Journal of Hydroscience and Hydraulic Engineering
Vol. 13, No. 1, May, 1995, 1-11

APPLICATION OF BOUNDARY LAYER THEORY TO PARALLEL FLOWS IN OPEN
CHANNELS WITH LATERALLY DIFFERENT FRICTION COEFFICIENTS

by

Feiyong CHEN and Syunsuke IKEDA

Department of Civil Engineering, Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku, Tokyo 152, Japan

SYNOPSIS

This paper presents a mathematical model for the development of a transition diffusion region
generated in parallel flows in open channels. First, the governing equations are derived in terms of a
boundary layer approximation. Then, with an assumption about the horizontal velocity distribution,
the development of transition region is obtained by means of classical integral momentum method.
Finally, some examples are illustrated in order to test the performance of this model, in which a set of
analytical solutions are compared with the existing experimental data. It is found that both are in

good agreement.
INTRODUCTION

In river engineering and “hydraulic engineering, engineers always concern with the lateral
-distributions of flow velocity such as the flow in compound channels, the flow downstream the

hydro-projects, etc. Since a transition region is usually generated in this kind of flow, one should,
firstly, study the mechanism of the flow in transition region if he wants to investigate the nature of.
the velocity distribution. This paper aims at studying a typical case of this kind of flow, that is,
parallel flows in open channels with laterally different bottom friction coefficients.

Consider a channel with parallel flows of two different velocities separated by a false central
wall in the upstream, as shown in Fig. 1. We assume that the bottom friction coefficients of the two
sides of the channel are different while the free surface slopes are identical, ‘namely, the bottom’
friction on the left half of the channel is larger than that on the right half, because the flow velocity in
the left half is assumed to be smaller. The two layers of flow with different velocities meet at the
point "A", the end of the central wall, and interfere with each other by lateral shear stress. The slow-
moving layer of flow exerts a retarding force on the adjacent fast-moving layer of flow and makes it
move slower, at the same time, the slow-moving layer of flow itself is accelerated by the fast-moving
layer of flow. Since the fluid is incompressible and continuous, some fluid in the fast-moving layer
must be displaced into the slow moving layer due to the retardation effect. Therefore, a transition
region is generated in the center of the channel. It must be noted that in strict sense the flow velocity
on the wall should be zero, and there may be a wake existing behind the point "A". However, when
the wall is very thin, compared with the river width, and has a good streamlined configuration, the
influence of it is restricted within a small region near the wall. As an approximation, the influence of
the wall is not considered in this paper. ‘

Some researches on this subject have been documented (Tanaka et al., 1986; Ishikawa, 1993).
Ishikawa (1993) adopted depth-averaged 2-D shallow water equations to represent the flow depicted
in Fig. 1. In order to obtain an analytical solution, the shallow water equations were linearized by
using a perturbation technique, in which all terms including transverse velocity were neglected.



From the linearized equations and a presumed profile of the streamwise velocity, the width of
~ diffusion layer was obtained by applying a weighted residual method. However, as mentioned by
Ishikawa himself, since the approximation was a little crude, the utility of this model is limited. For
example, when velocity difference between parallel flows is large, this model is not applicable.

According to the results given by Ishikawa (1993), the flow in lateral diffusion region is found
to behave like a boundary layer flow. However, the diffusion layer reaches an equilibrium state at a
certain distance far enough from the end of the wall labelled by "A" (see Fig.1 ). In the equilibrium
region, the width of lateral diffusion layer and the velocity distribution remain unchanged, which can
not be found in boundary layers of usual parallel flows. The reason why such an equilibrium region.
can exist is that the flow is affected by the lateral diffusion as well as the bottom friction.

The slow
moving region
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fully-developed
flow region
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Fig. 1 Sketch of flow field

This paper intends to provide a new mathematical model which can represent the development
of lateral diffusion region in open channels. Since the flow in question is analogous to the classical
boundary layer flow, we employ Prandtl's boundary layer theory and use the integral momentum
method to find its solution.

BASIC EQUATIONS

It is herein assumed that the width of channel is much larger than the water depth, which
allows us to treat the flow as shallow water flow. Therefore, the depth-averaged 2-D equations are
adopted to express the flow field. They are given by
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where #, v = the depth-averaged flow velocity components in x and y directions, respectively; 7 =
the elevation of free surface; # = the water depth; g = the gravitational acceleration; & = the depth-
averaged eddy viscosity, which is assumed to be constant in this paper; and = the bottom friction
coefficient. For region with high velocity, f is taken as f;, and for the slow-moving region, it is
specified as f,. It is apparent that £, is larger than f].



Since the above equations include advective terms, it is lmp0551ble to get an analytical solution
without approximation. Hence, the hydraulic variables are decomposed to

u=uy -1
v=v' o ‘ ©)

N=-~sx~h+H,

where the variables denoted by naught are for the undisturbed parallel flows, and the variables
denoted by prime are for the deviations of the variables from the undisturbed state. s, = the
undisturbed free surface slope; and H, = the undisturbed water depth. It is presumed that the
deviation terms are very small, i.e., : :

V<< ; )<< H, ®)

On the above assumptxon Eq. 1 canbe snnphﬁed in terms of the perturbation technique as Ishikawa
(1993) derived as follows: ,
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However, in most cases, the velocity difference between parallel flows is large, and the lateral
gradient of velocity in the transition region is also large. In these cases, the assumption in Eq. 5 does
not hold, and we cannot use Eq. 6 to find the solution. We, therefore, have to use another method.

Take 1, as the characteristic velocity of the problem and introduce dimensionless variables as
follows:

17 s 1; Vo —‘—;— . (7'3)
u, 4,

- h ~ mn _ x .y i

h=— = X=—; = 7-b
AL 3 T=3 (7-b)

where B is the width of the channel. It is herein assumed that B is much larger than the width of the
lateral diffusion layer, b, which leads to

y'~5==%<<1 (8)

It is therefore assumed that a parameter § is small (the first order) and 7, /i, ¥ are in the zeroth
order of magnitude, because the velocity difference between parallel flows is not small. Substituting
the dimensionless variables into the continuity equation (Eq. 3), the following equation is derived:
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Comparing the orders of all terms in Eq. 9, it is found that ¥ is in the first order of magnitude, i.e.,
the lateral velocity is small compared with streamwise velocity. It is clear that Egs. 1 and 2 can also
be normalized as follows: :
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From Eqgs. 7 and 8, it is easy to find
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which means that there is an appreciable change for streamwise velocity in the diffusion layer. On
the other hand, we have

-‘;{i ~ 1(zeroth order) (13)
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A comparison between Eq. 12 and 13 indicates that the streamwise velocity varies slowly along x-
direction compared with that along y-direction, namely, the x-derivative of the streamwise velocity
appeared in the diffusion terms is relatively small and can be neglected.

From the above consideration, we can use the thin boundary layer approximation and put
simply ~

m_ ~ (14)
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Eq. 14 means that we can assume that the y-derivative of the free surface elevation is constant.
Comparing the orders of all terms in the normalized equations (9) and (10), and omitting the terms in
higher orders, the governing equations can be simplified. The results are
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where /=1, 2. Eqgs. 15 and 16 are very similar to the governing equations of Prandtl's classical
boundary layer flow, but not the same, because a nonlinear term, i.e., retardation term, is included in
Eq. 15. This is why we cannot solve them directly without mtroducmg an assumption about the
velocity distribution.

SOLUTION

First, we define that the width p, is the expanse from the centerline to the point where the
streamwise velocity is

U,y =11, +0.99, | 1 7

and the width b, is the distance from the centerline to the left limit of the diffusion layer where



),y =10, ~0.99u, : ‘ 18)
where #, = the flow velocity at y=0; u,; =1, ~#,; and #,, = u, —uy,, in which u,; and 1y, are the
faster and the slower undisturbed flow velocities, respectively. They are depicted in Fig. 2.
According to the results given by Ishikawa (1993), the velocity distributions in the lateral diffusion
region are of exponential type. Ikeda and Izumi (1991) have studied the flow in open channels with
pile dikes and found that the velocity distribution in equilibrium region follows the exponential law .
even if the difference of the undisturbed flow velocity is large. For that case; the governing
equations are similar to the equations representing the parallel flow. Therefore, we assume that the
flow in the diffusion region takes (not in the strict sense) similar velocity profiles, and the velocity
distributions for the fast-moving layer and the slow-moving layer, respectively, are

it, =y, - u, exp(oy/b) 19
u, =uy, +u, exp(- op/b,) k _ ' (20)

where @ is a dimensionless numerical factor.” Substituting Eq. 17 into Eq. 19 (or subsntutmg Eq. 18
into Eq. 20), we obtain a=4.6052. '
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Fig. 2 Sketch of streamwise velocity profile and definition

Since the flow velocity and the velocity gradient must be continuous, they are matched at y=0,
the conditions of which are described by
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From the Eqs. 21 and 22, lkeda and Izumi (1991) derived the following expression for the
equilibrium state:

Uy = ”s2(1 + X)IM (23)

where X = /,/ f; = 1. Since the flow velocity distribution was assumed to be similar, we can use Eq.
23 in the transition region. Substitution of Eqs. 19 and 20 into Eq. 21 gives us:

Ty, — Uy = HUgy + 11, ’ ‘ (24)



Combining Eq. 23 and Eq. 24, we can derive
uy =[(1+0" =11+ %) 4y (25)
U, =[(1+ )4 =T1uy, ‘ ; (26)

Let Eq 16 be multiplied by », and substitute the product into Eq 15, then the following
equation is derived:
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where the subscript i=1, 2. For the fast-moving layer, integrating Eq. 27 from y = -5, to y=0 and
considering the boundary conditions, ie., v|,,, =0 and (du/8y)|,., =0, the foﬂowmc equation is

obtained:
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In a similar way, another integrated equation for the slow-moving layer (integration of #, from y=0
to y=b2) can be obtained as follows:
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Since f, has been written as f{(1+7) in Eq. 29, hereafler f; is written as f for simplicity. Then
integrating Eq. 16 from y = -4, to y=0, we have
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In a similar manner, another integrated expression can be obtained as follows:
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The expressions (30) and (31) are substituted into Egs. 28 and 29, respectively, to €liminate ¥, and
v, from these two equations. The results are
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Substituting Eqs. 19 and 25 into Eq. 32, the following relation is obtained:
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where ¢;, = 3ugu, -3ua" /2, ¢y = euya?, ¢y = fQupy -u,} /2)/ H,.
For the slow-moving flow region, substituting Egs. 20 and 26 into Eq. 33, the following
relation can be derived: ‘ ‘

db.
021—&—x2~-c22/b2+023bz=0 : ‘ (35)

where ¢, = 3ug,u , + 31.!’22 /2, €y = BULOE, Cpy = f(Qugytty + u,’/2)(1+ X) / H,.
Using the boundary condition, 4, =0 at x =0, the solution of Eq. 34'is found to be

b = byl [l-ep(2v)] 69

where y = f (4uy, -1, )/ [Hy(61y; -3u,)], by;” = 280> Hy /[ f (4119, ~u,)]. In a similar manner, Eq.
35 can be solved, and the solution is

1;22 = 1’022 [1-exp(-2fx)] 37N

where B = f (4itgy + 11, )(1+ %) / [ Ho (6ugy +3u,,)] and by,” =26 Hy / [f (1+ %) (41igy +11,5)].

In Eqs. 36 and 37, by, and by, are the width components of the fully-developed diffusion layer
for the fast-moving layer and the slow-moving layer, respectively. It is easy to find that By, and &y,
are in proportion to the square root of the eddy viscosity. ‘

EFFECT OF BOTTOM FRICTION COEFFICIENT

We first give two examples to show the effect of the bottom friction coefficient on the
diffusion width. The result of example 1 is depicted in Fig. 3-a. It shows the effect of the ratio of
friction coefficients on the widths by, By, and &y = by; + By, , in which the former two are defined in
the above section. In this example, the constant parameters are determined according to the
experimental conditions conducted by Ikeda et al. (1994, Run 1), in which the water depth is 6 cm,
the river bed slope is 0.001, resistance coefficient f is 0.007. The ratio of the bottom friction
coefficients is taken as a varying parameter, and the eddy viscosity, which is calculated by using the
empirical expression proposed by Ikeda et al. (1994), is varied consequently. It is found that there is
a critical value for X; when X is smaller than it, b, increases as X increases, when X exceeds this
critical value, the width decreases as X increases. Furthermore, &), and B, also have their own
critical values. The reason why the critical values appear could be found from Egs. 36 and 37. In
these equations &, and by, are directly proportional to the eddy viscosity, €, but € varies likewise as
the widths as X increases (Tkeda et al., 1994), as shown in Fig. 3-b.

In example 2, the resistance coefficient is varied, but the water depth and the river bed are still
kept to be the same as in the example 1. The calculated results are illustrated in Fig. 3-c. It is found
that the diffusion width &, decreases as the friction coefficient increases. This indicates that the
friction suppresses the development of the diffusion width.

Fig. 4 shows an example of the effect of eddy viscosity on the diffusion width. In this example,
the basic parameters of calculation are the same as those in the examples shown in Fig. 3. Here, X is
taken to be 10.2 according to the parameters of Run 1 performed by Ikeda et al. (1994). However,
the eddy viscosity is varied from 1.5 cm?® /s t0 3.0 e’ / s to test the effect of eddy viscosity on the
development of diffusion layer. Corresponding to the variation of &, the diffusion width of fully-
-developed region varies from 10.62 to 15.03 cm. The diffusion width is calculated to be 13.35 cm



for € =2.37cm’ / s which is determined from the empirical relation proposed by Ikeda et al. (1994).
The measured value for Run 1 is 13.30 ¢m, which indicates that the agreement is very good.

Fig. 4 also reveals that for different eddy viscosity the developments of diffusion layers are
structurally similar. When the distance x is less than 150 cm, the widths of the diffusion layers
increase quickly as x increases, and when x is larger than 250 cm, the diffusion layers nearly stop
increasing. This means that the development of the lateral diffusion layer along x-direction is
independent of &, the reason of which is that only the lateral eddy-diffusion term, ie., the y-
derivative term of u, is retained in Eq. 15 and the diffusion in x-direction has been neglected. As a
result, bothy and B in Eqs. 36 and 37, respectively, are not related to .
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Fig. 3-b Effect of the ratio of bottom friction coefficients on the eddy viscosity
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Fig. 3-c Effect of bottom friction coefficient on the diffusion width
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Fig 4 Effect of eddy viscosity on the development of diffusion layer

COMPARISON WITH THE EXISTING DATA

The utility of the derived equation is verified in the following example. The condition for
calculation is adopted from the experiment made by Kimura (1985), in which the water depth is 0.85
bed slope is 0.0084. The velocity distributions
calculated from Eqs. 36 and 37 are compared with the existing experimental data in Fig. S, and the
comparison of the development of diffusion layer is shown in Fig. 6. The comparisons of the
velocity profiles are performed at x=15, 50 and 80 cm, respectively. Figs. 5 and 6 reveal that the

cm; bottom friction f, =0.007, £, =0.018; the

equations perform well at every location of the laboratory test.
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Fig. 5 Comparisons between the analytical results and the existing data
' for the depth-averaged streamwise velocity
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Fig. 6 Verification of the development of diffusion layer

CONCLUSIONS

This paper has developed a mathematical model to represent the development of flow in the
lateral diffusion layer, which is generated in open channels with parallel flows due to laterally
different bottom friction coefficients. The solution is obtained by using the integral momentum
method. The result indicates that the model can represent the diffusion flow field successfully even if
the velocity difference is relatively large.

The lateral distribution of streamwise flow velocity calculated is compared with the existing
experimental data, and the present model is found to reproduce the actual flow field well. This
indicates that the similarity assumption on the streamwise velocity performs well. The verification of
the development of diffusion layer reveals that this mathematical model can represent the parallel
flows with different bottom frictions.
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