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This study presents an extension of the discrete stochastic model used to deal with
anisotropic bi-variate hydrological quantities such as precipitation or runoff discharge in the
dry season. We illustrate the theory of discrete distribution as the forms of bi-variate
binomial distribution or bi-variate negative binomial distribution. In these two types of
distributions, each bi-variate has some population parameters such as upper boundary, shape
parameter and mutual correlation. By separating marginal and joint distribution we discussed
the estimation of parameters in a moment method and a maximum likelihood method. We
applied the negative binomial model to the data series of runoff discharge in the dry season. -

The results prove that the data fit well for the model.

INTRODUCTION

In the case of the study in suitable judgment and optimal operation of utilities on water—
resources system, a mathematical model plays an important role in the stochastic distribution
of hydrological amounts, for example stream-flow or precipitation.  Because of
computational necessity, hydrologic engineers have often used the theory of discrete
distribution. The authors reported the applicability of the discrete isotropic bi-variate
distribution model for reasonable water usage in a reservoir system (1). Recently, we
presented the theory on an anisotropic bi-variate model. This study aims at the development
of the fundamental statistical characters and the practical parameter estimation for anisotropic
discrete bi-variate binomial or negative binomial distribution. We can show the availability
of this distribution, by considering the mutual correlation of the runoff discharge series of

two adjacent catchment areas in the dry season.
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The following stochastic characters of probability density are essential for a stochastic
model building in the arid season.
a) flexibility for various positive skewness in accordance with runoff condition
b) dominant persistence in the time-series
¢) importance of quantitative representation for the smaller domain of hydrological

quantity

Under the computational condition in the relation to the above c), various attempts to
introduce the approximate upper boundary have been carried out. We look at the bi-variate
discrete distribution theory in this paper. ‘

ANISOTROPIC BI-VARIATE DISCRETE DISTRIBUTION MODEL

The authors reported the deduction of theory and application of a discrete distribution
model (2). One is a bi-variate binomial discrete distribution that has common upper boundary
(3). Another is an anisotropic bi-variate negative binomial model that has no upper boundary
but has common population parameters (4).

The following relation, mean>variance, holds for binomial distribution, but, mean<variance,
holds for negative binomial distribution. Because we do not have enough space to describe
details about the deduction of this model, we will introduce an outline of those anisotropic bi-
variate models. )

Binomial distribution Model
We believe that this model will be useful for statistical hydrology. A typical example is the
runoff series from two adjacent catchment areas. In the model we assume that the variables
have the similar upper boundaries on rainfall intensity or specific discharge.
1) Conditional distribution
‘Let's assume that two variables X, and X, have a common upper boundary » but different
shape parameters. The probability generating function (p.g.f) on X, and X, is given as
follows (5): ' ' :

Gy x,(2,2,) =[A+ Bz, +B,z, +Cz,7,], A+B +B,+C=1 )

From this, we get the conditional distribution of X| = j for a fixed value X, =i with the
shape parameters a,, a,and a mutual correlation p,

pij”})r[X1=j [ ini]
i rmj | prei=j i LTI e L1, ’ ‘
=a’(l-a)™ I/ L I} - Zics-r-icj-s peane ' @

B I3 1 4
where

1, =1+p\/a, az/{(l“ax)(l‘“az)}v I “1“9\/01(1"‘72) /{az (l"'al)}
12 =1 +p\/(1‘ax)(l_az)/(a1 az): IA = 1-p\/a2(1—a1)/{a,(1—a2)} (3)
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By this direct expression of the conditional distribution using the some necessary
parameters, we can easily calculate any probability and carry out a numerical simulation.
2) Marginal Distribution and Fundamental Statistics

Marginal distribution, mean, variance and skewness coefficient for X, (i=1,2) are given
by the followings;
PXi (‘X;) =rCXi (} "ai),r—Xi (af)Xi , E(‘Xn) =rq
V(X)=ra(1-a), C - (1-2a)/ra(1-a) | @

And the mutual correlation coefficient p is given by the non-negative value C,

P=(C“alaz)/\/a1az(l“az)(i‘az) (%)

For such a correlation coefficient, the following constraint holds,

] faae [1-a)-a)], (e )i-a)laa)]| <o <

min[\/al(l —az)/{az(l “'ax)}’ \/az(l—al)/{al(l ‘az)}] ©)

3) Mean and Variance for Conditional Variate ,

Using eq.2, we can get the mean and variance of X, for a fixed value X,. The result
shows that the conditional mean is expressed by the next linear regression form to X, and that
the conditional variance is also expressed by the linear relation to X,.

w (X)X,) =X, +p (S, / $,)(X, - X,) (7)

where, X, and S, denote the sample mean and the variance of data X, (i=1,2)
respectively.

Because of this linear regression, the proposed distribution model is very useful for the
estimation by regression curve.
4) Parameter Estimation by Moment Method

From eq4, we obtain the shape parameter a, and a, by using the relation
a, = 1~V(Xi )/E(X, ) (i=1,2). From this, we get the upper boundary r.

)"=0.5x[E(XI)/a1 +E(X2)/a2] (3)

Because the upper boundary r must be an integer, the obtained value should be converted
into the common upper boundary 7 by rounding it to the nearest integer. Now 7 is an
estimate of 7. Then the shape parameter can be re-calculated by following relation:
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a=£E(x)/7 (i=12) , ©)

We can calculate the constants 4, B, (i=1,2) and C in the following steps. First, by

adopting a sample correlation coefficient as a mutual correlation coefficient, we can estimate
C by the following formula:

é=&x ‘4, +p \/{&1 “a, (1"&1)(1"&2)} (10)
From eq.10, we know B, by f?, =4, ~Cand Ais given by ;1=1—1§l —5’2 -C.

Negative Binomial Distribution
- By using the following replacement in the above result,

re-k (k>0), -(B+C)=a, (i=12) ' (1D

We can obtain the theoretical relations for a negative binomial distribution. We describe the
outline of results as follows:
1) Marginal Distribution and Fundamental relations
We can represent the marginal distribution by the following current form:

P (X)= 4uiCr(p) (e)" (X,=012:) | (12)

i

-1

where, p, =(1+a,)" and ¢ =0,(1+a,)” (i=12)

The fundamental statistics by the moment estimate are as follows:

mean E(X,)=k-a, , variance V(Xx,)=ka(1+a,) (13)
skewness coefficient C,, =1+ 2ai)/ ka(1+a,) (14)
correlation coefficient p =(a, a, - C)/\/a1 a,(1+a,)(1+a,) - (15)

2) Conditional distribution
The following formulation expresses the conditional distribution:

p,,=a (lva) 711 1

X

mr‘n(i.”) . - _ s..[ s
ZJ Tk +i+j-s) (=1)°- i l:!llz] (16)

5=0 r(k+i) Sf(i‘s)](j" )! L1,

where
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1, ;lv—p\/al az/{(l"“ax)(l*az)}’ Iy = l"p\/al(l"'az)/{az(l*'al)}

L =1-pra)(ra)f@a). I -1-pjaira) el sa)}

The above correlation coefficient has the following constraint:

P <min[\/a,(1+a2)/{a2(1+a1)} , \/az (1+a1)/{d1(1+a2)}] a7 :

3) Parameter Estimation by Moment Method
By using the mean and variance, we can estimate the shape parameter a (i=12) as
v(Xx,)/ E(X, )-1. X shows an estimate of X. We have & as the next approximation,
k=0.5x{E(X,)/a +E(X,)/a,}. ‘
The shape parameter can be calculated by the following revised form, &, = E (x,)/ k. By

using the obtained results and the correlation parameter p estimated as a sample correlation
coefficient, we can estimate C as:

~

C=a,a,-pJa,a,(1+4)(1+4,)
Lastly B, and A can be estimated by the following relations:

B=-4-C (i=12), 4=B-5,-C
Moreover, you can easily get an anisotropic bi-variate geometric distribution by
substituting & =1 in the above relations for the negative binomial distribution.
4) Parameter Estimation by Maximum Likelihood for Negative Binomial Distribution
- Because the joint distribution is already known, we can get the parameter estimation by a
maximum likelihood method in means of maximization of likelihood. However, the actual
calculation is very difficult because of the constraints placed upon the correlation coefficient.
Firstly we carry out the parameter estimation on marginal distributions and, secondly the
correlation coefficient for joint distribution. We will illustrate the estimation only for the
negative binomial distribution.
i) Estimation for The Marginal Distribution
In this case the unknown parameters are k,, k,, a, and @,. We assume that the parameters

k, and k, are different. In order to estimate these parameters, we firstly calculate the
logarithmic likelihood LL on the basis of 7 joint data set (X;;: 1 =1,2,---,n;j=12).

By the simultaneous equation 8 LL/3k; =0 and 9LL /3a; =0, the maximum likelihood
estimates #; are given by the following formulations (6),

%2 g ! -ln[u%)ED(kj)w (=12 (18)

=l =0 k'+s 7
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The numerical value of the left side in the above equation means an increasing rate of LL
by the increase of X; per unit number of data. In practice, on the iterative adoption of k;,
when the absolute value of D(k;) exists within an allowable limit €,, the value &, may be
considered as an approximate solution. Then, the common parameter k is approximated by an
average of k, and k,. After we use these k; (j =1,2) parameters and eq.13, the shape

parameter a; is obtained by using the sample mean.

it} Estimation of Correlation Parameter
Multiplying the marginal distribution by the conditional distribution leads to the joint
distribution f(i,/)=P xp, ;- This distribution has an unknown correlation parameter p.

Then, we can try to estimate the necessary parameter by max1mlzmg the logarithmic likelihood

LL = Elog fiX ( X ) for the joint data set (X, X,,;7=12,---,n) under consideration of

the constraint.
NUMERICAL EXAMPLE BY THE ANISOTROPIC DISCRETE DISTRIBUTION

When we apply the model to the data in a season of low flow, we must pay attention to the
runoff characters. We suggest that the adoption of sampling data may not be appropriate.
The reason is that a few extreme data often lead to a wrong estimation of parameter.
Parameter estimation should be done for each residual data removed 1st, 2nd,..., etc. using the
upper sample range. '

For checking the suitability of marginal distribution, we use the error term D(k ) and the
Chi-square statistics. We have used the daily inflow data in Ayakita-Dam and Ayaminami-
Dam basins, in Miyazaki Prefecture Japan. For our sample of the season of low flow, we have
selected the time period of 120 days starting on 2nd November every year for the years 1966~ -
1986. We have adopted the unit of 3 days' duration and 1 m3/s/ 100km? specific discharge.
Time series of discharge are represented by means of a discrete number. These are shown by
X, and X,. Base-flow component should be removed in advance. Table 1 shows the outline
of the procedure and the results.

When you exclude the upper range data, the average and standard deviation will usually
decrease. Especially the decreasing rate of standard deviation is large. At first, the data fit a
negative binomial distribution because the mean is smaller than the variance. Gradually the
tendency will changes into (mean>variance). In other words the distribution tends toward a
binomial distribution. In the table, the error term and Chi-square statistics show the goodness
of fit. If we remove only few data, the Chi-square test may show a failure. If we remove the
large amount of data, usually a goodness-of-fit test will result in success and the error function
D(k) will decrease. It is difficult to determine the limit of the allowable error term depended
on the condition. By assuming that the allowable limit e, is 7 X 10-3, the parameters k, and
k, can be determined. The results, in a discrete integer form, are then, k, =2 and k, =5. We
adopt the common parameter £=4 as a mean value.

By dividing each mean value by the common k, the estimates of shape parameter can be
given by ¢,=0.212 and a,=0.229. The total sample number is 480 and that of partial samples
is 460 for X, and 474 for X,. Lastly, the correlation parameter is calculated by p=0.719
(maximum likelihood estimate) and 0.743 (moment estimate) for the joint sample of 456. For



Table 1 Numerical example of parameter estimation for
an anisotropic bi-variate negative binomial distribution
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cor. 0. 7189 0. 777 max. like. est.
para 0. 743 0. 829 moment est.
me t. mutual cor. coeff. p
O O
a, =0. 212 shape parameter
large a. =0. 229 small ag a.
p m O
a a large 4 small comon param. k
r r -O
a g smal l £, =7TX10"® large est. error D (k)
m i O
e n 0K & = N O Chi—-sqg. test
t a
e 1 binomial & = negative binomial
r distr distr.
d mean>variance mean<variliance
o i sma ll large variance
£ s
t small large mean
r
- partial total adoped sample
O -O
marginal samp l e 480 number of
X, :460, X :474 adopted
joint sample ) sample
(Xl\Xz) 459

the total sample, these results are 0.777 and 0.829.

We illustrate'a comparison between an observed and a theoretical distribution. Fig.1
shows the comparison of the marginal distribution. There is a slight difference between them,
but these data sufficiently fit this model. In the Chi-square test, a goodness of fit is acceptable

" at a confidence level about 1% for X, and 5% for X,. Fig.2 shows the comparison of the
joint distribution. In this case, as a whole, an approximate fitness can be explained adequately
with this model.

CONCLUDING REMARKS

On reviewing past studies, we find that a discrete distribution with a mutual correlation has
miainly be treated by an isotropic distribution. The above proposed anisotropic distribution
model will be very useful for introducing flexibility of stochastic representation in the hydro-
logical amounts. Especially we consider that the proposed distribution model will have a wide
applicability of introducing on a mutual correlation in the two hydrological variables and also
on a sequential correlation in considering the stochastic difference of successive time-series.
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5 pX!. X2 (Xl Xz)
MUTUAL CORR. COEFF.

0- 3 p=0. 743
(SAMPLE VALUE)

JOINT DISTR.

e e 54y,

SPECIFIC DISCHARGE
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5 r (b) AYAMINAMI (b) THEORETICAL DISTR.
—DAM Qil 0‘4—pxx.xz(X1.X2)

=
U 0.3
g p=0. 719
e o v liMAX. LIKELIHOOD
Z EST.)
g 0.
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SPECIFIC DISCHARGE
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Fig.1 Comparison of thoretical and observed ~ Fig.2 Comparison of theoretical and
frequency of marginal distribution  observed frequency of joint distribution
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APPENDIX - NOTATION

The following symbols are used in this paper:

a,,a,,r = shape parameter for variable X,, X, and upper boundary;
A, B.C (i=1,2) = constant value for p.g.f.;
.C = binomial coefficient, thatis, i/ / {j/-(i- j)!};

( k, ) = error term for a maximum likelihood estimate of & ;

( X, ), = expectation, variance, skewness coefficient of X;;

( XY ) = joint distribution of X, and ¥,

( Z,) = probability generating function (p.g.f)) of X, and X;

LL = logarithmic likelihood function;
max(A,B), min(A,B) = maximum, minimum value of 4 or B,
Di; = conditional probability of X, = j for a fixed value X, =7;
P (x) = marginal distribution of X, (i =1,2)
X, S, (1’ = 1,2) - = sample mean, variance of data X, (i = 1,2);
€, = allowable limit for maximum likelihood estimate;
w (X, X 2) = conditional mean of X, for a fixed value X,; and

p 7 = correlation coefficient between X, and X,



