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SYNOPSIS. Generation of periodic horizontal vortices was studied in temrs
of linear stability analysis for open channel flows with an inflection
point in depth-averaged velocity profile. The dimensionless angular
frequency of maximum instability is found to be uniquely correlated with
the ratio of two parallel undisturbed flow velocities. Periodic vortices
were observed by dye injected into flow, and the period was measured with a
wave gage. The theory predicts the measured period very well.

INTRODUCTION

It has been known that instability is induced for flows with an
inflection point in velocity distribution (e.g., Tatsumi and Gotoh, 1989),
and the instability-induced disturbance eventually grows to a discrete
organized vortex. Such a phenomenon can be seen even for natural
geophysical flows, e.g. for open channel-flow in compound channel, for
flow in channels with laterally varying bottom roughness and for flow in
rivers with bank vegetation or pile dikes.

Several studies have been made in Japan for horizontal organized
vortices generated in rivers with compound cross sections, because many
Japanese rivers take the compound cross section which consists of a main
channel and flood plains.

Kinoshita (1978) found that large scale horizontal vortices are
generated at the edge of Tone river flood plains, and some of them are
large enough to reach the opposite side.  Recently, Utami (1991) has
observed horizontal vortices in Ishikari river employing aerial
photography, from which he calculated the instantaneous velocity vectors
and the streamlines at the free surface of flow. He found the cat's eye
streamline system for rolled-up horizontal vortices, detecting from a frame -
moving with temporally-averaged flow velocity at the edge of the flood
plain. Since the depth-averaged flow velocity has an inflection point near
the edge of the flood plain, it is strongly suggested that these horizontal
vortices are induced by the aforementioned instability.

The trains of large horizontal vortices have been observed also in
laboratory compound channels. Tamai et al. (1986) measured the period of
vortex generation for flows in compound channels, in which the period
was found to agree reasonably well with the prediction obtained in terms of
inviscid linear stability analysis for hyperbolic-tangent velocity proflle
(Michalke, 1964, 1965).



70

A comprehensive review on the stability analysis of free shear layers
is found in Ho and Huerre (1984), and therefore is not repeated herein.
One of the major conclusions of the linear stability analysis is that the
Strouhal number for the maximum amplification rate, fn@e/U, takes a nearly
constant value of 0.032 for any hyperbolic-tangent velocity profile, in
which f» = natural frequency of the maximum 1nstab111ty, e = momentum
thickness of the initial undlsturbed flow and U = averaged velocity of two
parallel free flows.

The lateral distribution of depth-averaged fluid ve1001ty for shallow
open channel flows is, however, usually skewed from the tangent-hyperbolic
profile by the bottom friction and/or the fluid drag due to, e.g. bank
vegetation or pile dikes. Instability of shallow water flow with skewed
depth-averaged velocity profile is thus treated herein to predict the
frequency of vortex generation at the inflection point of the velocity
distribution. The results are tested with laboratory experiments to support
the theory.

DEPTH-AVERAGED VELOCITY‘DISTRIBUTION

A stralght channel with rectangular cross section is considered, for
which the width and the depth are denoted by B and D, respectlvely The
depth is assumed to be constant throughout the flow field. The flow is
retarded by vegetation or pile dikes (hereinafter they are termed VoP for
“abbreviation) which locate in both sides of the channel, the width of which
is Bs (see Fig. 1). VoP is simulated by circular cylinders with a diameter
d. They are placed in stagger with longitudinal interval, %., and lateral
interval, %,. It is assumed that the flow is uniform longitudinally, which
implies that the flow is fully-developed, and therefore the longitudinal
~slope of free surface, S, is constant everywhere. The depth of flow is
assumed to be much smaller than the lateral scales such as B and Bs, which
implies that the depth-averaged shallow water treatment is allowed in
analysing the flow field.

The momentum balance for flow outside of VoP region is, then,
described by

”—
2

dy?

pgDS + peuD - pCiu® = 0 , o (1)
in which p = mass density of fluid, g = gravitational acceleration, €, =
lateral eddy viscosity, assumed to be constant with respect to y, y =
lateral coordinate taken positive toward VoP region from the edge of . the
region (see Fig. 1), u = depth-averaged local fluid velocity, Ci = a
resistance coefficient defined by (u./u)?, assumed to be constant

laterally, and u. = friction velocity. The momentum equation for flow in
VoP region is ‘

du Cul
0gDS + peyD ——— - pCru® - pCpaD = 0 (2)
| a2 2
in which Cv = drag coefficient of single VoP, and a = d/(28 %) = a

parameter describing the density of VoP per unit area. The lateral
diffusion term in Eq. 1 vanishes in the region far from VoP, and Eq. 1
reduces to .

pgDS = pCrus? : , ' “ S (3)

.in which W = value of u in the lateral far field, i.e. at y = -». Division
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Fig. 2. Normalized velocity profiles for various
values of x. The velocity profile is anti-
symmetrical with respect to p = 0 for the
hyperbol tangent velocity profile, and the
velocity distribution is seen become skewed
as x increases.
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of Egs. 1 and 2 by Eq. 3 yields, respectively

d%¢

1+ v - ¢* =0 (4)
d2

1+ dnf - (1087 = 0 (5)

in which v = €,D/CiusB?, ¢ = u/W, n = y/B, and x = CoaD/2Cr. Since e, can
be equated to au-D as described subsequently, v reduces to

d

JC

in which a = proportional coefficient of order 0.1. Since the order of Ci
is 0.01 and D/B is much smaller than unity for rivers, the dimensionless
velocity, ¢, is expected to be expanded in power series of a small
parameter v to solve Egqs. 4 and 5 analytically in terms of perturbation
technique. Thus, ¢ is expressed by

P =P + vdr o+ vige + ..., (7)

in which ¢a, ¢1, ¢2 = solutions of ¢ in zeroth, 1st and 2nd orders,
respectively. Substitution of Eq. 7 into Eq. 4 yields the solutions,

¢p =1, ¢1 = ¢2 = 0, which are the outer solutions in term of singular
perturbation, and the analysis has failed to include the diffusion terms
embodied by the second term in Eqs. 4 and 5. The reason is that the
diffusion terms are not small in the mixing zone but comparable with the
other terms, suggesting that another inner variable scaled by "boundary
layer thickness" should be introduced. Singular perturbation technique
indicates that the appropriate inner variable is p = n/Jv. Then, Eqs. 4
and 5 reduce to, respectively ‘

By
) (6)

a%p
1+ PR P? =0 (8)
a2
Y (1+x)9> = 0 ' (9)

Substituting again Eq. 7 into Egs. 8 and 9, and matching ¢, d¢/dp and
d?¢/dp? at p = 0, the solutions can be derived.

The solutions up to the first order (the second and the higher orders
are truncated) read ) T

) ;
¢ =1~ (1-J)exp(*‘7)“9n (10)

for the region outside of VoP, "and

n
J

2
e = J{J + (l~J)eXp{—(“;“)“2 1} (11)

for the region inside of VoP, in which J = 1/(1+x)t 4.
The solutions up to the second order, which are required in the

subsequent stability analysis, are expressed by

1 ; ) -~ . :
® =1 - ~5—(1-J){4 ~~exp(J§p)]exp(/2p) (12)



for the region outside of VoP, and
¢ =J{J + "g—(l—J)[4 - exp(- “3“)]exp(~ "—3——)} (13)

for the inside of VoP region. Eqs. 10 and 11 (or Egs. 12 and 13) indicate
that the value of ¢ at p = 0 is given by )

Pp=8 = J ) (14)
The depth-averaged dimensionless fluid Veloéity‘far inside of VoP region,
¢p=0, is found to be

Pp=0 = JE ' (15)

from Eqs. 11 (or 13). C
The velocity distribgtion i§ normalized by the velocity difference
of two parallel streams, us and Up=s, such that

U - Up=o
d(p) = ———
Us - Up=w
¢ - J? '
ISR R , : 16
T (16)

where Up-+ is the undisturbed flow velocity in VoP region. ®(p) is depicted
in Fig. 2 for various values of the dimensionless VoP parameter, x. The
figure reveals that the velocity distribution becomes skewed as x
increases, and the inflection point exists at p = 0 regardless of the

value of x. ) !

LATERAL EDDY VISCOSITY
Lateral eddy viscosity, €., is one of the major factors for

determining the velocity profile. The Prandtl's hypothesis for free
turbulence is employed herein, namely :

3
Ty = PEy
v 3y
- aa . . o
= py84is(Us~Up=s ) (17).
. oy

in which v = a proportional constant, dsis = displacement thickness of the
mixing zone defined by
1

0 - -
§4is = ——— j (W -u)dy +
Uo ~Up =8 -0

1

Up=0-Up=u

j:(ﬁfﬁp=m)dy (18)

The first order solutions, Egqs. 10 and 11, are employed herein to calculate
the displacement thickness, because a simple expression 84:s is obtained by
using the first order solution and the result differs very little from that
calculated from the second order solution. The result is

Sais = Jv/2(1+J)B ‘ (19)
Substituting Eqs. 14, 15 and 19 into Eq. 17, & reduces to

Ey = stii(a&"ﬁpziﬂ)‘

.),2

= 2(:T(l-J)Z(1+J‘)4u~mD ) . (20)
s1.5
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Fig. 3. Measurement of the proportional constant, 7,
in Eq. 17 as a function of J?. The solid
line indicates the best fit curve expressed
by Eq. 21.

Tymg/0Usl

Fig. 4. Dimensionless shear stress at the edge of
" VoP region as a function of J? and Cr. It
should be noted that there exists a maximum
at about J? = 1/3. The broken line idicates
extrapolation from the measured value.
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in the derivation of which the relations, v=¢.D/CiusB?, Cr=(u-»/us}? and
Up-»=UsJ2, are used, in which u.« is the shear velocity at y = -o. Eq. 20
indicates that the lateral eddy viscosity is proportional to u.sD for
lateral mixing zone generated in shallow open channel flows, as assumed
previously. The proportional constant, 7y, must be determined empirically.
Lateral shear fields have been produced in a wind tunnel (Tanaka et al.,
1986) and in an open flume (Yamasaki et al., 1984) with laterally different
bottom roughnesses and also in open flumes with circular cylinders placed
along one side of the flumes (Ikeda and Izumi, 1991; Tsujimoto, 1991). The
values of v were calculated by fitting the first order solution for u to
the measured distributions. The results are depicted in Fig. 3, in which it
is revealed that v is uniquely correlated with us-«/us (=J2). The best-fit
empirical relation, which is depicted in Fig. 3 by solid line, is described
by )

= 0.035exp[-2.95exp(-3.8J2)1] (21)

Therefore, the dimensionless lateral eddy viscosity, &y/u.»D, is a function
of J(or x) and C: as seén in Eq. 20.

It is interesting to know the lateral shear stress at the edge of VoP
region, Tev-=-o. Using again the first order solutions for u and Eq. 20 for
€y, Ty=8 1s calculated to be

: 2y2 : . :

Ty=p = MQU‘QZ . : ) (22)
Cr ;

Eq. 22 is depicted in Fig. 4 in dimensionless form. It is found that the
shear stress takes a maximum value at about Ur.-s/Us=1/3, which implies that
the lateral diffusive transport of longitudinal fluid momentum takes a
maximum value at about x = 8. This suggests that other substances, e.g.,
suspended materials, dissolved oxygen, etc., will take the maximum lateral
diffusive transport rate at some value of x.

STABILITY ANALYSIS

Since the lateral distribution of depth-averaged fluid velocity has an
inflection point at p = 0, a small disturbance with some wavenumber will be
amplified and grow to a discrete vortex. An inviscid stability analysis is
performed herein to find the Wavenumber with maximum amplification rate.
The following stream function, %, is employed to describe the two-
dimensional small disturbance:

% (x, p, t) = Re{w(p)exp[ik(x-ct)]} - (23)

in which t = time, Re = real part, #(p) = amplitude of disturbance, k =
wavenumber, ¢ = complex phase velocity described by

c =cr + ic : : (24)
‘It should be noted that the variablgs in Eq. 23 are made dimensionless by
using BV for length scale and BYV/us for time scale. Substituting Eq. 23

into two-dimensional Euler's equation, the f0110w1ng Raylelgh equation is
derived:

4 d%yp d%p
-c - k%) -
(¢ ) ( i ¥) B2

Since the disturbance should vanish at infinitely far field, the boundary

P =0 (25)
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conditions are described by
Pp(w) = p(-») = 0 = . (26)

The dimensionless fluid velocity, ¢, is given by the second order solutions
expressed as Eqs. 12 and 13. Michalke (1964) employed asymptotic form of %
at infinity to make the integration of Eq. 25 simple. A similar method is
employed herein. Since d2¢/dp? = 0 at p = *», the asymptotic forms of ¥ and
dw/dp at p = to are expressed by

dyp : ‘ ~
¢ ~ exp(-kp), o -ky at p 2@ (27a)
v~ expkp), — =~ ke o atp e ‘ (27b)
p
Therefore, % is equated to ) )
$ ~ exp([¥dp) ' (28)
Substituting Eq. 28 into Eq. 25, the following equation is derived for ¥:
ag : 1 d%¢
— = K? - ¢2 4 5 (29)
dp ¢-c .dp V

The boundary conditions, Eq. 26, are reduced to with the aid of Egs. 27a
and 27b, ' '

P(w) = -k, ¥(-») =k ‘ (30)

Since Eq. 29 is solved numerically, the following independent variables, g
and r, are introduced to make the integration domain finite:

q = exp(v2p) - 1 ' ‘ ; ' (31)
for outside of VoP region, i.e. for p 2 0, and -
r = J[1 - exp(-/2p/J)] ‘ (32)

for inside of VoP region, in which it should be noted that q = r = 0 at
p = 0. ¥ can be decomposed to the real part, ¥ , and the imaginary
part, ¥, such that

o= 0 o+ Y (33)

Substituting Eqs. 24 and 33 into Eq. 29, the following equations are
derived with the aid of Egs. 31 and 32:

av: K2-0 249, 2 8(1-J)q(¢-cr ) )
= + > P (34a)
dq J2(q+1) 3J§{(®—Cr) +ci <]
aw; 20 0 8(1-J)qcs (34b)
= - +
dq J2(q+1) 3/2[ (¢-cr )2+ci 2]
for outside of VoP region, and
dvr k2-¥ 249, 2 8(1-J)r(¢p-cr)
= + > Py 5 (35a)
dr J2(1-r/J) 3J/23% [ (¢p-cr ) 2+ci 2]
dd PATRE 8(1-J
= - + ( Jre (35b)

dr J2(1-v/3)  3J23%[(¢p-cr )P+ei 2]
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for inside of VoP region. The boundary conditions are
e ("l) k, RN (J) -k (36&)
Ui (-1) 0, ¥ (J) 0 (36Db)

Applying L'Hospital's rule, the derivatives of ¥ at q = -1 and r = J are
given by

v 8(1-J) (1-cr )
dq l":”,: T 3/2(1+/2k) [(1-c: ) %+ 2] (37a)
dv; 8{(1-J)c;i

dg la-ov = - 3/2(1+/2k) [ (1-cr ) 2+ci 2] . (37b)
dd: , 8(1-J)(J%-cr)

T BRI (e ) Prer 7] ’ (87¢)
o : 8(1-J)ci

Tar T e/ (ezin) (3o ) Pren 7] (37d).

For antisymmetric velocity profile with respect to the inflection point,
the phase velocity, cr, is independent of the wavenumber and the velocity
profile, and ¢ is equated to the fluid velocity at the inflection point
(Tatsumi and Gotoh, 1960). The velocity profile in the present case is
nearly antisymmetric for small value of x as depicted in Fig. 2, for which
the dimensionless phase velocity is nearly equal to the dimensionless fluid
velocity at the inflection point, i.e. ¢ = J (see Eq. 14). As x increases,
the velocity profile deviates from the antisymmetric profile, and cr
becomes larger than J. In the numerical integration of Egs. 34a - 36b under
the boundary conditions, Egs. 36a - 37d, c- and c¢i are determined for a
specified value of k such that the values of ¥ and ¥ are matched at

p = 0. The procedure is as follows: (1) the phase velocity is at first
assumed such that ¢ = J, (2) ¥ is matched at p = 0 varying c¢: by trial
and error, (3) c- is changed such that the matching of ¥ is satisfied at

p = 0, (4) this procedure is iterated until both ¥ and ¥ are matched at

p = 0. In the numerical integration, Runge-Kutta-Gill scheme with a step of
0.025 was employed. It should be noted that the derivatives of ¥ and ¥
are matched automatically at' p ='0 (see Egs. 34a - 35b). Fig. 5 shows
examples of the calculated profiles of ¥ and ¥ for x = 0.01 and x = 10.
It is seen that the eigenfunctions, ¥ and ¥, for x = 10 are considerably
skewed compared with the antisymmetric profile of ¥ and the symmetric
profile of ¥ obtained for x = 0.01. Michalke (1964) calculated the
eigenfuctions, ¥ and ¥, for the hyperbolic-tangent velocity profile which
is antisymmetric with respect to the inflection point.

The result for the dimensionless amplification rate, kci, is depicted
in Fig. 6 as a function of the dimensionless angular frequency, ©, and the
VoP density parameter, x, in which kei is divided by 1-J° to adjust the
vertical scale. The dimensionless angular frequency, wmax, at which the
amplification rate takes the maximum for each value of x, can be obtained
from Fig. 6, and the result is shown in Fig. 7. It is found that wnax
decreases slightly as increasing x. The phase velocity at the maximum
amplification rate divided by J is depicted in Fig. 8, in which it is
revealed that c-/J is gradually increased from unity as X increases.

This indicates that the phase velocity at the most amplified angular
frequency is slightly above the fluid velocity at the inflection point.
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Fig. 9. Visualized organized horizontal vortex (Run 1).
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Fig. 11. Variation of free surface elevation just
outside of the pile region. Water surface
depresses as vortex passes through the gage.



PERIOD OF VORTEX GENERATION

As described previously, an infinitesimal disturbance with maximum
amplification rate will develop to a discrete vortex as revealed by
Rosenhead (1931), and the period of vortex generation is expected to be
identical with that of the disturbance. Since wnax is made dimensionless
with a characteristic time scale of B/v/us in the present analysis, the
period of vortex generation, T, is equated to

2nBJ/v
@maxﬁrﬁ

(38)

Substituting the relation, v = esD/Crus B2, into Eq. 38 and with the aid of
Eq. 20, the reduced period, usT/D, is calculated to be

T ; S2ry (1-3) (1+J)2
D Ci Wnax

(39)

in which v ang @nax. are given by Eq. 21 and Fig. 7, respectively. Eg. 39
reveals that usT/D is a function of J{or x) and C:.

LABORATORY TESTS

The experiments were performed in a tilting straight flume with 12 m
length and 0.96 m width. VoP was simulated by circular cylinders made of
wood, which have a diameter of 5 mm and a length of 10 cm. They were placed
in stagger with %« = %, = 5 cm. The fluid velocity was measured using a
miniature propeller type velocity-meter with an outer diameter of 3 mm for
5 runs, among which Runs 1, 2 and 5 are listed in Table 1. The reason is
that the period of vortex generation was measured only for the 3 runs. The
number of measurements in vertical direction was 10 at each location, from
the 10 measurements the depth-averaged flow velocity was calculated. The
period of vortex generation was measured by a wave gage located slightly
outside the edge of circular cylinder region. The facility can observe the
depression of water surface induced by the vortex. The vortex was )
visualized by injecting white dye (poster color) into the flow from the
free surface. Photographs were taken with an interval of 0.77 sec using a
camera equipped with a motor-drive. An example of the photograph is shown
in Fig. 9, in which a discrete vortex is seen at the edge of the circular
cylinder region.

The lateral distribution of depth-averaged fluid velocity is depicted
in Fig. 10 for Run 1 as an example, in which the solid line indicates the
profile obtained by fitting Egs. 10 and 11 to the measured one. The value
of e, can be determined by the best fitting procedure, from which y can be
calculated by using Eq. 20. The result for v depicted in Fig. 3 was thus
obtained. An inflection point is observed at y = 0 (i.e., p = 0) in
Fig. 10. )

The variation of.the free surface elevation with time is also shown for
Run 1 in Fig. 11. The mean period of vortex generation was calculated by
temporal averaging procedure. The periods thus obtained for three runs are
shown in Table 1 along with the theoretical values predicted by Egq. 39.
Since the values of dimensionless VoP parameter, x, employed herein are
relatively small (10.1 to 17.5) as documented in Table 1, the data obtained
by Tsujimoto (1991) are also used herein to test the theory. His three data
take x = 50.8, 63.5 and 67.9, and therefore they have relatively large
values of x (see Table 2). A comparison between the prediction and the

81



82

10
- 0 Present study O
O Tsujimoto (1991)
o
i)
v —
.C
ol 5 -
g \\-Line of perfect
=3 - agreement
= i o
[a]
0 L i L i i i i i i
0 5 10

Predicted T in sec

Fig. 12. Comparison of the predicted period of vortex
generation with the measured period.

Table 1. Major hydraulic variables of the present
laboratory tests.

Run Q D S Ueo Us X Wnax Predicted Measured
(8/s) (cm) (em/s) (cm/s) (Fig. 7) T (s) T (s)
1 ‘15.3 6.0 1/1000 2.42 31.6 10.2 0.34 6.2 6.4
2 22.6 6.0 1/300 4.43 57.3 10.1 0.34 3.4 3.8
5 23.8 8.5 1/1500 2.36 40.0 17.5 0.33 8.3 9.0
Table 2. Major hydraulic variables of the laboratory
tests performed by Tsujimoto (1991).
Run  Q D S U o e X On s x Predicted Measured
(8/s) (cm) (cm/s) (cm/s) (Fig. 7) T (s) T (s)
Iw1 - 3.65 0.00148 2.31 41.5 67.9 0.31 2.6 3.3
w2 - 3.82 0.00250 3.05 47.5 50.8 0.32 2.0 2.5
IW3 - 3.87 0.00294 3.34 57.0 63.5 0.32 1.8 1.9




measurement is shown in Fig. 12, and the agreement is found to be
reasonably well. This suggests that the horizontal organized vortices
generated at the edge of VoP region is induced by an instability of flow
with an inflection point in velocity distribution.

CONCLUSIONS

Depth-averaged velocity distribution for open channel flow with VoP
region along the banks and the associated instability of flow are studied
theoretically and experimentally in the present study. The lateral )
distribution of the depth-averaged flow velocity is solved analytically in
terms of singular perturbation. It is found that an inflection point
occurrs at the edge of VoP region (at p = 0). The rate of lateral diffusive
transport of longitudinal fluid momentum is found to take a maximum at a
moderate density of VoP. The existence of inflection in the velocity
distribution induces instability of flow, and the period of maximum
instability for a specified wavenumber is predicted by solving Rayleigh
equation. The reduced period is found to be dependent on the dimensionless
density parameter for VoP, x, and the resistance coefficient associated
with bottom friction, Ci. The laboratory tests support the present
analysis.
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