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SYNOPSIS

In this paper, two different approaches to forecast runoff discharge using the fuzzy inference
method and the neural network method are proposed. Their applicabilities are assessed and compared
through making 1-hr, 2-hr and 3-hr lead-time forecasts of runoff discharge in Butternut Creek, NY.
The forecast results indicate that both proposed methods are effective for runoff forecasting.

INTRODUCTION

The basic concepts of fuzzy theory were introduced by Zadeh, L.A. (1965). The most unique
characteristic of this theory in contrast to classical mathematics is its operation on variables'
membership functions instead of on the crisp real values of variables. This characteristic permits fuzzy
theory to be a powerful tool whenever it handles imprecise data or ambiguous relationships between
variables. On the other hand, the architecture of neural networks is motivated by models of our own
brains. It is difficult to specify the founder of neural network since many researchers have taken part
in its development. The basic building block of the brain and nervous system is the neuron. In
artificial neural networks, the model neuron is a simple non-linear processing unit. A neural network
consists of many of this kind of processing unit. The characteristic of ncural networks is that they are
not programmed but trained by examples. Through the learning of training data sets which consist of
pairs of inputs and target outputs, neural networks gradually adjust internal parameters to the point
where the networks can produce a meaningful answer in response to each input. After the learning
procedure is completed, information about rclationship between inputs and outputs, which may be non—
lincar and extremely complicated, is encoded in the nctworks.

The foundation of these two kinds of theories are completely different; however, they have a
common performance, that is, to be able to handle the problems whose mathematical definition is
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difficult. As we know, the relationship between rainfall and runoff is not definite due to many rclated
factors such as field moisture capacity, evaporation rate and etc. It is difficult for conventional
mathematical methods to solve this kind of problem, thus it would be attractive to try fuzzy reasoning
and neural network approaches which accommodate this kind of problem.

DERIVATIONS
Fuzzy Reasoning Mecthod to Forecast Runoff

Runoff forecasting can be classified into several cases based on accessibility of hydrological data.
In this paper, we consider the case of real-time runoff forecasting in which runoff information at every
moment by the current time for the present flood is available. The general equation of runoff system
can be expressed as:

AQ()=f {R(t-1)...R@-m),AQ(t-1)...AQ(t-n)} ‘ 1)

where R, Q, t denote rainfall, runoff discharge and time respectively; and AQ(H)=Q@®)-Q(t-1);

parameters m, n can be chosen by taking account of the hydrological characteristics of the basin.
In this paper, we used hydrological data observed in Butternut Creck, New York for analysis. Our

intend task was to forecast runoff discharge up to a lead-time of 3-hr. For this purpose, we first made

1-hr, and then 2-hr lead~-time forecasts of runoff discharge AQ'(¢+1), AQ’(t+2) at the present time
t. That is to say, to forecast the 3-hr lead—time runoff discharge AQ/(t+3), we may utilized the values

of AQ/(t+1), AQ/(¢+2) forecasted in advance. Thus the equation for forecasting AQ’(¢+3) can be
expressed as:

AQ'(t+3)=f{R(®),R(t-1)...R(t-m),A Q'(t+2),AQ (¢ +1),AQ(®)...AQ(t-n)} (2)

where the denotation /" is attached to the forecasted value to distinguish it from the observed value.
To avoid calculation complexity, we simplify Eq. 2 as follows:

AQ(+3) AAR®,AQ!(+2),0Q'(t+1)} - ©)

The basis for this simplification is that information of the ignored variables R(¢-1)...R(t-m),

AQQ)...AQ(t-n) is alrcady contained in the variables of AQ/(¢+1), AQ'(t+2) somchow. The runoff
system equation corresponding to the forecast equation of Eq.3 is:

AQM)=AAR(-3),AQ(-1),A0Q(t-2)} @

Fuzzifying variables R, AQ and representing them by their membership functions My, M, ,

respectively, we may transform Eq. 4 into a so—called fuzzy conditional proposition as follows:

if Rt-3) is My, 5 and AQ(t-1) is My, ) and AQ(t-2) is Mg o,
then AQ is M4, ®)
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The fuzzy reasoning process to forecast runoff may be concluded in five steps:
(1) To translate the above proposition into a fuzzy relation P,:

P rzMR(t—S)AM AQ(t- 1)AM A Q(t-Z)AM AQ® ) ®)

where A denotes the minimum operator. This P, represents the fuzzy relation between rainfall and

runoff increment at time £. Since such a fuzzy relation may be obtained at every moment, by the
current time ¢ we may have got a series of this kind of fuzzy relations P, P,,...,P,.

(2) To combine the obtained fuzzy relations P,, P,,...,P, to produce the whole fuzzy relation II,

through a conjunction operator:
1L,-P VP,V..VP, | | @

where V denotes the maximum operator. If there are previous flood data, for examples, the flood data
of last year, the II, obtained from these previous data is denoted as IL,,. As the past flood information,

this II, can be utilized effectively but simply by being regarded as an initial value:
I, =11, VP,VP,V..VP, S ®
(3) To infer the membership function of the 1-hr lead-time runoff increment based on the above I, :

OM

=TI, OM,, ,OM 200 ©

MA R(t-2) AQ(-1)

Q'e+1)

where © denotes the max-min operator. Similarly, the membership functions of 2~hr and 3-hr lead—
time runoff increment can be inferred as follows: '

MAQ'(HZ) =Ht GMR(t— I)QMAQ(t)OMAQ’(H 0 (1 0)
My 3 =T OM OM, 61,1, OM /01y | an

(4) To calculate the crisp real values of AQ/(t+1), AQ/(t+2),AQ/(z+3) through a defuzzy procedure
which adopts the centers of gravity of the predicted membership functions.
(5) To calculate the 1-hr, 2~hr and 3-hr lead-time runoff discharge by the following equations:

Qt+1)=Q)+AQ/(t+1) (12)
QI+ )=Qt+D+AQt+2) (13)
Q’(t+3)%Q’(t+2)+AQ’(t+3) (14)

The above method to forecast runoff discharge was applied to Butternut Creck, NY. (drainage area:
154.6Km?). The membership functions of rainfall R(t) and runoff increment AQ(Z) in this basin werc
adopted as two simple triangle functions as shown in Fig. 1 and Fig. 2, where DR and DQ represent
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the vaguenesses of the values of
rainfall intensity and runoff 4,

1.0
increment. Fig. 1 indicates that g 8
. . . . «© ©
the rainfall intensity at time t, 5 5
instead of a crisp real value,
may be located in an interval o ! - :
[R(1)-DR, R(t)+DR] with " RW®-DR R(t) R()+DR 20@1-DQ AQ() AQE+DQ
different membership grades Rainfall Intensity Runoff Increment
. Fig. 1 Membership function  Fig. 2 Membership function of
from 1.0 to 0. Fig. 2 can be of rainfall R(t) runoff increment AQ(t)

explained similarly. In the
calculation, the parameters DR and DQ were selected at 2 (mm/hr) and 0.08 (mm/hr) ‘rcspéctively.
There are data of five flood events in Butternut Creek. We used the first two floods, shown in Fig.
3, to produce II,,, then made 1~hr, 2-hr and 3-hr lead-time forecasts of runoff. dischargc for the third
flood event. Next, we regarded the II, obtained at the end of the third flood event as II,, to forecast
the fourth flood event. The same process was applied to forecast the fifth flood event.

The results of 1-hr, 2~hr and . ‘ .
3-hr lead-time forecasts for the .h 8 * L

third flood are shown in Fig. 4(a),

SR(mm/hr)
SR{mm/hr}

(b} and (c), where the solid lines =3 Octi7,1975 1° 4 Oct.7,1976
denote the observed hydrographs § '§
5’2' O\.»z.

and the. black squares denote. the
forecasted values.  From these
figures, we can see the prediction e e =
error gradually enlarges from the
1-hr to the 3-hr lead-time
forecasts. The forecast results for the fourth and fifth flood events are not shown here, however they

have the same level of accuracy as that of the third. The forecasts may be considered accurate enough

for application.

Fig. 3 The first two floods used to produce II
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Fig. 4 Forecast results by the fuzzy tcasoning method

Neural Network Method fo Forecast Runoff

To forecast runoff discharge for the present storm, neural network ( NN ) needs first to learn about
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previous storm events. After the learning procedure is completed, information about the relationship
between rainfall and runoff is encoded in the network and thus runoff discharge can be forecasted by
this trained NN under the new rainfall inputs. The learning procedure is conducted using the back—
propagation learning algorithm involving a forward—propagation step followed by a backward-
propagation step. Fig. 5 illustrates a fully interconnected three—layer network, where the processing
units in the input layer, hidden layer and the output layer are m, n and 1 respectively. The following
describes the details of forward and backward propagation steps. '

(1) Forward-propagation step: This step calculates the output from each processing unit of the
neural network starting from the input layer and propagating forward through the hidden layer to the
output layer. Each processing unit except the units in the input layer takes a weighted sum of the
coming inputs and applics a sigmoid function to compute its output, while the processing units in the
input layer, as a special case, just send the input values as they are along all the output interconnections
to the units in the hidden layer. ‘

Fig. 5 A fully interconnected, three-layer neural network

Specifically, given an input vector [x,, x,,...,%,], the cutputs from each layer are calculated in this way:

input layer: o=x, i=12,..m ‘ o ‘ (15)

hidden layer: sI j=§ owl, 461, j=12,.n

- (16)
ol;=f(sI)
output layer: 52=% o0l w2.+02
2 ol (15)

02=f(s2)

where 0, 01, 02 are the outputs from unit i in the input layer, unit j in the hidden layer and the
output unit in the output layer; wi ;i is the interconnection weight between the i~th unit in the input
layer and the j-th unit in the hidden layer; w2; is the interconnection weight between the j-th unit -
and the output unit in the output layer; 61 L, 62 arc the biases of unit j in the hidden layer and the

output unit in the output layer; and f is a sigmoid function.

(2) Backward-propagation step: This step is an error—correction step which takes place after the
forward-propagation step is completed. The calculation begins at the output layer and progresses
backward through the hidden layer to the input layer. The internal parameters of the neural network
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including the interconnection weights between layers and biases in each processing unit are corrected
in a way to minimize the following cost function:

PP -202)2 a8

where #g is the target output. Specifically, the correction is conducted as follows:

(19
:-iE_.z —02) £ :
8=-—— ~(1g-02)(s2) | (20)
J0E : ,
82(new)=62(old) +n(—5—e—2-)=62(old) md 21)
wl (new) w] Lold)y+ 'q(— ) wl. (old) +n50 (22)
J

5 :~ES-J~~(6 *W2 )*f’(sl ) (23)
Blj(new)=61j(old)+n6j : (24)

where f' denotes the derivative of the sigmoid function, and n denotes the learning rate.

During the learning procedure, the forward-propagation -and backward-propagation steps are
executed iteratively for the training data set, and the internal parameters of neural network are adjusted
continuously. This learning procedure is ended when the produced output from neural network is
hardly improved further. If the learning procedure is completed with success, namely, if the final
produced output is close enough to the target output, the information of the relationship between the
inputs and outputs is considered to be encoded in the network. Applying this kind of ncural network
to forecast runoff discharge, we may employ the following two possible techniques:

(1) Only the previous flood data is utilized as the training data sct. The intcrnal parameters of the
neural network are tuned in the learning procedure and remain fixed to carry out the forecast task.
That is to say, by the current time t, the known information about the present flood is not utilized to
tune the neural network.

(2) Besides the previous flood data, the hourly accessible information about the present flood is
also utilized to train the ncural network. That is to say, the neural network forecasts floods in an
adaptive forecasting environment where the internal parameters of the neural network are updated at
every moment when new data on the present flood is received.

Again, we applied this method to Butternut Creck. The same runoff system cquation expressed
in Eq. 4 was adopted. The neural network developed in response to this runoff system equation
employed is shown in Fig. 6. It should be noted that the structure of this developed neural network
is partly interconnected. This is because the natures of rainfall inputs and runoff inputs are distinct
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and thus full interconnection is unsuitable.

R{t-3)

First, we applied technique (1) to the
forecast. The first two flood events (in Oct.
17, 1975 and Oct. 7, 1976) shown in Fig. 3 [AQ (t ):}
were adopted as the training data set. The AQtt-1)
internal parameters of the NN were initialized
by assigning random numbers in the interval AR (£-2)

(-1, +1) and tuned by presenting the above
training data set to the NN with 10,000
iterations. = Since the output from the network is the increment of runoff discharge which may take '
positive or negative values, in our calculation, the sigmoid function described above were defined as:

Fig. 6 Neural network developed in response to Eq. 2

2

1+e™

-1

Jfxn)= (25)

where the range of x is defined from - to + and the function values result in the interval (-1, 1).
After the NN was tuncd, its internal parameters remained fixed to forecast the last three flood events.
Fig. 7 shows the forecasting schema of the NN. It can be seen from Fig. 7 that the forecasted values
were used for the further lead-time forecasts just as the fuzzy reasoning method. Fig. 8(a), (b) and
(c) show the results of 1-hr, 2-hr and 3-hr lead-time forecasts for the third floed event (in Oct. 20,
1976). 1t can be seen that the forecasts agree with the observed data fairly well from these figures.
The forecast results for the fourth and fifth flood events are not shown here but they are of the same

level of accuracy as the third.

lead=time
Thr 2hr 3hr
R{t-2) Rit-1) Rit)
lead~time
Thr 2hr 3hr
AQ'(t+1) [AQ L1 +2) ‘(4 +
AGti-1) fAQet) | agtesn) 2) A0t #3)
40043 | AQ'ti+11 ] a0%1+2)
Fig. 7 Forecasting schema of neural network
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Fig. 8 Forecast results by technique (1) of the NN method
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Second, we applied technique (2) to the forecast. The internal parameters of the NN were
initialized by assigning the values obtained after the learning procedure in technique (1), rather than
random values. To forecast the third flood, the NN was re-tuned at every moment by using a training
data set which included not only the first two floods but also the hourly accessible data of the third.

- That is to say, the data involved in the training data set increased hourly. From the viewpoint of data
utilization, technique (2) is the same as the fuzzy reasoning method since both of them utilize all
available data including the present flood event. Similarly, when the NN was applied to forecast the
fourth flood event, the training data included the first three events and the hourly accessible data of
the fourth, and so on for forecasting the fifth flood event. To save calculation time, iteration of the
training data set was limited to 100 when the NN was re—trained at every moment. The forecasting
algorithm was the same as shown in Fig. 7. The forecast results for the third flood are shown in Fig.

9(a), (b) and (c).
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Fig. 9 Forecast results by 'tcc'hnique (2) of the NN method

Qualitative comparisons between the results forecasted by fuzzy reasoning and two NN methods
were made based on the relative error of peak flow (Q;-Q;)IQ:, the time difference of peak flow

n
(t; ~t,) and variance Y (Q/-Q %in (where QI{, tl{, Q are the forecasted peak flow, the time to the
i

forecasted peak flow and the forecasted flow respectively; on y t: , @° are the observed values and n

is the number of samples in the forecasted flood). As an example, the comparison result for the third
flood is shown in Table. 1. The mean calculation times for each 3-hr lead-time forecast executed at
PC and WS are compared in Table. 2 (The fuzzy reasoning method was not executed at PC due to
insufficient computer capacity). As concerns the calculation times for tuning the internal parameters
of the NN and producing II,,, they are not important factors in our forecast since these two time-

consuming jobs can be executed in advance, and therefore, a comparison of this calculation time is

omitted here.

Conclusions

Comparing technique (1) with technique (2) in the neural network method, the latter utilizes all
flood data including the present flood data up to the current time, and thus is theoretically superior;
however, this superiority was not shown in the forecast results.  Two possible reasons for this
uneXpected result are considered as: (1) The training iteration of 100 times in the latter technique was
not sufficient; and (2) the training data set used at every moment in the latter technique is somehow
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Table. 1 Comparisons between the results forecasted by three different methods

relative error | time difference variance
of peak flow to peak flow
1~hr lead-time forecast 0.0319 1hr 0.00160
fuzzy .
g 2-hr lead-time forecast 0.0693 2hr 0.00914
reasoning
method 3-hr lead-time forecast 0.1147 1hr 0.02795
technique (1) | 1-br lead-time forecast |  (.0092 1hr 0.00068
of the neural
network 2~hr lead~time forecast 0.0331 Ohr 0.00406
method
‘ 3-hr lead-time forecast 0.0568 Ohr 0.01273
technique (2) | 1-hr lead-time forecast |  (.0069 1hr 0.00071
of the neural ~
network 2~-hr lead—-time forecast 0.0427 Ohr 0.00461
method
3-hr lead~time forecast 0.0755 Ohr 0.01627

Table. 2 Comparison of mean calculation time for forecasting

Toshiba WS AS4080 NEC PC-9801ES

fuzzy reasoning method 17.2Sec. unknown
technique (1) of the neural network method 0.0027Sec. 0.018Sec.
technique (2) of the neural network method 1.258ec. 51.9Sec.

biased. For example, if the present flood is still at the increasing stage by the current time, then the
training data set, which includes the data about whole stage of the previous flood events and the data
about only the increasing stage of the present flood event, will be of a biased tendency to the
increasing stage of flood. Besides, the training procedure is carried out while forecasting for technique
(2) and thus its forecast takes more time than technique (1). This can be seen from Table. 2.
Therefore, it may be concluded that technique (1) is more applicable than technique (2) to runoff
forecasting.

Comparing the fuzzy reasoning method with technique (1) of the neural network method, the latter
shows slightly better performance than the former according to the forecast results. Moreover, the
latter has the advantage of shorter calculation time for forecasting and much less computer capacity
occupied. However, for the basin whose area is about 150km?, forecast lead-time is limited to within
approximately 3 hours; if a longer lead-time forecast is attempted, the rainfall forecast information is
necessary. Recently, several studies on rainfall forecasting based on information provided by weather
radar have been carried out, and research in this field is progressing. However, with prolonging the
forecast lead-time, it will be difficult to make quantitative forecasts for future rainfall, but only
qualitative forecast provided in a way as week, medium and strong intensity can be made. To utilize
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this kind of non-quantitative information for forecasting runoff, the fuzzy reasoning method appears
very useful. The authors have attempted to make long lead-time forecasts of runoff discharge by
applying the fuzzy reasoning method recently, the results show that this application is rather promising
(see M.~L. Zhu and M. Fujita (4)).
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APPENDIX - NOTATION

The following symbols are used in this paper:

DR, DQ = vaguenesses of the values of rainfall intensity and runoff;

E = cost function;

£ f \ = sigmoid function and its derivative;

My, M 20 = membership functions of rainfall and runoff increment;

NN = neural network

0, = output from i-th processing unit in the input layer;

ol = output from j~th’pr0ccssing unit in the hidden layer;

02, = output from k~th processing unit in the output layer;

P, = fuzzy rclation at time t;’

Q = runoff;

AQ = runoff increment;

R = rainfall;

sl = weighted summation of inputs to j—th unit in the hidden layer;
s2 = weighted summation of inputs to output unit in the output layer;
t = time;

ig = target output;
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= interconnection weight between i-th unit in the input layer and j~th unit in

the hidden layer;

interconnection weight between j—th unit and the output unit in the output layer;

input to i~-th processing unit in the input layer;
= minimum and maximum operations;

= fuzzy relation by the current time t obtained from the present flood event;

= fuzzy relation obtained from the previous flood events;

= fuzzy relation combining II, and 10, ;

I

composition operator, namely, max—min operator;

H

biases of unit j in the hidden layer and the output unit in the output layer;

learning rate; and

1

error values for output unit in the output layer and j—th unit in the hidden layer.



