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ABSTRACT

Open channel flow over a vegetation layer is numerically analyzed with a k-£ turbulence model. In
the vegetation layer, complicated geometry of vegetation elements are characterized by form drag
spatially averaged in the calculation mesh. Such a drag effect is taken into account not only in the

momentum equations but in k- and e-equations. The present model requires two additional parameters
which are determined so as to reproduce a few examples of turbulence measurements of quasi-uniform
flow over vegetated beds in laboratories. Next, it is certificated that the numerical values of these
parameters are universal by more data from turbulence measurements when the other parameters which

also appear in the ordinary k-£ model are kept as standard values.

INTRODUCTION

The characteristics of turbulent flow over a vegetation layer is one of the most fundamental topics
of hydraulics of flow with vegetation. The purpose of this study is to establish a method of calculation
for open-channel flow over vegetation, including the turbulence characteristics (statistical properties),
using the experimental data of turbulence measurements in the flumes made by the authors (9, 12).
Previous studies were reviewed in our references (11, 12). The hydraulic resistance was studied
empirically in 1960s, while recently the turbulent structure has been focused on. :

Numerical models of turbulent flow using higher order closures have been developed, and various

types of flow have been analyzed. In particular, a k-¢ turbulence model has been widely applied in the
field of hydraulics since the efforts of Rodi et al. (7).

In analyzing the flow within a vegetation layer, the actual boundary is spatially complicated.
Moreover, in order to describe the boundary accurately, the flow over a vegetation layer cannot be
treated as a two-dimensional flow. Thus, the governing equation is spatially averaged in such a porous
medium and the effect of individual roughness elements is taken into account by an averaged local drag
force (averaged in a calculation mesh). Such a technique was introduced in analyzing canopy flow in the
field of meteorology by Wilson & Shaw (14), and some reseachers (3, 13) followed them.

In this paper, open-channel flow over a bed covered by a vegetation layer is numerically analyzed
by locally averaged governing equations. The presence of individual vegetation elements is accounted

for the spatially averaged drag force acting upon individual elements. A k- model of turbulence is
employed, and the drag effect is considered not only in the momentum equation but also in k£ and €
equations. The calculated results are compared with turbulence measurements made in flumes (9, 12) in

order to determine the numerical values of the parameters involved in the model, and to certificate the
applicability of the model for flow over vegetation layers with different densities.
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SPATIALLY AVERAGING PROCEDURE

In this chapter, the spatial averaging procedure is explained. When the spatially averaged velocity
is represented by <u;>, the instantaneous local velocity, ui(x,y,z), is written as

ui(x,y,z,.0= <ui(H)>+u;"(x,y,2,t) ¢))

in which x,y,z=spatial coordinates; r=time; u;=(u,v,w), U;"(x,y,z ;t)=perturbation from the spatially
averaged velocity. On the other hand, when the time-averaged velocity is expressed by i,

ui(x,y,2,0) = uix,y,2)+ui' (x,y,2,0) ; @
where u;'(x,y,z,f)=perturbation from the time averaged vclocity, or the turbulence measured by point
measurement. Eq.2 is termed "Reynolds decomposition.”

As the vertical two-dimensional flow is dealt with here, spatial averaging means averaging in the
horizontal plane (x,z). Such a spatial averaging operator <> is defined as

<¥>=7 UR Y(x,z)dxdz ; 3)

in which ¥represents a physical quantity; A, R=area and boundary of domain for averaging. As for the
above operator, the following manipulations are valid.

<Y+ > = <Pot+< P> ; <Px<D>> = <Pox< D> 4

However, the order of spatial derivation and spatxal averaging cannot be always exchanged with each
other, as follows

a< ‘f’>
<>+ )
The reason of the above is explained as follows: According to Green's theorem,

a‘zf" _1 J O ez =1 (jCO‘I’"dz+EjJCj Pdz) ©)

where Co=boundary of averaging domain; and Cj=boundary of individual roughness elements (see
Fig.1). The first term of the right side of the abovc equation becomes zero when the integrating domain
is large enough to achieve the spatial homogeneity, but the second term is not zero unless the integrated
function is constant along each individual roughness element. Hence,
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Fig.1 A horizontal averaging region within the vegetation
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As for the time averaged pressure, p, in the flow field including roughness elements as shown in
Fig.2 (quoted from Raupach & Shaw (6)), it is obvious that dp/ox=0p"'/0x>0 and its horizontal average
is never zero (<dp"/0x>#0); while obviously 9<p">/dx=0. On the other hand, the velocity, u; is zero
along the boundary surface of the roughness elements, and the order of spatial derivation and spatial
averaging can be exchanged each other. Then the continuity equation can be rewritten as follows.

duj ouw; ouy o<up> ou"; ou'y

Oxi~Oxi = Oxi  Oxi 0% om0 ®
GOVERNING EQUATIONS

The Reynolds equation where the viscous term is neglected is written as follows:

AU; oUi  10P 0
atl UJE—)?JL— "axl+5_'( ulu.;) (9)

in which p=mass density of fluid, the capital letters represent the time average and the small letters the
deviation from the time average. Next the each quantity is divided into the spatial average and the
deviation from it as follows:

Ui = <Up>+Ui" ; P=<P>+P" ; -uilj= <-Uiu>+(-ui)" (10)

Subsﬁtuting Eq.10 into Eq.9 and averaging the resultant equation in the horizontal plane, one obtaines
the following equation. ‘

o<l v asgj > iag‘; 2 Lem ">+ oy <UIUi> + aa <@@E> (1)

where <-Uj"Uj"> is the covariance of the spatial correlation of the time averaged components and termed
the "dxspcrswe flux" (6).

Multiplying the equation above by <Uj>, one obtains the spatially averaged energy transport
equation of the mean flow energy, as follows:

2 <Up<Up> 1 9<P><Up> 1 _0P"
G +<UJ>ax YEFTE) = p_“‘ax, =~ <G5~ <Up

- (<-UUp+<-16;>) -5}—_ <Up + 53?-[(‘ UilUjp+<-iup)<Up> | (12)

In the case of spatially averaged flow in the vegetation layer, <dP"/dxj> corresponds to the
spatially average of drag force for each vegetation element, and thus,

<aP = %plCdi<Ui>x} <Up><U;> (13)
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where A=vegetation density (projected area to the flow per unit volume of water); and Cgj=drag
coefficient in the i-th direction. This term expresses a sink of momentum in the mean flow, and the
energy corresponding to this term is converted to tturbulent energy.

By introducing the kinematic eddy viscosity v;, the velocity gradient is related to the total of the
spatially averaged Reynolds stress and the dispersive flux. Namely,

a<U1> aSJIcJP ‘<k>5u 14)

<UiUp+<-titi> = v

where k=turbulent energy; and dij=Kronecker's delta. The kinematic eddy viscosity is related to the -
turbulent energy & and the turbulent dissipation rate £ by Launder & Spalding (2), as follows.

2
Vt:C”<k> (15)
<> ‘

in which Cy=empirical parameter.
Although the transport equations of <k> and <&> must be deduced by spatially averaging the

ordinary k- and £-equations of the standard &-£ model, the additional terms to them due to the drag effect
are here assumed as follows.

<BP"><UI> = plCd,<U,> «J<UJ><UJ> (16)

This is based on the consideration that the turbulent energy is additionally brought from the energy
corresponding to Eq.16, and it increases the dissipation rate.

The spatially averaged governing equations (in the calculation mesh) for vertically two dimensional
flow are written as follows, where < > is abbreviated.

U+ vy =asin0-g () For gy Crge oy (5 +50)] an
U%—V-+V-§—— -8c0s6 - ay (P) Fyt ax I(g)()] 31‘:)] ay(” (18)

U ax V%ﬁ P [(Vt ) +§— [( L +v) ]+Pk-£+ka(FxU+FyV) 19)

it A IR (CRIE

+7 {CllPCrFU+Fy)]-Coe ) (20)
Pe=v o[ (F) ()15 | e
= 3 PACGUNUZV2 ; Fy= 5 pACayUNUZV2 @2)

where Py=production of turbulent energy; I'=vi+v;vi=eddy viscosity; g=gravitational acceleration;
6=bed slope; C1, C2, Ok, Og, Ctk, Cre=numerical parameters of the model. Except Cgx and Cr,
standard values (7) were adopted as follows: C1=1.44, C»=1.92, C;;=0.09, ox=1.0 and ce=1.3. The
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additional parameters, Cgk and Cre, should be determined by turbulence measurements for flow over a
egetation layer, and it should be checked whether or not the numerical values are universal .

PROCEDURE OF NUMERICAL CALULATION

The pressure P is to be expressed as a sum of the static pressure and the deviation from it (P"), as
follows: :

P = pg(h-y)+P" (23)

Substitation of Eq.23 into the governing equations, results in the following common form.
9 oy 9 9P
= (ov-r 3)1»35(@/—1*—5—)7) = So 24)

in which @=transported quantity (U, V, k, &); and Sp=source term by the external force.

These equations were solved based on the TEACH-T code by Gosman & Ideriah (1). The
governing equations were discretized on a staggered grid, and the SYMPLE algorithm by Patankar &
Spalding (5) was employed. At the bottom boundary, the wall function was applied so that the mean
velocity along the boundary at the lowest point of grid was given by the log law, and a local equilibrium

condition (Pi=¢) was assumed at the lowest point to calculate k and € there (k=ux2NCy, and £=us3/(xy);

us=shear velocity and x=Kdrm4n constant). At the free surface, an axial symmetric condition was

applied at first, where the free surface was regarded as a central axis of duct flow, and then the equations
were resolved by modifying the free-surafe boundary condition after Nezu-Nakagawa's methods (4).
Longitudinally, cyclic boundary condition was employed to obtain a solution for uniform flow. The
mesh employed for calculation was prepared as shown in Fig.3. :

In calculation, the discharge and the depth are known conditions. The bottom shear stress can be
obtained by extrapolation of Reynolds stress calculated in the free-surface region where it shows a
triangular distribution. Then, the energy gradient is given by the estimated bottom shear stress.

After k is obtained, each component of turbulence intensity is calculated by using an algebraic
stress relation proposed by Rodi (8), as follows:

i 2o P
a-n( p_; - 30jj zk)

P 2
5 - [ 30+ — ] 25)
. r -
&€

in which 9=0.6; Cr=1.5; and pjj=stress production. pjjis defined as folldws:

e QU QU
pij=- uiuk—a;f - ujukyk‘ ; (26)

T

t T +
T T T I
i
)
1

Fig.3 Mesh of numerical calculation {uniform flow)

COMPARISON WITH FLUME EXPERIMENTS

Flume experiments of flow over a vegetation layer were conducted in flumes (9,12), where the
rigid (undeformable) cylinders of equal height (K) and diameter (D) were placed at equal spacings (s) in
a square pattern on smooth flume beds (see Table 1). The drag coefficient was estimated as follows:



62

Table 1 Model vegetation in the flume experiments

Series D (cm) K {cm) s(cm) A=D/s2 (cm-ly equipped at

R 0.10 4.1 1.0 0.10 Kyoto University
A 0.15 4.6 2.0 0.0375 Kanazawa University

Table 2 Experimental conditions

RUN H (cm) hcm)y I (10'3) ux (cm/s) uwg (cmfsy U m(em/s) WK

R22 7.30 320 1.08 2.78 1.84 9.55 0.78
R24 9.48 538 1.00 3.05 2.30 12.78 1.31
R31 631 221 164 3.18 1.88 11.21 0.54
R32 747 337 213 395 2.65 13.87 0.82
R41 6.59 239 470 5.51 332 14.52 0.58
R42 7.35 325 263 4.35 2.89 17.16 0.79
R44 9.53 543 256 4.89 3.69 2206 1.32
RS3 841 430 435 598 4.28 23.31 1.05
R3S 1052 642 476 7.01 5.47 30.46 1.57
All 950 491  1.06 3.14 2.26 13.25 1.07
Al2 749 290 142 3.23 2.01 11.72 0.63
A3l 9.36 477  2.60 4.88 3.48 19.59 1.04

AT 895 436 886 882 6.15 3305 095

Cgx=1.0~1.5 and Cgqy=0. A hot-film anemometer was used for turbulence measurements in Series R,
while only the longitudinal velocity component was measured by a micro-propeller currentmeter (the
diameter of the propeller was 3mm) in Series A. The turbulence measurements were conducted putting
the probe of the instrument at the center of individual cylinders (apart s/2 from each cylinder).

In the experiments, uniform conditions were carefully kept by adjusting the weir at the
downstream end of the flume. Table 2 shows the experimental conditions of runs refered to herein,

where H=flow depth above the bottom; A=depth above the vegetation layer (h=H-K); us=~/(10/p);

u*kE\] T/ p; To=pgHI=bed shear stress; T=pghl; I=energy gradient; iy=bed slope; and Up=depth-
averaged velocity.

In order to check the horizontal homogeneity of the flow field, measurements at several points (see
Fig.4) in the same run were compared with each other. If the obtained velocity profiles are consistent
with each other, then the numerical calculations based on the spatially averaged governing equations is
reasonable to be compared with the data obtained by point measurements. These experiments treating
homogeneous vegetation layer varying pattern of vegetation may bring about heterogenous flow, often
with secondary currents.

Figure 5 shows the comparison of the mean velocity profile between measurements and calculated
results. In order to obtain the best agreements between the measurement and calculation for Run R31,
the additional parameters were determined: C=0.07 and Cg=0.16. Then, the calculated results with
the same values for the parameters were compared with the measured profiles. The figure demonstrates
a good agreement between calculations and measurements through all the runs. The calculated Reynolds
stress is compared with the measured data in Fig.6, and the present calculation well expressed the data.

ylem)
location | location 2 location 3 Jocation 4 - location 5
6 & 3 5 K 3§
) K 8°8 g 5; flow direction  location 2
% o 2 -A—-—-~—-—-——-—T-
4 w-_&*.h—‘?’{”—:'}”*“ - 'y'_'K location . N 10 cm
53 H (e, Jocation ] location ¢ .,f.,
o ;g §' § g ceater line of channel -
2 s M M K ° location 3 10em
r © e ° o o I
- s N - °
4] 1, L oy L £ A 1 N 10 ]
0 20020 20 2020 Utemis) dem e Hoem

Fig.4 Velocity distribution at different locations relative to the vegetation elements
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~Fig.6 Reynolds-stress distribution over vegetation-covered bed

In the previous study (9, 12), it was found experimentally that the profiles of the velocity and the
Reynolds stress in the vegetation layer followed exponential functions, as follows:

w =i | _gexp[a(y-K)] (y<K) @n
UG)-Us = (UiUpexpl B0-K)] <K) (28)

in which ¢, B=empirical parameters; Uy=mean velocity at the vegetation boundary (y=K); and

Us=characteristic velocity in the vegetation layer (= 2g//(ACgx)). The velocity profile deduced by a
macroscopic force balance under the assumption of Eq.27 is well approximated by 28, and Bis related

to ¢ (9, 12). However, one cannot obtain an equation to evaluate o except by experiments. The
calculated profiles of Reynolds stress and velocity in the vegetation layer by the present model are
consistent with Egs.27 and 28, as shown in Figs.7 and 8.

0 A
yK 1] & measured £
(cm) 4{ + k- model
24 Eq.(28)
1.0 12 ol 3
y/K i = ]
o8 e I }* All
0.6 m/ / ! (RZZ) o -5 10'2 T 1»::11(1)-1 T 71T uuiloo
(R24) -|
04 ez (R44) (U-Ug/(Ui-Uy)
/i/ ——e—(R42) | 0
0.2 TR vK 1 & measured ?
—— - -1 4 : A
00 L (IR513)k (em) 2] ~+ k-€ model S
X — - -2~ A
1 - - 1
uv / -uv(K) N < Eq.26)
Fig.7 Reynolds-stress distribution in vegetation . ’ -4 A2
layer (calculation) 5 S —
102 10-1 100
(U-Ug)/(Uk-Ug)

Fig.8 Velocity distribution in vegetation layer (calculation)

On the other hand, for the surface flow, the previous study (9, 12) proposed the folllowing
velocity profile, which was deduced from mixing-length theory.
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1l

Um 1. rxn Ug 1 n+é1 Uy
e Kln[?a,g+l]+-l;;£ ‘;1"[?]‘*5@ (0<n<1) 29)

in which n=(y-K)/h; lo*=lp/h; ly=mixing length at the vegetation boundary; and &=ly*/x. Sk may be
termed the "shift of the theoretical wall" of the log-law. Uy and [, are fitting parameters which can be

determined empirically. Shimizu et al.(9) deduced the relation among Uy and related I with § and U.

However, an estimation of ¢ still remained. The calculated profile based on the present model is
compared with Eq.29 in Fig.9. A good agreement is shown between them.

o The parameter o was related to the parameter A//K empirically in the previous study (9, 12), as
ollows:

oVsK = -0.32-0.85olog(%) ~ (30)

The value of a determined from the result of the present numerical analyssis are plotted and compared
with Eq.30 in Fig.10. As far as the range of the experiments, the present calculation suggests that
Eq.30 is available, though wider applicability has to be checked by systematic inspection.

Figure 11 shows the turbulence intensity. The calculated results express the experimental data
relatively well, though the former cannot express the convex profile of the latter in the vegetation layer.
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Fig.11 Distribution of turbulence intensity over vegetation-covered bed

APPLICATION TO UNESTABLISHED FLOW OVER A VEGETATED BED

The research was extended to unestablished flow over a vegetation layer. When the flow is
introduced to the vegetated bed as shown in Fig.12, a transient process occurs where the turbulent
characterstics change longitudinally to reach an equilibrium state sufficiently downstream. The
numerical calculation was also conducted for the transient process, where the mesh as shown in Fig.13
was employed. At the upstream end of calculated region, fully established flow over a non-vegetated
bed was assumed. In the calculation, discharge and depth were held constant. Actually, open-channel
flow over the above mentioned bed never showed a linear free surface, but for simplicity the upper
boundary of the mesh representing the free surface was assumed to be parallel to the x-axis. In the
flume experiments, the water-surface was attempted to be held constant in the region x>0 by adjusting
the weir at the downstream end of the flume. The vegetation model was the same to Series R for
uniform flow experiments (9, 12). The experimental condition were set as H=8.31cm, /e=0.00264, and
Unm=18.44cm/s in the equilibrium reach.
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The longitudinal change of the mean velocity profile is shown in Fig.14, where the measured data were
plotted and the calculated profiles are drawn by dotted lines. The comparison between them
demonstrates the applicability of the present model to non-uniform flow conditions. The comparison of
the calculated Reynolds-stress distribution with the measured one is shown in Fig.15, and the present

model can also explain the transient change of Reynolds-stress distribution.
In actual cases, the water-surface is not parallel to the bed. In such a case, the calculation mesh

should be prepared in a curvilinear system corresponding to the water-surface profile estimated, for
example, by a one-dimensional approach. ~

y
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CONCLUSION

The results obtained in this paper are summarized below:
(1) The flow in a vegetation layer was analyzed numerically, and the governing equations were
spatially averaged neglecting the geometry of individual vegetation elements. Then the modified

governing equations were obtained by adding the terms due to the drag effect to the momentum, & and £

equations of the stardard k-& model. ‘

(2) By applying the technique of the TEACH-T code, the governing equations were numerically
solved. ‘ ;

(3) The calculations based on the present model were executed for uniform flow conditions in an
open-channel with vegetation, and the results were compared with the experimental data. Not only the
velocity profile but also the statistical properties of turbulence can be described by the calculation based
on the present model, where the specified model parameters can be rather universal, at least under the
conditions of flow with idealized homogeneous vegetation. : ‘

(4) The calculated results are consistent with previous analysis, where an exponential distribution
of the Reynolds stress induced in the vegetation layer was assumed, and the macroscopic force balance
was considered in the vegetation layer, while a mixing length model was applied to the surface flow.

(5) The present model was applied to unestablished flow over a vegetation layer, which means the
flow in the transient reach downstream of the beginning of the vegetated bed. The longitudinal changes
of the profiles of velocity and Reynolds stress in the transient reach were calculated by assuming the
water-surface elevation is paralle to the bed, and they showed good agreements with the measurements
in the flume where the depth in the vegetated reach was tried to be kept as constant as possible.

The study suggets that the proposed numerical model is a good representation of flow over a
vegetated bed. Since people are currently placing more environmental conditions, river engineering
requires more knowledge about the characterstics of flow with vegetation. For example, such knowlege
is needed to predict resistance, sediment transport, and bed deformaton. The present model allows for
calculations over vegetated bed to be made easily than by conducting physical experiments.
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APPENDIX - NOTATION

The following symbols are used in this paper:

Cl? CZ: C[.L
Cﬂb CfE

di

= numerical parameters of standard k-€ model;

= additional numerical parameters due to drag effect;

= drag coefficients of model-plants of the i-th direction;
= diameter of model-plants;

gravity;

water depth above the vegetation (H-K);

= depth (from bottom to surface);

= energy gradient;

= bed slope;

= vegetation height;

= mixing length at y=K;

= I/h = dimensionless mixing length;

= distance between individual plants;

= instantaneous velocity of the i-th direction;

=mean velocity (time average);

= velocity at the interface between vegetation and surface-flow region;
= depth averaged velocity;

=characteristic velocity in the vegetation layer

=~gHI = \/ 7o/p = shear velocity;

= ghl =\ u/p;

= vertical distance from bed bottom;

= reciprocals of length for velocity and Reynolds-stress profiles in vegetation
layer;

= parameter of Rodi's algebraic stress model;

= parameter of Rodi's algebraic stress model;

= kinematic viscosity and kinematic eddy viscosity;

= lo*/x;

= Kdrmdn constant;

= D/s? = projected area of vegetation to the flow per unit volume of water;
= numerical parameters of standard k-€ model;

= bed shear stress (=pgHI);

= Reynolds stress at the top of vegetation;

= physical quantity

=y/h; and
= spatially averaged quantity.
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