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SYNOPSIS

This paper describes a new formula for evaluating the capacity of flows on smooth and fixed beds to transport,
with regard to bed load only, the supplied sediment under the condition of non settling particles. The capacity,
termed “the bed load capacity” in this paper, is expressed as a product of the volume of moving particles per
unit area of bed surface and their mean velocity. Both these factors are formulated by considering the influence
of moving particles on the representative velocity of fluid drag and difference in the friction coefficient of particles
between static and dynamic states. A velocity distribution function for sediment laden flows is proposed, on the
basis of Prandtl’s Mixing Length Theory, to be incorporated with the present formula. The characteristics of the
friction coefficient of moving particles are clarified empirically. The proposed formula shows a significant correlation
with existing flume data.

INTRODUCTION

In certain reaches of mountain streams, the bed configuration often changes from granular to rocky and vice
versa, depending on flood conditions and the degree of sediment supply from upstream reaches. Such changes in
bed configuration appears to considerably affect morphological processes of the streams, since, as explained later,
there is a remarkable difference in characteristics of sediment transport between granular beds and rocky beds.
Similar features of sediment transport and morphological processes can also be observed in man-made channels
and tunnels used for water intake or sediment detour whose beds are lined with concrete or steel. In this paper,
these inerodible beds are termed “fixed beds”, and the characteristic of bed load transport on this type of stream
bed is discussed.

On a granular bed, with exception of a short reach downstream from its upstream end, the bed load rate at
a cross-section is related uniquely to the local conditions of flow and sediment mixture in the exchange layer. In
the case of a fixed bed, however, the bed load rate is not closely correlated with the flow condition. The flow on a
fixed bed merely conveys all of the sediment supplied from the upstream reaches, as long as the rate of supply does
not exceed a certain critical rate. In flume experiments on this type of sediment transport, it is observed that no
sediment particles settle on the bed surface. All of them being transported as if they were the materials of wash
load. When the above condition of sediment supply is not satisfied, the bed surface is covered by a settled sediment
layer in a short time and, consequently, the bed configuration changes to the granular bed.

The above mentioned critical rate of sediment supply can be interpreted as the maximum rate of sediment
that can be transported without settling on the surface of a fixed bed. From this point of view, hereafter, it is
termed “bed load capacity” of the flow on fixed beds. Establishment of a method for its accurate evaluation is
essential to enable reliable prediction of the morphological process in mountain streams in addition to that of the
sediment transport efficiency of man-made channels and tunnels.

The problem of bed load capacity has been investigated experimentally and theoretically with respect to
uniform sediment on smooth fixed beds. Ishihara et al. (7), based on experimental observations, showed a significant
influence of moving sediment on the velocity distribution of water flow. Pedroli (13) performed comprehensive
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experiments using uniform test sand of various sizes and presented empirical formulae for bed load capacity and flow
resistance. Furthermore, Shima & Hayakawa (14), Tubaki et al. (15) and Michiue (11) attempted to theoretically
formulate the bed load capacity and resistance law of sediment laden flows. However, because of the complexity
of this problem, sufficiently reliable formulation has not yet been completed. On the other hand, recently, some
models have been proposed for numerical simulation of solid/liquid two phase flows in bed load layers and sheet flow
layers (2)(5)(6): These models are couplings of the Euler or the Lagrange models for solid phase and first or higher
order turbulent flow models for liquid phase. They have been proved to be powerful tools for exact clarification of
the two phase flow phenomena. At present, however, it is difficult to incorporate them with a long term prediction
model of the morphological processes in actual mountain streams due to the high cost of calculation.

The purpose of this paper is to improve formulation of bed load capacity. In the following, firstly, its general
expression is proposed by modifying Ashida & Michiue’s (3) theory of bed load on loose granular beds. The resultant
equation, however, includes an unknown velocity distribution function of flow affected by moving sediment as well
as several unknown parameters to be determined empirically. Therefore, secondly, the velocity distribution function
is derived theoretically on the basis of Prandtl’s Mixing Length Theory. Its applicability is tested with flume data
collected by the authors and Ishihara et al. (7). Finally, the unknown parameters are identified by referring to
related research achievernents and flume data presented in published papers.

GENERAL EXPRESSION OF BED LOAD CAPACITY

The bed load capacity, ¢r, can be expressed as
gr=V-u, : (1)

where V. = volume of moving particles per unit area of bed surface; and v, = mean velocity of particles. In the
present study, the two factors were formulated on the basis of Ashida & Michiue’s (3) theory of equilibrium bed
load transport on granular beds.

Based on Bagnold’s (4) experimental study on air flows in blown-sand layers, Ashida & Michiue (3) employed
a simple assumption that bed shear stress in the liquid phase is kept equal to critical shear stress, ., for incipient
motion of bed materials. This assumption is applicable to the present case. Thus, the first factor, V, can be
formulated as follows by considering the balance between tractive and resisting forces acting on moving particles
of volume V: ! k

pm(o = p)gV =16 =T, — 7. ; )

where 7, and ¢ = apparent and tractive bed shear stresses of flow, respectively; um = coefficient of friction force
between moving particles and fixed bed; o = density of sediment; p = density of water; and g = gravitational
acceleration.

For formulation of the second factor, v,, let us assume that all particles are transported in isolation with
uniform and constant velocity. Then, the balance of fluid and friction forces acting on a representative particle
may be expressed as

1
'2“PCDm('”b =0 K3d? = pim (0 ~ p)gK3d® ; (3)

where d = dormal diameter of sediment; Cp,, = drag coeflicient of particles in motion; u; = representative velocity
of fluid drag; and K5 and K3 = coefficients of the projected area and particle volume, respectively. At the critical
condition of particle movement, where v, = 0, Eq. 3 is reduced to

1
: Epchu{%cszz = /‘C(‘y - p)gf<3d3 . (4)

where Cp. = drag coefficient of particle at rest; us. = representative velocity of fluid drag at critical condition; p,
= coefficient of friction force between resting particles and fixed bed. From Egs. 3 and 4, the following expression
of v, is obtained.
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where u, = apparent shear velocity (= 1/7,/p); and u,. = critical shear velocity (=+/7./p). If the local flow
velocity at a point where y = d is selected for uy and w;., and if the surface of the fixed bed is regarded as being
hydraulically smooth, then up/u. and upc/u.. will be functions of grain Reynolds numbers, u.d/v and u,.d/v,
respectively. However, because the distribution of flow velocity just above the bed surface is significantly affected
by moving particles, the functions up/u, and up./u«. will take different forms,

wer(%) - o ©
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where v = kinematic viscosity of water; and f (usd/v) and fo(u..d/v) = velocity distribution functions for transport
and critical conditions, respectively. For fc(u*cd/v) the following well-known logarithmic Iaw for smooth walls can
be employed.

u 1 : i

— =~=In(Y)+55 : 8

L= Zmy)+ B | ®
where u = local flow velocity at height y; x = Kérmén’s universal constant(=0.4); and ¥ = u,y/v. On the other
hand, the form of f(u.d/v) has not been clarified. This problem is addressed later in this paper.

Now, using Eqs. 2, 5, 6 and 7, Eq. 1 can be rewritten in the following dimensionless form:

.,q.g:.,. . i____}_____ ro—T Cp. fc(u*cd/v) Twe
wd = o Gl *C)f { \/ e \/ Com Flwnd]?) } ©)

where 7. = ul/{(c/p — 1)gd}; and 1. = ul,/{(¢/p — 1)gd}. f Eq. 8 is adopted for both f and f,, and if it is
assumed that piy, = g, and Cp. = Cpm, then Eq. 9 coincides with a formula proposed by Michiue (11). However,
as pointed out previously, the velocity of sediment-laden flow has different characteristics from that of clear-water
flow. Moreover, it seems unreasonable to consider that the friction and drag coefficients of particles are constant
for both resting and moving conditions.

In order to make Eq. 9 practicable, it is necessary to define f(u.d/v) and to clarify the characteristics
of Tuc, pe, m/tte and Cp./Cpm. The function f(u.d/v) is formulated theoretically in the next section, while
the characteristics of other unknown parameters, which are too difficult to be treated theoretically, are clariﬁed
empirically by referring to existing data.

VELOCITY DISTRIBUTION OF FLOW WITH BED LOAD

Theoretical Consideration

In this section, the velocity distribution for sediment-laden flow on smooth and fixed beds is formulated based
on Prandtl’s Mixing Length Theory.

According to the Mixing Length Theory, the relationship between local fluid shear stress, 7, and local velocity
gradient, du/dy, is expressed as

2
T= pvg% + pt? (@) (10)

where £ = mixing length.
To obtain an explicit solution of Eq. 10, spatial distributions of 7 and £ were assumed as shown in Fig. 1.
The whole flow field is divided into three regions, namely, region-1 where 0 < y < 6, region-2 where 67 < y < ad
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Fig. 1 Assumptions of shear stress and mixing length

and region-3 where y > ad. Also, for each region, the distributions of 7 and £ are assumed, after the model of
Iwagaki (8), as follows:

(region—1) 7=, ; {=0 ‘ (11)
(region —2) T=1 = (1. +7)/2 ; £=x'(y~-6L) (12)
(region —3) =1, ; {=ry+4Lg (13)
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where §;, = thickness of laminar layer; o = empirical constant to estimate the upper limit of bed load layer; g =
additional mixing length due to wakes behind moving particles and/or their rolling motion; &' = virtual Kdrmaén’s
constant for region-2 to be evaluated with

;' k- oad+Lg
- ozd—-&L

It should be noted that some part of the above assumptions for 7 and £ are inconsistent with their actual features.
However, it has been proved by experience that even such a manner of assumption may produce useful results.
Although, in Fig. 1 it is assumed that ad > 6z, it is possible for 61 to exceed ad when moving particles are
extremely fine. This case is discussed later to avoid confusion. When those assumptions of 7 and £ are included,
Eq. 10 is solved as follows.

For region-1, a solution of Eq. 10 with no-slip condition yields a linear velocity distribution,

U=ULY ‘ (15)

(14)

‘where U = u/u,; and Ui, = Use/us. In regions-2 and -3, 7 is assumed to be constant and £ is expressed as a linear
function of y. Therefore, when the relationship between £ and y is represented by £ = ay + b (a,b = constants),
the following common expression of solutions for the two regions can be obtained through transformation of the
independent variable:

U= ;F(L) +C (16)

1y 1/1 1 T/p-£
— 2 .4 — 1z 2.4 L . P, AL A
F(L)=1In (2L+2\/L +4) + 7 (2 L +4) ;L p (17)

; and C = integral constant. The integral constant, which being a function of w., u.., £z and so on, can be
determined on the condition that there are no gaps in the velocity profiles. As a result, the following definite
expressions of velocity distribution function have been obtained:

For region-2, denotmg Uss = /(v2, +1u2)/2/ux and Recs = tscbr /v,

where

U= U” = F(L2) + RucsUse H Lo = k'Uss (Y - %’ﬁ> (18)
*C
For region-3, denoting Ru.o=uUscle /v and Ryca=tcad/v,
U=iPs)+a ;  Ly=sv4ize (19)
K U*c
; and A is defined as
U*s R
A= =F(Ls) + RucsUsc — ~F(L5) ;
- Uw ’ . Ruco R*CG
Ly = U*c"; (R*ca R*cﬁ) 3 Ly = k—— .. + Us. (20)

Among the dimensionless parameters defined above, R,.s can be related with the other ones as explained
hereafter. When L 3 1/2, F(L) may be approximated as

F(L) = F'(L) = In(4L) — 1 ' (21)

Furthermore, when u, = u,., because there are no sediment particles moving or settling on fixed beds, Ls may
be regarded as Lz = Li=xY in the range where y 3> ér. Thus, for a sufficiently high range of a flow in critical
condition of particle motion, Eq. 19 can be reduced to

U= %F’(LE’,) + .4 ; A= Rugs {1 Rl “F(“R*ca)} (22)

wea K

Finally, by considering the equivalency between Eqs. 8 and 22, the following expression of R, is obtained:

Rica
R*ca d (1/&)F(l€ . R*coz) (23)

Ry = 6.825
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As pointed out previously, the above solution has been obtained for the cases where aid > 61. When ad < 6§z,
the assumptions of 7 and £ should be changed and, consequently, a different solution is yielded as follows. In this
case, as the bed load layer is included in a laminar flow layer, it is sufficient for the flow to be divided into only
two regions, namely, laminar region where 0 < y < §; and turbulent region where y > 6. For the laminar region,
solution of BEq. 10 yields the same form as Eq. 15 because £ = 0 and 7 = 7;. For the turbulent region, assuming
that £ = ky, T = 7, and that the term of laminar shear stress in Eq. 10 is negligibly small, the following solution
is obtained: : . :

1 1 Rics
U== vesUse — — —_
~In(Y) + {R etUse = = In ( 7 (24)
However, the expression of R,.s is not the same form as Eq. 23. It is given as R, = 11.64 from the condition
that Eqs. 8 and 24 should be equivalent when u, = uy..

Verification Based on Flume Observations

In this section, performance of the above velocity distribution function is examined based on flume data.
Although data collected by Ishihara et al. (7) is available, it should be noted that all of their experiments were
conducted under the condition of thin sheet flow. Therefore, the authors carried out some experiments in order to
extend the source of available data for observations of relatively deep flows.

Ezperimental apparatus and measurements: A flume, 14.6m long, 0.6m wide and 0.4m deep was used for the
experiments. The bed surface of the flume was finished to be hydraulically smooth in lacquer paint. An automatic
sand feeder, that supplies test sand continuously at a constant rate, was installed near the upstream end of the
flume.

Seven experiments were conducted with two kinds of uniform test sand. The conditions of the experiments
are summarized in Table. 1. In each experiment, a steady and uniform flow was established under the condition
that the flow transported the maximum rate of test sand without deposition. And then, the vertical distribution
of flow velocity was measured by using a brass Pitot tube with a mouth diameter of 1.0mm.

Table. 1 Characteristic data of experimental runs

RUN d bed slope h udfV | e/ Tre qr flow discharge
(em) (=) (em) | (=) | () |(em?/s) (¢/s)

A-1 | 0.085 0.0025 2.248 | 19.75 1.5 0.010 4.28

A-2 | 0.085 0.0025 2.475 | 20.73 1.6 0.023 5.70

A-3 | 0.085 0.0025 4.830 | 28.95 3.0 0.080 14.35

B-1 |0.170 0.0025 1.915 | 36.46 1.2 0.006 3.23

B-2 | 0.170 0.0025 2.300 | 39.96 1.6 0.020 5.38

B-3 | 0.170 0.0025 3.750 | 51.02 2.8 0.074 10.53

B-4 | 0.170 0.0025 4.780 | 57.60 3.6 0.097 14.82

Tt should be noted that, when the total pressure tube of a Pitot tube is made with a pipe of diameter, ¢,
local flow velocities in the range 0 < y < ¢p/2 can not be measured. However, as shown in Fig. 2, if the total
pressure tube is successively lifted up from a flume bed at a small interval, Ay, the total pressure, Pr, at the height,
vz, lower than that of the center of tube mouth, can be evaluated approximately with the following relationships:

Pi+1

Yu
Yi+1

yi

yi

Fig. 2 Schematic diagram of a mouth of Pitot tube
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yr o= i~ p/2+ Ay/2+ (4~ 7)¢y/8 ; (25)
P, = Py~ %(Psﬂ - F) ‘ ; ~ (26)

where y; = ¢p/2 414 - Ay, with i = step number of measurement (i = 0,1,2,--+); Py = total pressure at height,
Yo = Yip1 +¢p/2 — Ay/2 — (4~ 7)¢, /8; and P; = out-put of total pressure tube obtained by setting the center of
tube mouth at height y;. Although the procedure of the deduction of Egs. (25) and (26) has not been explained
in detail, they were preliminarily verified to some extent through their application to velocity measurements in
laminar sub-layers of clear-water flows.

Application and discussion: Figs. 3 and 4 show some examples of comparison between velocity distributions
calculated by the proposed equations and those observed in the experiments performed by the authors. In these
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Fig. 3 Comparison between velocity observations collected by authors and velocity
distribution curves calculated with present equations(A-series)
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Fig. 4 Comparison between velocity observations collected by authors and velocity
distribution curves calculated with present equations(B-series)

figures, plots indicate observations, while solid and broken lines indicate calculation results based on different
assumptions of £g.

In the calculation, the parameters, 7y, o, and £g were given in the following manner. With respect to
Tue, Maione (10), Michiue (11) and others have proposed some empirical equations for its evaluation. However,
- definitions of the critical condition adopted for the derivation of the above mentioned equations are not unified or
clarified. In the present research, therefore, an attempt was made to derive a new equation of 7, based on a definite
criterion of the critical condition. At first, the dependence of ¢r on 7, under a condition of very weak particle
motion was examined through extrapolation of existing flume data, and the criterion for 7,, was determined as
97 [tsed = 1073, In the following, 7., was found to be closely related with w..d/v, as shown in Fig. 5, and was
formulated as
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The second parameter, o, was assumed to be 1.2 because, firstly, the particles of test sand were transported
mostly in the manner of sliding and/or rolling, and because, secondly, as seen in Figs. 3 and 4, most of the
measured velocity profiles show sudden increases in the velocity gradients around the points where y = 1.2d; refer
to Table. 1 for u.d/v. The last parameter, £g, whose characteristic having not yet been clarified, was given as
Lg = 0 for the first step. ;

In Figs. 3 and 4, where solid lines indicating the calculation results obtained by assuming ¢¢ = 0, the
level of agreement between calculated and observed results differs depending on whether the rate, 7. /7y, is larger
or smaller than 2. In cases where 7, /7., > 2, namely Runs A-2, A-3, B-3 and B-4, the calculated and measured
velocity profiles agree acceptably well over wide ranges of flow corresponding to regions-2 and -3. In the ranges
corresponding especially to region-1, however, a prominent disagreement is recognized between the two kinds of
results. Particularly, the actual flows appear to keep non-zero velocities even at points extremely close to the flume
bed, while the present theory assumes that non-slipping laminar flows exist on fixed beds. The relatively higher
velocities in the actual flows are thought to be produced by vertical momentum transfer due to rolling motion of
the particles as well as by the accompanying of bed-contacting water with moving particles. However, the authors
have not succeeded in correcting their theoretical model from such a point of view.

In the cases of Runs A-1, B-1 and B-2 where 1 < 7,/7. < 2, the calculated results agree pretty well with the
observations in the ranges of region-1, whereas a remarkable disagreement can be seen in the ranges of region-2
and -3. This disagreement is mostly due to underestimation of velocity gradients in region-2. In these experiments,
the particles were observed to move mostly in a sliding manner at considerably lower velocities than those of
surrounding flows. - Regarding this observation result, it is supposed that the relatively gentler gradients of the
observed flow velocities are due to the effect of wakes occurring behind the particles. Hence, for a trial, velocity
profiles of Runs A-1, B-1 and B-2 were recalculated by assuming as £;/d=0.07, 0.15 and 0.15 respectively, and
are indicated by the broken lines. A fine improvement in the degree of agreement has been achieved. At present,
however, the influence of wakes on £g has not been thoroughly clarified.

Based on the flume experiments carried out by the authors, several problems have been pointed out with
respect to the performance of the proposed velocity distribution function. However, let us recall here that the
function is defined, in the procedure for formulating the bed load capacity, to estimate the representative velocity
of fluid drag acting on moving particles. As far as evaluation of the bed load capacity is concerned, it may be
sufficient for the present function to be accurate merely at the elevation of particle heads. If examined again from
such a point of view, it could be regarded as being considerably useful, because some of the prominent disagreements
which have been pointed out with respect to the ranges of regions-1 and -3 could be ignored.

In addition, the performance of the present function is examined also in Fig. 6, based on experiments
conducted by Ishihara et al. (7). The calculated results, indicated by solid lines, are obtained by assuming o = 1.2
and £z = 0, and are compared with the experimental results indicated by plots. It should be noted that 7. /7 was
always greater than 2 in these experiments. The results of the experiments and calculations show an acceptable
level of correlation except for the case where d = 0.052c¢m. In the calculation for this exceptional case, 6r was
resultantly estimated as 67 < ad. However, it may be possible to assume that the particles were involved in laminar
layer due to their slender shapes. Based on this assumption, for a trial, the velocity distribution was recalculated
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by using Egs. 15 and 24 and the new result is indicated by a broken line in Fig. 6. The correlation between the
calculated and observed results has been improved to a sufficient level.
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Fig. 6 Comparison between velocity observations collected by Ishihara et al. and velocity
distribution curves calculated with present equations

ESTIMATION OF PARAMETERS INVOLVED IN PROPOSED
) BED LOAD CAPACITY EQUATION

In order to put Eq. 9 into practice, it is necessary to quantitatively estimate the three unknown parameters
CDc/CDm: e and ﬂm/ﬂc

Several authors, including Aksoy (1), Kanda & Suzuki (9) investigated the property of drag coeflicient of
spheres, Cp,, under the condition that they were settling on flume beds. As a result, it has been found that the
dependence of Cp, on the Reynolds number does not essentially differ between turbulent shear flows and infinitive
flows with uniform velocity. In other words, Cp, is not closely dependent on local velocity profiles and tends to

~decrease with increase in the Reynolds number. Furthermore, in the experiments performed by Ohnuki et al. (12),
a sphere rolling down at constant velocities on a slope set at various angles in a still water showed nearly 25%
greater values of Cp, in comparison with the cases where it was merely sliding down on the slope. On the other
hand, unfortunately, little is known about the drag coefficient of actual sediment particles. Referring to existing
knowledge of spheres, it seems that Cp./Cpm Is a little greater than unity since the Reynolds number, based on
the relative velocity between fluid and particles, appear to be greater for moving particles than for those in critical
condition of motion. However, the rolling motion of particles, which becomes more apparent as 7, increases, may
cause an increase in Cp,, thus a decrease in Cp./Cppm. As a result of these considerations, it seems reasona,ble to
assume Cp./Cpm to be unity.

In relation to u., Tubaki et al. (15) reported that a critical velocity of a crushed-stone particle calculated by
assuming p. = 0.38 took a nearly 25% smaller value than the observation result. Hence, it seems rather appropriate
to consider that p. is as large as 0.5.

Generally speaking, the friction coefficient between a body and solid surface is smaller in the dynamic state
than in the static state. Hence, it can be suggested that ., /p. < 1. Furthermore, it should be noted that Tubaki
et al. (15), for instance, employed a smaller value of (= 0.3) than that of y. for the calculation of bed load
capacity. However, the characteristic of pn,, especially its dependence of 74, has not yet been thoroughly clarified,
although it may be significant.

Now, if the values of Cp./Cpm and p, are given, fi, /1. can be evaluated from existing experimental data
of bed load capacity and it becomes possible to discuss its property empirically. Fig. 7 shows an example of the
relationship between iy, /pe and 7, /7, which was obtained on the assumption that Cp./Cpm = 1 and p, = 0.5,
and by using observations presented by Ishihara et al. (7), Pedroli (13) and Shima & Hayakawa (14). It is seen that
the resultant values of u,, /p. are less than unity, as suggested above, with some exceptions. However, significant
dependence of pp, /i, on Ti/Tue can not be observed. Hence, from a practical pomt of view, it may be considered
that \/pm, /g = 0.8.

Finally, in Fig. 8, dxmensmnless bed Ioad capacities calculated by using the present formula with the above
values of model parameters, Cp./Cpm, e and fiy, /i, are compared with the observations. Sufficiently close
correlation is noticed between the calculated and observed results except for one of the cases of Ishihara et al. (7)
in which d = 0.052¢m. The cause of this exception is currently being investigated.
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Fig. 8 Verification of proposed formula for bed load capacity
SUMMARY AND CONCLUSION

This paper has presented a formula for calculating “bed load capacity” of flows on smooth and fixed beds.
The bed load capacity is defined as the maximum rate of bed load that can be transported by a flow on a fixed
bed under the condition of non settling particles.

The bed load capacity was initially expressed as a product of the volume of moving particles per unit area
of bed surface and their mean advancing velocity. Then, both factors were formulated to yield a practical form
of the bed load capacity formula, as i.e. Eq. 9, by referring to Ashida & Michiue’s (3) theory. In this procedure,
the influence of moving particles on velocity distribution of water flow, difference in friction coefficient of sediment
particles between their static and dynamic states, and variation in the drag coefficient were all taken into account.

The velocity distribution function of the sediment laden flow, which is included in Eq. 9, was deduced on the
bases of Prandtl’s Mixing Length Theory. The whole flow field was divided into three regions and the flow in each
region was solved using simple models for spatial distributions of shear stress and mixing length. Applicability of
the proposed velocity distributicn function was verified based on flume observations collected by the authors and
Ishihara et al (7). .

The parameters introduced in Eq. 9 were estimated empirically. As a result, the variation in drag coefficient
was regarded as insignificant. The friction coefficient of sediment particles in the static state was estimated to be
as great as 0.5. The ratio of the friction coefficient of sediment particles in a dynamic state to that in a static state
was proved to be independent of the dimensionless tractive stress, and the appropriate value of the square of the
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ratio

was estimated to be 0.8.
The performance of the proposed bed load capacity formula was examined based on flume observations

collected by several researchers. The calculated and observed results correlated significantly thus verifing the
validity of the present formula. It should be noted, however, that the achievement of this study is concerned

with
parti
mixe

10.

11.

12.

13.
14.

15.

uniform sediment only, although sediment existing particularly in mountain streams is usnally composed of
cles with a wide distribution of sizes. Further investigations are necessary in order to solve the problems of
d sediment.
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APPENDIX - NOTATION

The following symbols are used in this paper:

a

A7

b
C

= constant;

A’ = dimensionless parameters defined as Eqgs. 20 and 22;
= constant; ‘
= integral constant;

Cpe, Cpm = drag coefficients of particles at rest and in motion;
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£ fe
F,F'

Ks, K3

V4
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L

Ly, L3, Ly, La, Ls
P

Pr, Py

qr

Rica, Brcas Bacs
u

Up; Ube

Use,Une

U

Us, Use

Uss
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Te

TG

To

Tws Txe

o
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= drag coefficient of sphere;

= normal diameter of sediment;

= velocity distribution functions for transport and critical conditions;
= functions defined as Egs. 17 and 21;

= gravitational acceleration;

= flow depth;

= step number of setting the center of tube mouth;

i

coeficients of the projected area and particle volume;

= Prandtl’s mixing length;

= additional mixing length due to wakes and/or rolling motion;

= dimensionless mixing length;

= dimeénsionless expressions of mixing length;

= out-put of total pressure tube at height y;;

= total pressure at height yr, and yy;

= bed load capacity;

= Reynolds number defined with w.. and £g, with u., and ad and with s, and ép;
= local flow velocity;

= representative velocities of fluid drag in transport and critical conditions;
= apparent shear velocity and critical shear velocity;

= dimensionless local flow velocity;

= dimensionless apparent shear velocity and dimensionless critical shear velocity;
= dimensionless shear velocity(= /{2, + u2)/2/u.);

= mean velocity of particles;

= volume of moving particles per unit area of bed surface;

= height from bed surface;

= height of center of total tube in i-th step of measurement;

= height of objective point to get out-put of total pressure;

= dimensionless height from bed surface;

= empirical constant to estimate the upper limit of bed load layer;

= thickness of laminar layer; )

= small interval for total pressure measurement;

= universal and virtual Kdrmén’s constants (Eq. 14);

= coefficients of friction force in static and dynamic states of particles;
= kinematic viscosity of water;

= density of water;

= density of sediment;

= local fluid shear stress;

= critical shear stress;

= tractive bed shear stress for sediment transport;

apparent bed shear stress;
= dimensionless apparent bed shear stress and dimensionless critical shear stress;
= diameter of total pressure tube mouth.
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