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SYNOPSIS

Flux difference splitting scheme of Roe is implemented on a self-adjusting grid for
solving one-dimensional transient free surface flows. The finite difference grid adjusts itself
by averaging the local characteristic velocities with respect to the signal amplitude. The
grid adjusting procedure developed by Harten and Hyman removes the smearing of
discontinuities caused by the first-order flux difference splitting of Roe. The scheme
presented herein also incorporates technique to satisfy energy inequality condition in all the
cases of one-dimensional transient free surface flows. Improved resolution of
discontinuities by the self-adjusting grid is demonstrated through numerical examples.
Results using the self-adjusting grid are also compared with the second-order accurate
TVD Lax-Wendroff scheme.

INTRODUCTION

Mathematical simulation of the set of partial differential equations governing one-
dimensional transient free surface flows is widely recognized as an efficient tool for solving
the related flow problems. The recognition has resulted in a significant improvement in the
solution techniques for open channel flow problems. Recently, advances made in the field
of gas dynamics in obtaining high resolution of discontinuous flows has shifted the focus of
research from classical schemes to more sophisticated high resolution, shock-capturing
schemes for solving flow problems with strong discontinuities. The application of flux
splitting technique ( e.g. Fennema and Chaudhry (4,5), Jha et al.(8)), flux difference
splitting technique (e.g. Glaister (6), Alcrudo et al. (1), Jha et al. (9)) and higher-order TVD
and ENO schemes (Yang et al. (16)) to one-dimensional transient free surface flows have
been reported with varying success.

Resolution of a shock has so far been achieved mainly through shock-fitting or
shock-capturing techniques. The shock-fitting approach (Katopodes and Strelkoff (10),
Chen and Armbruster (3)) isolates a bore and computes its propagation for one time-step
independently of the computation in the two adjacent continuous regions. This approach,
however, implies a prior knowledge of the occurrence of a shock:. At the same time a
shock must be tracked so that the Rankin-Hugoniot condition can be applied at the location
of the shock. The problem is further compounded if there are many shocks appearing and
disappearing as the solution proceeds in time. These difficulties have given rise to the
shock-capturing technique ( see Lax (11), Lax and Wendroff (12)). The shock-capturing
technique does not treat a shock as a moving internal boundary and solution is obtained by
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integrating the governing equations in conservation form (MacCormack (13), Beam and
Warming (2)). However, the shock-capturing technique might smear a shock when applied
to a first-order accurate fixed grid finite difference scheme. It often becomes necessary to
extend such schemes to a higher-order of accuracy for enhancing the shock resolution.

Another approach for avoiding the smearing of a shock is to track a shock and make
its location coincide with a mesh point and then use a finite difference scheme capable of
perfectly resolving a stationary shock. Although a shock has to be tracked in much the
same way as in the case of shock-fitting approach, its treatment as a moving internal
boundary is not required. Harten and Hyman (7) devised a self-adjusting grid that, when
used with appropriate finite difference schemes, yields perfect shock resolution by ensuring
that a shock always lies on a mesh point. ‘

In this paper, the applications of the self-adjusting grid developed by Harten and
Hyman (7) to Roe’s flux difference splitting scheme for solving one-dimensional transient
free surface flows are investigated. Roe’s scheme is first-order accurate and achieves
conservative splitting of the flux difference through a particular averaging of the flow
variables. In the rest of this paper, Roe’s scheme is described along with treatment for
satisfying energy inequality condition. Details of the self-adjusting grid and its application to
Roe's scheme are presented subsequently. Numerical examples are presented that
demonstrate improved shock resolution due to the use of the self-adjusting grid. The
results are also compared with the second-order accurate TVD Lax-Wendroff scheme.

GOVERNING EQUATIONS

The governing equations for one-dimensional transient free surface flows are
statements of the conservation of mass and momentum and can be written as
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based on the assumption of hydrostatic pressure distribution, incompressibility of water and
sufficiently small bottom slope of the channel. The vectors for a prismatic channel of
arbitrary cross section are defined as S
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where A = cross-sectional area of flow; u = velocity; g = acceleration due to gravity; S, =
bed slope and S; = friction slope, assumed to be given by a steady-state formula. Fy, =
hydrostatic pressure force term expressed as
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where h = depth of flow; n = integration variable indicating distance from channel bottom
and W(n) = channel width at distance n from the channel bottom. J is the Jacobian of E
with respect to U and is given by
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The governing equations are known to be hyperbolic which 1mphes that J has a
complete set of independent and real eigenvectors expressed as .

T I
¢ =l ysc) *_.°=Ji@5 - o

where ¢ = celerity. The eigenvalues of J are given by
A =uzxc ®)
ROE’S SCHEME ON FIXED GRID

Roe’s first-order accurate flux difference splitting scheme for one-dimensional
transient free surface flows can be written as

) U;H =Ut [F‘iuz ;1/2] : L (7)
L Time, t
where i and { = space and time
indices, respectively; v = AVAX; At ,
= time increment and Ax = finite = =2 0 o "
difference grid size in space 32 i Yietn
(Fig:1). The source term has :
been dropped from the present w1 o
consideration. All variables are P e T
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computed at known time level t, if ’
not indicated otherwise. F;,q, and
F, .ip are called numerical fluxes -
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Fig.1 Fixed Grid Underlying Self—adjusﬁng Grid.

Fip =05 (Ei +E, )— O-SZI;\‘;ilz‘aiiuze?ﬂfz ®
a = wave strength, defined as
oy =ewnAUuy, AU, =U, -0 : (9.)

The eigenvalues X and the eigenvectors e at points (i+1/2) are computed from the
following averaged variables as suggested by Roe (14)
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Roe and Pike (15) have shown that the above averages are unique in satisfying
conservative properties and consistency with the governing equations. However, they
violate energy inequality condition in case of a rarefaction wave. The most common
remedy for this problem is to replace the modulus of 1 in Eq. 8 by a small positive quantity
& whenever the modulus of A is less than 8. In order to avoid trial procedure for the value of
5, the formula suggested by Harten and Hyman (7) is used which can be written as

81y = max|0, MU, U,,) — MU, AU, - MU, UL ] (12a)
8,12 = max[0,A(U,,,U) = MU, ,MU) - AU, U] (12b)

SELF-ADJUSTING GRID

Roe’s scheme on a fixed grid, as described in the preceding section, can perfectly
resolve a shock if that lies at the extremities of the interval between i+1/2 and i-1/2.
However,. if a shock lies in the interior of this: interval, which may often be the case, the
shock is bound to be smeared by Roe’s scheme. The maximum smearing would occur if a
shock lies at the center of the interval between i+1/2 and i-1/2. A solution to this problem
was suggested by Harten and Hyman (7) in the form of a variable grid that adjusts itself at
each step of computation. The adjustment is such that the location of a shock always
coincides with a grid point, thereby resembling a stationary shock. Applying Roe’s scheme
to this self-adjusting grid vyields resolution of a shock as a perfect discontinuity. The self-
adjusting grid and the underlying fixed grid is shown in Flg 1. The end points of the
variable grid are computed as

sotvl t+1
Lier = Kiziz [Z(xnmﬂ/z -Xian i+m:tl/2f(X«t+mtl/2’Xx’Xltl)J/(pitlIZ - (13)

where X, = 0-5(Xi +Xiﬂ)‘
The variable grid is derived based on the following conditions;

(i) Mesh end points y 4, coincides with the location of a single admissible discontinuity
that originates at time t and ends in the half open set(x;, x.] at time t+1.
(i) There is only one variable mesh point in each interval of the underlying fixed grid.

(i) x5, -x 5, 2R, ,where R, = min[xM - X, X; -xm] , for all i and t if the same is true at
the initiation of the computation.

¥ is the first-guess value of the interval end points computed as

—t+]

Tisz = Xiwz T A Vigy (14)

where v is the speed of a single discontinuity given by

Vizin {Z(am/z) 7‘111/2}/ B ‘ (15)



47

where o = wave strength and A = eigenvalues, as defined in the preceding section. B and
the function fare expressed as

2 2 : :
Bisip = ;(aiiuz) : ‘ (16)
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(17)
=0 ; otherwise

¢ is a weighted amplitude of the waves at time t+1 and is expréssed as

Pivin Zﬁnmwzf(x feme1/25 Xi5 Xigg ' ; - (18)

The interval end points computed by Eq. 13 satisfy first two of the three conditions
listed above. It may still violate the third condition. The following treatment overcomes this
last problem.

Xt = T : ; di*' > 0.5R, o

= ~i!;IIIZ +0.5R @51 /((PHI/Z +(Pi.1/2) ; otherwise

where ; | |
d:H = f;t:ll/z flt?}z , » ‘ ; (20)

At each step of computation, new interval end points are compdted and the grid‘ is
automatically adjusted according to evolving solutions.

ROE’S SCHEME ON SELF-ADJUSTING GRID
A conservative scheme on a variable mesh can be written as (Harten and Hyman(7))
U;H = [(AX )'U; - At(FH-I/Z 'Fi-lfz )]/(AX )m > AY = Yoz~ L 21)

and the numerical flux for Roe's scheme on the self-adjusting grid is expressed as

’F’iil/z; =05 (E: + Eiil_) - 05;’7’;:1/2 l‘x 128 i , , (22)
where

E=E-vU (23)

g;vz = 7‘&1)2.' Visiz k o k (24)

The corrections for satisfying energy inequality condition is implemented in an
identical way as in the case of Roe’s scheme on a fixed grid. Eq. 21 vields integral solution
of the problem which may be significantly different from the pointwise values at the finite
difference nodes in the case of rarefaction waves. Consequently, plotting of these integral



48

values as pointwise values may indicate the existence of several constant states which is
entirely a problem of plotting algorithm. The problem can be avoided to some extent by
plotting the pointwise values at y;.1, obtained by the following averaging ( Harten and
Hyman (7))

by, = [(Xm/z =%;) By (X = Xian) hi]/(Xi+1 +%;) (25)-
NUMERICAL EXAMPLES '

. All examples consider a 4000 m long rectangular, horizontal and frictionless
channel. The initial conditions have been selected so as to generate severe discontinuous
flow situations for examining the shock resolution by the method presented herein. Grid
size in space for the underlying fixed mesh was set to 10 m, giving a total of 401 nodes
along the channel, and the time increment was computed at each step of computation.
The Courant number for Roe’s scheme on fixed grid and for the TVD Lax-Wendroff scheme
was 0.95. However, a Courant number of 0.6 was used for Roe’s scheme on the self-
adjusting grid as oscillations in the shock front region are not damped out at higher Courant
numbers. The details of the TVD Lax-Wendroff scheme can be referred to Alcrudo et al.(1)
and Jha et al. (9). For the first two examples, plotted values in the case of the self-
adjusting grid are obtained by Eq. 25.

Dam-Break Problem
Two different depths of water are assumed to be separated by a dam placed at 2000

m from either end of the channel. The depth in the reservoir portion is 10 m and that in the
tailwater portion is 0.05 m, giving a tailwater depth to reservoir depth ratio of 0.005. The

1120 1120
‘ e Seif-adjusting Grid

1090 1090

§ 1060 - % 1060 -
1B.0 - 1.0
1000 100.0
0 0 4000
Distance (m) Distance (m)
Fig.2 Dam-Break Problem by Roe Fig.3 Dam-Break Problem by Roe
Scheme on Fixed Grid. Scheme on Self-adjusting Grid.

discontinuity in the depth at. the middle of the channel is specified as the initial condition
which simulates sudden and complete collapse of the dam. The flow downstream of the
breach section is very rapid with a vertical shock front leading the‘ﬂow.
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This problem was simulated by Roe’s scheme on the fixed grid and on the seif-
adjusting grid and the resuits were obtained at 50 seconds. Figs. 2 and 3 show the water
surface profiles along the channel obtained using the fixed grid and the self-adjusting grid,
respectively, in comparison with the analytical solution. It can be seen from Fig. 2 that
Roe’s scheme on the fixed grid causes diffusion both in the shock front and in the negative
wave. Roe's scheme on the self-adjusting grid captures both the negative wave and the
shock front significantly better than Roe's scheme on the fixed grid (Fig.3). The negative
wave shows almost no diffusion and the shock front is resolved within one grid. The water
surface profile is not very smooth due to plotting of the averaged value of the integral
solution. .

Collision of Shock Waves

A simulated head-on collision of shock waves is presented in this example. The
initial conditions in the channel are as given below

h(x,0)=100m ; 0<x<1000m 20
=Im ; 1000<x<3000m
=50m ; 3000<x<4000m 1500

Fig. 4-6 show the results at 25 seconds

by Roe’s.scheme on fi xed grid, on self-

adjusting grid and the TVD Lax-Wendroff
scheme, respectively, along with the
analytical solution. At this time the shock
fronts moving in the opposite directions
are facing each other. Roe’s scheme on

fixed grid diffuses the negative wave and 0

the shock front while Roe’s scheme on Distance (m)

the self-adjusting grid captures the shock

with high resolution. Although first-order. Fig.4 Wave Fronts in Opposite Dlrectron by

accurate, Roe’s scheme yields results - Roe Scheme on Fixed Grid.

comparable to the second-order accurate

TVD Lax-Wendroff scheme, both in terms of accuracy and shock resoiutxon
At about 31 seconds the two shock fronts collide into each other and form a complex

flow structure with a widening water column around the location of collision. Considering

the solution by the TVD Lax-Wendroff scheme to be the most accurate, a comparison is
made in Figs.7 and 8 with solutions by Roe’s scheme on fixed grid and on the self-adjusting
grid, respectively. Slight diffusion is evident in case of Roe’s scheme on the fixed grid

(Fig.7). Solution by Roe’s scheme on the self-adjusting grid, with perfect shock resolution

(Fig.8), is almost indistinguishable from the TVD Lax-Wendroff scheme.

160.0

Water Level (m)

Bore Propagation

Propagation of bore on still water and one bore propagating over the other is
analyzed in this example. The initial condition in the channel is specified as 1 m deep still
water throughout the channel. The downstream end of the channel is kept closed. Two
successive bores are introduced from the upstream end with the following upstream
boundary conditions. '
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Q(0,t) = 50 m’ /s per unit width ; 0<t <100 seconds
=100 m* /s per unit width ;  t>100 seconds
200 200
190.0 1900 -

g g

5 1600 % 160.0

3 £

1300 1300
1000 1000
0 0
Distance (m) Distance (m)

Fig.5 Wave Fronts in Opposite Fig.6 Wave Fronts in Opposite
Direction by Roe Scheme on Direction by TVD Lax-Wendroff
Self-adjusting Grid. : Scheme. :

200 200
e Fixed Grid e Self-adjusting Grid
......... Lax-Wendrofl coemencse | ax-Wendroll
190.0 1500 -

g E

§ 160.0 éf 160.0 ~

2 £

= S

1300 1300 -
1000 T T e T g T T 1000 T T v T ‘ T T T
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Distance (m) Distance (m)

Fig.7 Collision of Wave: Roe’s - Fig.8 Collision of Wave: Roe's Scheme

Scheme on Fixed Grid. on Self-adjusting Grid.

Fig. 9(a) shows the solutions at 100 seconds, just before another bore is introduced

at the upstream end. At this time a single bore is seen traveling over the still water. In
order to examine the shock resolution by various schemes more clearly, an enlarged view
of the region near the bore front is presented in Fig. 9(b). As expected, Roe’s scheme on
fixed grid exhibits maximum diffusion. It is interesting to see that Roe’s scheme on the self-
adjusting grid captures the front with higher resolution than the second-order accurate TVD
Lax-Wendroff scheme. Roe’s scheme on self-adjusting grid resolves the front within one
grid.

v
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Fig.9(a) Bore Propagation on Still Water. 9(b) Front Details.
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11(b) Front Details



52

Fig. 10(a) shows the results at 130 seconds. The second bore is seen traveling over
the first bore. A close-up of the bore front is shown in Fig. 10(b). The comparative
resolution of different methods used remain the same as before, Roe’s scheme with the
self-adjusting grid providing the best shock resolution. The second bore moves faster than
the first bore due to its higher celerity and eventually overtakes the first bore. Thereafter it
travels as a single bore. Fig. 11(a) shows resuits at 270 seconds, soon after the second
bore overtakes the first bore. An enlarged view of the front region is shown in Fig. 11(b)
which indicates similar comparative features as in the case of results at 100 and 130
seconds. :

- CONCLUSIONS

Roe’s flux difference splitting scheme on the self-adjusting grid developed by Harten
and Hyman (7) has been investigated for applications to one-dimensional transient free
surface flows. ,The grid adjusting procedure, that proceeds by averaging the local
characteristic velocities with respect to the signal amplitude, reduces the diffusion caused
by averaging procedure when Roe’s scheme is used with fixed grid. The treatment for
satisfying the energy condition has also been incorporated. . ,

; Several test problems have been analyzed for examining the effect of self-adjusting
grid. Numerical examples indicate that the use of the self-adjusting grid significantly
improves the shock resolution of Roe’s scheme. In many cases, Roe’s scheme with the
self-adjusting grid yields shock resolution better than the second-order TVD Lax-Wendroff
scheme. The overall accuracy of Roe’s scheme is comparable to the TVD Lax-Wendroff
scheme in all cases considered. ‘ . ' '

The underlying fixed grid does not necessarily have to be uniform. It may be
adjusted according to the evolving solution to obtain enhanced resolution, if severity of a
problem so demands. On the other hand, better resolution can also be achieved by
incorporating the self-adjusting grid into a second-order accurate scheme. However, such
improvements would require more computation time and for most practical problems of
one-dimensional transient free surface flows, the accuracy provided by the methods
presented in this paper may be sufficient. o
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APPENDIX - NOTATION

The following symbols are used in this paper :

M~SNMMe mma o >

= cross-sectional area of flow;,

= celerity;

= grid size on self-adjusting grid;

= flux matrix on fixed grid;

= flux matrix for Roe’s scheme on self-adjusting grid;

= matrix of eigenvalues;

= numerical flux on fixed grid;

= numerical flux for Roe’s scheme on self-adjusting grid;
) = function of y;

n = hydrostatic pressure force term;
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= gcceleration due to gravity;

= flow depth;

= grid location in space;

= Jacobian of E with respect to U;

= wave humber;

= discharge;

= minimum of two adjacent intervals on fixed grid;

= matrix containing source terms;

= friction slope;

= ped slope;

= index for time;

= vector for flow variables;

= velocity;

= speed of single discontinuity;

= channel width at distance 1} from channel bottom;
= distance along channel;

= wave strength;

= sum of square of «;

= interval end-points on self-adjusting grid;

= first guess value of interval end-points on self-adjusting grid;
= operator, i.e. Af.q = fiy - f;

= small positive quantity;

= AVAX; : ,
= integration variable indicating distance from channel bottom;
= weighted amplitude of the waves;
= eigenvalues of J; and

= eigenvalues of J for Roe’s scheme on self-adjusting grid.
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