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SYNOPSIS

The six-point scheme proposed by Komatsu e .al. for calculation of one-dimensional pure advec-
tion can be regarded as a highly-accurate interpolation cubic polynomial. An interpolation curve between
two grid points can be obtained by applying the six-point scheme directly. However, the direct use of the
six-point scheme does not always give the smooth curve because the continuity of the gradient of curve at
grid points is not guaranteed. This paper presents a new interpolation cubic polynomial which is con-
structed on the basis of the six-point scheme and guarantees the continuity of the gradient. The accuracy
of the new interpolation cubic polynomial is examined by using the time series data of three types of
turbulence. It is found from the results that the new interpolation cubic polynomial has almost the same
accuracy as the spline function and can be treated very easily because of its explicitness.

INTRODUCTION

The ungiven data between the data given discretely can be estimated by an interpolation. Scientists
and engineers use an interpolation so often because most of data obtained by experiments or observations
are not continuous but discrete. Representative interpolating functions used so far are the Lagrangian
interpolation polynomial, the Newton's forward interpolating polynomial, the spline function and so on.
The Lagrangian interpolation polynomial and the Newton's forward interpolating polynomial constitute
an unique polynomial over the entire interpolation domain. As the number of used data increases, unnec-
essary oscillations generally become larger. On the contrary, the spline function gives a divided interpo-
fation polynomial which seems to be best for each grid span and can give a smooth curve having little
unnecessary oscillations. The spline function has a variety of applications, for example, numerical differ-
entiation, numerical integration, computer aided design and so on. Therefore, the spline function is the
most widely used interpolation and the powerful tool for science and engineering fields so far. However,
it is necessary to solve the simultaneous equations the number of the unknown values of which is the
same as that of the given data, so that the computational cost becomes more expensive as the number of
the used data increases.

Komatsu et al. reported the six-point scheme(1) which was developed for calculation of one-di-
mensional pure advection. The six-point scheme is based on the characteristics method. As will be
mentioned at the next section, the problem to estimate the value at a new time step at a spatial computa-
tional grid point can be reduced to the problem to obtain the value at an old time step at a spatial point



between two grid points, The value at the spatial point can be estimated by an interpolation. The six-
point scheme is originally an interpolation cubic polynomial for a computational grid interval, which
consists of the six known values. Therefore, the six-point scheme can be regarded as one of the highly-
accurate interpolation cubic polynomials. Interpolating successive curves which pass through all given
data points can be made by applying the six-point scheme to each grid interval. However, the interpolat-
ing curves obtained by the direct use of the six-point scheme in this way are not always smooth.

In this paper we have attempted to develop a new interpolation cubic polynomial which is based on
the six-point scheme and able to provide the smooth curve easily. Test calculations have been carried out
on the time series data of three types of turbulence in order to examine the accuracy of the new interpola-
tion cubic polynomial. The results have shown that the new method has the excellent accuracy.

DERIVATION OF THE NEW INTERPOLATION CUBIC POLYNOMIAL
The Six-Point Scheme

The one-dimensional pure advection equation is written as
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where $=concentration of transported matter ; x=space coordinate ; =time ; u(x,)=fluid velocity. Eq.(1)

can be written as
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Eq.(2) implies that the fluid particle does not change its concentratlon whlle moving along the character-

istic curve shown in Fig.1:
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Fig.1 Computational grid

where superscript n denotes time level ¢ ; subscript i denotes computational spatial point x; & denotes the
x-coordinate of the foot of the characteristics leading to the point (x, ¢, ). @ ."hastobe estimated by an
interpolation because the foot of the characteristics is not usually ccmsxstem with the computational grid
point.. The six-point scheme constitutes the highly-accurate interpolation cubic polynomial on interval
x,,~x, using six known values around ¢ in order to get the value of @ .. The details are described in the
paper (1) The final expression of the six-point scheme is as follows:
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in which « is a non-dimensional parameter which is the Courant number defined as « =ut/Ax and

can be regarded as an interpolating parameter. Eq.(4) is the cubic polynomial with respect to « and
defined in the « -coordinate of which the positive direction is in consistency with the negative direction
of x as shown in Fig.2.
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Derivation of INDUS

We shall consider a problem to make a new interpolation polynomial in this section. Therefore, the
rest of this paper is not concerned with the pure advection problem. As mentioned above, Eq.(4) can be
regarded as the highly-accurate interpolation cubic polynomial on interval x,,~x. By applying Eq.(4) to
each data interval, divided interpolation polynomials can be obtained. However, the divided interpolation
polynomials do not always give a smooth curve which is a continuous line of both value and gradient. To
overcome this weakness Eq.(4) is used not directly as the interpolation polynomial but for estimating a
gradient at a data point. We attempt to constitute a new interpolation polynomial by using the values and
the gradients at the data points.

Let @X, be the gradient at x PX, can be obtained by differentiating Eq.(4) applled to region I or
region 11 shown in Fig.3. Letus note that (®X), and (PX), stand for the gradient at x, evaluated by
applying Eq.(4) to region I and I, respectively. (®X), and ( X)) are written as follows:
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(@X), is not always equal to (P X),. This is the reason why Eq.(4) is not directly used as the divided

mterpolatlon polynomial. Itis expected that the average on ( $X), and ((PX Dy glves a better estimation
of the gradientat x. @ X is given below.
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Let the order of interpolation polynomial be third and then we can make up a following cubic polynomial

from four conditions, which are ¢, ®, 9 X, and X,
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Introducing 8 ( =1-a=(x ~x_)/(x-x,_)) instead of a , we can obtain the final expression defined in the
coordinate of which the posmve dlrectlon is in consistency with the right hand direction.
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Table I Mean turbulent energy and integral time scales of three types of turbulence

u'? (cm?/sec?) T(sec)
Case-1(Oscillating-GridTurbulence) 83.19 ‘ 1.43
" Case-2(Turbulence of Open Channel 0.64 ‘ 4.16
Shear Flow) ‘
Case-3(Turbulence on Internal Wave) 1.55 i 0.61

_ 29177 d)i+1+ 17117 D o+ 0 D3 ﬁ+tpi—1 (9)
151920 607680

Eq.(9) is the new divided interpolation polynomial proposed in this paper. Hereafter this method is
labelled as INDUS (Interpolative Divided Polynomial Using Six-point scheme). Applying Eq.(9) to each
data interval, we can easily obtain a smooth interpolation curve.

VERIFICATION OF THE ACCURACY OF INDUS

Interpolation of Time Series Data

~ When the data intervals are not small sufficiently compared with the variation scale of the data, a
good interpolative data can not always be obtained. On discussing the accuracy of an interpolation, we
should use the data involving the broad band of frequency of fluctuation. Therefore, the time series data
of turbulent velocities are used to examine the accuracy of INDUS. The three types of data used here are
the turbulence generated by an oscillating grid, the turbulence of open channel shear flow and the turbu-
lence on internal wave. Table 1 shows the mean turbulent energy and the integral time scales of them.
The result obtained by applying INDUS to Case-1 with the data interval 2¢ 1.0 sec is shown in Fig.4. The
Newton's forward polynomial and the cubic B-spline function are adopted for comparison and the corre-
sponding results are shown in Fig.5 and 6 respectively. Although interpolative curves do not follow the
higher-frequency fluctuations than f=1/24t, we can find that INDUS has almost the same interpolative
accuracy as the cubic B-spline function in these cases. The results for Case-2 with the data interval 27
1.0 sec and for Case-3 with the data interval Ar 0.4 sec are shown in Figs.7~9 and Figs.10~12 respec-
tively. As a result, it seems that INDUS has the same accuracy as the cubic B-spline function under the
same conditions, whereas the Newton's forward polynomial has less accuracy than INDUS and/or the
cubic B-spline function. The results shown in these figures suggest that the accuracy of the interpolation
should be dependent on the ratio of the variation scale to the data interval. The comparison among these
methods was made by using three kinds of turbulent data with the several data intervals. The results are
shown in Figs.13~15. In these figures, the horizontal axis indicates the ratio of the data interval A7 to
the integral time scale T, and the vertical axis indicates the normalized error that is the mean square of the
difference between the experimental data and the interpolation divided by the turbulent intensity. '’
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Fig.9 Result of intcrpolation for Case-2(Newton)
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means the eXperimema] data and # | means the interpolation data. It can be seen from these figures that
INDUS has almost the same accuracy as the cubic B-spline function for all data intervals and this charac-

teristic is independent of the turbulent types used here.

On the other hands, as the data interval ratio 2t/

T becomes larger the normalized error of Newton s forward polynomial tends to be large compared w1th -

the others methods.
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Spectrum of Interpolation Data

INDUS does not work so well as an interpolation if the physical properties of turbulence change
remarkably, even though the interpolation error seems to be small. Indeed, the use of interpolating cubic
polynomial sometimes produces a large discrepancy in frequency properties. Therefore, the spectrum
analysis was applied to the experimental data and the interpolation data. The spectra calculated for case-
1 and case-2 are shown in Fig.16 and Fig.17 respectively. Theoretically speaking, the spectrum of the
interpolation data can not reproduce the higher frequency components than 1/2A¢ . The obtained results
show this tendency that the power is cut in the higher-frequency side. In addition, it can be recognized that
the interpolation curve which is smoother than the experimental data tends to have the higher power
amplified in the lower-frequency side.

The turbulent energy evaluated by integrating the power spectrum obtained from the spline func-
tion data over the whole frequencies is almost in agreement with that calculated from original experi-
mental data, whereas that from INDUS was rather smaller than that from experimental data. This is due
to the power-cut which is executed in higher-frequency side. It is apparent that INDUS has the excellent
reproducibility in lower-frequency side.
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APPLICATION OF INDUS TO BOUNDARY REGION

INDUS can be easily applied to a large number of data because of an explicit formulation. The
application of INDUS to i-/~i region requires eight data, which are @, @, ;" P .., and &,,; There-
fore, INDUS is applicable to the regions from IV to N-3 shown in Fig.18, but needs some devices near the
both boundaries if no data are given out of boundaries. This section deals with the modification of
INDUS to make it applicable to the boundary region without out-boundary data.
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Fig.18-(a) Definition of the simbols in left-side =~ Fig.18- (b) Definition of the simbols in right-side

boundary boundary
Let us consider the left-side boundary. The value out of boundary, @, shown in Fig.18-(a) is taken
as follows:
Do=(y+1) P~y P, (10)

where y is the weighting parameter. Eq.(10) takes a weighted average between the value estimated by a
linear extrapolation when y is equal to 1 and the value of @ when y is equal to 0. The interpolation
methods adaptable to the three regions near the boundary usmg @, and known data are shown below.
(a)For region 1II : The interpolation polynomial is given by subsntutmg @, and ¢ ~ @ into Eq. (9).
(b)For region I: @' and @, denote the gradient at point t, estimated by dlfferentlatmg the interpolation
polynormat for region Il and that at point t, obtained by substituting @ ~ &, into Eq.(6)
, respectively. The mterpolatlon cubic polynomial for region I is constructed by using
D,, Py, @, and D\
(c)For region I :The interpolation cubic polynomial can be given from four conditions which are &,
@,, @, obtained in the manner mentioned above and the gradient of a quadranc polyno-
mial passing through the three data( @y, @, and @,) at point t,.
For the right-side boundary, the same manipulation as that for the left-side boundary will be impiemented.
The interpolation calculations for the time series data of turbulence were carried out to decide the
optimal value of y . Fig.19 shows the relationship between y and the normalized error, which has the
same definition as before, but the average is made on only for the three region near the boundary. Itis
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found from this figure that the accuracy of the interpolation is highest when y is equal to 1. We should
note that the parameter y influences the results of the interpolations at the regions which are the closest
to the boundaries, that is, the regions I and N. However, at the other regions the influence of y is
negligible. The interpolation polynomials for each region are formulated as follows:
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CONCLUSIONS

We developed a high-accurate explicit interpolative polynomial in this study. The results obtained
in this paper are summarized as follows:
(1) A new high-accurate explicit interpolative polynomial was developed and proposed based on the six-
point scheme that is one of high-accurate schemes for calculating the pure advection equation.
(2) INDUS has a great simplicity concerned with implementation because of its explicit expression.
Therefore, it is easy to apply INDUS to the interpolation problem with a number of data.

(3) The test problems and the spectrum analysis demonstrate that INDUS has comparable or higher
accuracy than the cubic B-spline function.
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APPENDIX —NOTATION

The following symbols defined below are used in this paper :

P = concentration of transported matter ;

P’ = gradient of concentration ;

X = space coordinate ;

t = time coordinate ;

u(x,f) = fluid velocity ;
Ax = grid spacing ;

£ = foot of the characteristics ;

a =ult/Ax = interpolating parameter ;

i = x-direction grid index point ;

n = t-direction grid index point ;

DXi = gradient of @ at Xi;

s = l—a=@,~x)/(x—x,);

Y(a ) = new interpolating polynomial in terms of « ;
Y(7 ) = new interpolating polynomial in terms of (5 ;
u' = velocity fluctuation ;

u? = turbulent intensity ;

At = data interval ;

= integral time scale ;
u = interpolation data ; and

% = weighting parameter.
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