
" = Manning coefficient;
! = height of inclined plant;
lo = plant length;
Io” = relative plant length;
No = number of plants per unit area;
P = pressure;
Py = turbulence energy production;
Re = Reynolds number defined by Umh/v;
U = mean primary velocity;
Un = depth averaged value mean primary velocity;
u*g = shear velocity defined by \[gﬁ};;
= horizontal tractive force;
X,y = longitudinal, vertical coordinates;
a = constant;
é = longitudinal displacement of plant;
op = longitudinal displacement of plant at the top of plant;
£ = dissipation rate of turbulence energy; k
¥ = non-dimensional parameter defined by /02N o;
n = distance alongy axis;
A = projected area of plants to vertical plane per unit mass of water;
v = kinematic viscosity; ' ‘
vT = kinematic eddy viscosity;
0 = inclination angle of plant;
Oe = effective inclination angle of plant;
Y = mass density of water;
Ok, O¢ = model parameters for turbulence model; and
Superscripts ;
* = non-dimensional quantities notmalized by velocity scale Um and length scale .
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