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SYNOPSIS

- A second-order accurate explicit TVD scheme is presented for solving one-
dimensional transient free surface flows. In the first step, the first-order generalised
Courant-Issacson-Rees (GCIR) numerical scheme incorporating flux difference splitting is
developed. The flux difference splitting, that is based on the Roe’s approximate Jacobian,
introduces full upwinding and ensures conservation properties. In the next step, this first-
order scheme is converted intc a second-order TVD scheme by a suitable modification of
the flux. The process of conversion to second-order accuracy is based on the modified flux
approach of Harten. The modified flux is so designed that it is conservative and consistent
with the energy condition. Numerical results for exacting flow problems are presented to
demonstrate shock capturing ability of the proposed scheme.

INTRODUCTION

One-dimensional transient free surface flows in a channel can be described by a set
of hyperbolic partial differential equations. Mathematical modeling of these equations has
been widely recognised as an important tool for obtaining a solution of transient free
surface flow problems (e.g. Mahmood and Yevjevich (18), Abbott (1), Abbott and Basco
(2)). The investigation of flow problems involving discontinuities in the form of shock has
gained impetus form the shock capturing schemes developed for Euler equations in the
field of gas dynamics. Schemes based on flux spht’ung technique (Beam and Warming (4),
Moretti (15), Gabutti (7)) and approximate Riemann solvers (Roe (16)) have been
developed that appropriately handle signal propagation and thereby shock propagation.
In the field of hydraulics, Fennema and Chaudhry (5, 6) applied Lambda (Moretti (15)) and
Gabuitti (7) scheme to shock propagation in a channel and the Beam and Warming (4)
scheme to dam-break problems. Glaister (9) applied Roe’s approximate Riemann solver to
dam-break flood wave propagation in a channel of infinite width. Alcrudo et al. (3)
extended Glaister’s work, based on flux-difference splitting, to channels with a finite cross-
section of arbitrary shape. Jha et al. (12, 13) proposed a one-parameter implicit scheme
based on flux splitting technique and a modified Beam and Warmmg scheme based on the
concept of an approximate Jacobian. T

An undiffused computation of discontinuous flows by ﬁmte d:ﬁerence method often
requires a second-order accuracy. The conventional second-order schemes invariably
develop undesired oscillations that have to be smoothed by using appropriate amount of
artificial diffusion. However, the addition of artificial diffusion degrades the desired
second-order accuracy. Harten (10, 11) introduced the idea of total variation diminishing
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(TVD) schemes for Euler equations. Yee et al. (20) examined implicit high-resolution TVD
scheme, a member of a one-parameter family of explicit and implicit schemes developed
by Harten, for steady-state computation of one-dimensional hyperbolic conservation laws.
These schemes are second-order accurate, consistent with conservation law and energy
condition and yield oscillation free results even in the presence of severe discontinuities.
Garcia et al. (8) implemented TVD technique onto the MacCormack (14) scheme for one-
dimensional open channel flows. Yang et al. (19) presented TVD and essentially
nonoscillatory (ENO) schemes for simulating shock propagation in open channels.

In this paper the ideas of Harten (11) and Yee et al. (20) are implemented onto the
shallow water equations of open channel flows. The first-order generalised Courant-
Issacson-Rees (GCIR) scheme incorporating flux difference splitting based on Roe’s (16)
approximate Jacobian is converted into a second-order accurate TVD scheme by suitably
modifying its flux. The shock capturing ability of the presented scheme is demonstrated
through several exacting numerical examples.

GOVERNING EQUATIONS

The governing equations, based on the conservation of mass and momentum, for
one-dimensional transient free surface flows in a prismatic channel of arbitrary cross-
section can be expressed as

dU _OE U
—&—+—a;+8—0 ’E‘Aax (1)

based on the assumption of hydrostatic pressure distribution, incompressibility of water
and sufficiently small bottom slope of the channel. The vectors are defined as
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where A = cross-sectional area of flow; u = mean velocity; g = acceleration due to gravity,
So = bed slope and S = friction slope, assumed to be given by a steady-state formula. Fp
= hydrostatic pressure force term expressed as

h
Fy =[O (h-mW(n)dn 5

where h= depth of flow; n = integration variable indicating distance from channel bottom
and W(n) = channel width at distance n from the channel bottom and is expressed as

W(n) = %—% ©)

Matrix A is the Jacobian of E with respect U given by
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The hyperbolic nature of the governing equations ensures that matrix A has a complete set

of independent and real eigenvectors expressed as’

el2=| 1 ' s 8)
utc :

where u = flow velocity and ¢ = celerity expressed as (gh)1/2. The eigenvalues of A are
given by

AT=utc &)
FINITE DIFFERENCE SCHEME;

As the homogeneous part of the Time, t
governing equations is responsible for most
of the problems when transient flows with
shocks are modelled numerically, treatment
of only the homogeneous part is considered t+1
for developing a finite difference scheme. A
first-order upwind explicit finite dlfference ‘
scheme can be written as : ,

At

Uit =i - Y[AEilluz + AEit-Jruz} (10) tl Ax

where i and t= space and time indices; y=
AYAx; At=time increment and Ax =finite R
difference grid size in space (Fig.1). The Fig. 1 1-D Finite Difference Grid.
upwinding is introduced into the scheme ‘

through the split flux difference by computing the positive and the negative AE by
a backward and a forward space differences, respectively. Following Roe (16), the split
flux differences can be written as -

i-1 i i+l Distance, x

2

t- ke ok RN o :
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. 2 ' . ; , .
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AE{ ) Z 12 ok ek : , (12)
where
L2 g

%12 = iz 1AV (13)

Inserting Egs.11 and 12 into Eq.10 and writing the positive and the negative eigenvalues
as
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A= 0sak ) 0 AR = asak-hY) : (14)

the following is obtained.
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which can be rearranged as follows;

Uit = Uy EI:‘\LIIZ'E{\-I]/Z} o R (16)

with the following numerical fluxes

2
N
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Eq. 17 can be recognised as ihe generalised Courant-Issacson-Rees (GCIR)
numerical flux. The average values at (i+1/2) and (i-1/2) are computed by the Roe's (16)
averaging. The average velocity and c;elerity are given by ~

12 12
Ai:tluiil +Ai u; : 18
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It has been shown by Roe and Pike (17) that the above are umque averages
satisfying conservation law and consistency with the governing equations.

CONVERSION TO SECOND-ORDER TVD SCHEME

A three-point first-order explicit scheme can be converted into a five-point second-
order TVD scheme by suitably modifying the flux in the first-order scheme (Harten (10)). A
second-order TVD modified flux for Eq. 17 can be written as (Yee et al. (20))

2
N ! .
Eit12= 0.5(E;i + Ejy)) + 0-52 (Ff + F‘i(:l) 12
k=1
2 k k k k
) \O'SZ Wiz + Cis12) Gy 0is 1 (20

k=1

where
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. The minmod function in Eg. 21 controls the second-order terms so that a smooth

result is guaranteed even in the presence of discontinuities. The terms of Eq. 21 are
expressed as :

. - 2 e -
o012 = 0.5 [y i) + v (] ; (23)
¥@)=05(2+8)6 . <3 | (242)
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where z= dummy variable. Egs. 24a and 24b are meant for satlsfylng energy mequahty
condition with 3 as a small posmve number. ~

NUMERICAL RESULTS

Numerical results of several exacting ﬂow prdbtems with sharp discontinuities are
presented to demonstrate applicability and shock-capturing ability of the second-order

TVD scheme. All results in the following are for a 4000 m long, horizontal and fncttonless
channel with 401 grid points.

Dam-Break Flood Wave Propagation

Dam-break problem with a reservoir depth of 10 m and tailwater depth to reservoir
depth ratio equal to 0.05 is considered. The downstream end is kept closed. The
discontinuity in the depths at 1000 m from downstream end of the channel is given as the
initial condition that simulates sudden and complete collapse of a dam. Computed water
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surface profiles at 80 seconds and 150 seconds are shown with analytical solutions in Fig.
2 and Fig. 3, respectively. At 80 seconds, the wave front has not reached the closed
downstream end. Fig. 3 shows the reflected wave from the downstream wall. The steep
wave fronts are resolved within three nodes in both cases. The negative wave is also well
simulated by the model.

Sudden Release of Steps of Water

This example considers sudden release steps of water. The initial condition is
described as ‘ ' ‘ S : ‘
h(x,0)=10m ; 0 <x < 1500m
h(x0)=5m ; 1500 <x < 3000m
h (x,0)=05m ; 3000 < x £ 4000m

Water surface profile along the channel at 70 seconds is shown in Fig. 4 together with the
analytical solution. At this time wave fronts due to two steps of water are moving
independently of each other. The computed result compares very well with the analytical
solution. At 100 seconds the wave front from the upper step runs over the negative wave
from the lower step and forms a complex structure (Fig. 5). The computed profile remains
very smooth and discontinuities are resolved with good accuracy.
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Fig. 4 Wave Fronts Due to Steps of Fig. 5 Interaction of Positive and
Water Moving Independently. Negative Wave.

Bore Propagation over Another Bore

This example considers propagation of one bore over the other bore moving in the
same direction. Initially the channel has 1 m deep still water. At the upstream boundary,
sudden change in inflow discharge is prescribed as

Q (0,t) =50 m3/s per unit width ; 0£t<100s
Q (0,t) = 100 m3/s per unit width ; t>100s

Fig. 6 shows the water profile of the bore at 100 seconds, just before a new bore is
introduced at the upstream boundary. The computed bore is very accurate when
compared with the analytical solution. The resolution of discontinuity is also very high.
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Results at 130 seconds and 270 seconds are shown in Fig. 7. At 130 seconds, the second
bore is seen travelling over the first bore. The second bore has higher celerity than the first
one and at 270 seconds the first bore is completely overtaken by the second bore. After
this time the both bores travel as a single bore. The solution of this highly discontinuous
flow is very smooth with high resolution of the discontinuities. This complex phenomenon
is very accurately simuiated. ‘
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Interaction of Bores

This last example considers another exacting flow problem. The channel has an
initial uniform flow with depth 6 m and velocity 3.125 m/s.. At the initiation of the
computation a zero outflux condition is imposed at the downstream boundary that
simulates sudden closure of gate. A surge is formed which travels upstream leaving still
water behind. Also at time equal to zero, a sudden inflow of 100 m3/s per unit width of the
channel is imposed at the upstream boundary which is maintained throughout the
computation. The upstream inflow condition forms another surge that travels downstream.
Result at 150 seconds is shown in Fig: 8. It shows two waves travelling in the opposite
direction facing each other. Both waves are accurately compu’ced by the model and the
steep fronts are correctly captured. A
head-on collision of the two wave fronts 16
occurs at 176 seconds at 2758 m from
the upstream end. Water surface profile
24 seconds after this collision is shown in
Fig. 9. A new bore is formed that travels.
downstream and eventually hits the
downstream wall. Reflection from the .
wall results in yet another higher bore
that travels upstream leaving still water 104 -
behind (Fig. 10). In all stages of the ,
interaction of bore, the TVD scheme |- —  Analytical
yields very smooth results with high 100
resolution of bores.
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CONCLUSIONS

A second-order accurate TVD scheme has been presented for simulating one-
dimensional transient free surface flows. The first-order generalised Courant-lssacson-
Rees (GCIR) numerical scheme incorporating flux difference splitting has been converted
into a second-order TVD scheme by the modified flux approach of Harten. Roe’s
averaging has been used which satisfies conservation law and is consistent with the
governing equations. Numerical results for exacting flow problems have been presented
to demonstrate shock capturing ability of the proposed scheme. Computed results

compare well with analytrcat solutions and dlscontmwtfes are captured w:th high resolution
in all cases.
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APPENDIX - NOTATIONS

The following symbols are used in this paper:

mTo rgmo wrr

o

o -

TUOVOVNOFT T TR

= Jacobian of E with respect to U;
= cross-sectional area of flow;
= base width of the channel;
= celerity;
= flux matrix;
= numerical flux;
= matrix of eigenvectors;
= modification to the flux;
= hydrostatic pressure force term;
= acceleration due to gravity;
= flow depth;
= grid location in space;
= wave number;
= discharge;
= matrix containing source terms;
= friction slope;
- = bed slope,;
= index for time;
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U = vector for flow variables;

u = velocity; , :
Wi(n) = channel width at dlstance h from channel bottom

X = distance along channel.

z = dummy variable;

o = wave strength;

A = operator i.e. Aoy = fM - fi;

b} = small positive number;

Y = AVAX; ,
n = integration variable indicating distance from channel bottom;
A = gigenvalues of A;

o = a function of A;

g = modification to the elgenvalue and

y

= a function of modified eigenvalue.



