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SYNOPSIS

Accurate solutions for the partial differential equation describing advective and diffusive transport
of mass have been the focus of many investigations in recent years. Most of the solution procedures
developed during these investigations have been based on the implementation of a split-operator
approach. In a split-operator approach, the advection and diffusion processes are treated independently of
one another. Presented in this paper is a solution technique based on a combined operator approach
where the advection and diffusion processes are treated concurrently. The implementation of the solution
algorithm is simple yet it provides an accurate prediction of the mass transport. Finally, comparisons
with alternative schemes are presented in the paper.

INTRODUCTION

Solution of the partial differential equations describing advective and diffusive transport of mass in
one and two-dimensions requires, in general, the adoption of numerical techniques. These procedures are
adopted for reasons of adaptability to realistic flow characteristics. However, implementation of
numerical solution techniques introduces the possibility of numerical diffusion; in some cases the
magnitude of this numerical diffusion may be greater than the physical diffusion processes being
modelled. The problem of controlling this numerical diffusion has been the focus of many previous
studies which have lead to a number of alternative approaches.

One approach is by the use of the split-operator algorithm whereby the advective and diffusive term
are solved separately. Holly and Preissman (3) obtained a high accuracy in the prediction of mass
transport using a fourth order scheme in one and two-dimension with a Hermite cubic interpolating
polynomial between the two points. However, the method uses not only the concentration but also the
spatial derivative of the concentration as a dependent variable. Komatsu et al. (6) reported on theuse of a
six-point scheme as an alternative approach where the only dependent variable was the concentration.
This was an extension of the eight-point method presented previously by Holly and Komatsu (4) who
solved the far extreme points by using linear extrapolation. The accuracy of the method is affected in
dealing with the estimation of the boundary conditions. The accuracy of the six point scheme was
improved by Komatsu et al. (5), through the addition of an artificial diffusion term to compensate for the
numerical diffusion. However, determination of the coefficients for this artificial diffusion is difficult,
especially for non-constant flow characteristics.

Another approach to the prediction of the advective and diffusive transport of mass is through
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solution of the differential equation with the advective and diffusive terms being solved concurrently.
This means that the computed pollutant concentration at the next time step (n+1), accounts for the
contribution due to both the advetion and diffusion processes. In this paper, an algorithm based on this
approach is presented. To eliminate the possibility of numerical oscillation due to the use of a centered
scheme for the advection term, weighting coefficients are introduced to the pollutant concentration in the
time stepping. The method is similar concept to the technique proposed by Stone and Brian (7) but
differs in the numerical algorithm used. Stone and Brian (7) assigned weighting coefficients in both the
temporal and spatial direction. This complicated the algorithm especially in the determination of the
coefficient values. The proposed solution technique presented here introduce weighting coefficients only
in the temporal direction which simplifies the algorithm. Also, the algorithm offers a simple and accurate
prediction for the one-dimensional transport of a conservative pollutant constituent.

POLLUTANT MASS TRANSPORT
Theory

The advective and diffusive transport of the mass of a pouutant constituent in a one-dimensional
flow regime can be described by a partial differential equation which can be developed from a
consideration of the conservation of the pollutant constituent mass. Fisher et al. (2) presents a detailed
development of this equation, which for one dimensional flow is

BC + U%(—: D%%g ; ¢))
where C(x,t) = cross—sectional average concentration of pollutant, Ux,t) = the cross sectional average
velocity, D = diffusion coefficient and, x and t are the spatial and temporal locations. The diffusion
coefficient, D as explained by Fischer et al. (2) accounts for mixing arising from molecular, turbulent,
and effects due to differential advection. There are several assumption involved in the development of the
Egq. 1; Chatwin (1) outlined these assumptions as follows:

1) The velocity field is statistically cohstant;

il) Buoyancy effects are neglected;

iii) The cross-sectional area is invariant in space and time; and

iv) Complete mixing of the pollutant over the cross-section has taken place.
PROPOSED NUMERICAL SCHEME

Finite Difference Approximation

The proposed numerical solution technique described herein is based on the use of a finite
difference approximation which uses the spatial-temporal grid illustrated in Fig. 1.

Using this grid, a finite difference approximation to Eq. 1 can be developed as
Cn+1 _ Cn . . k
g (G - et )+ - o (S - ¢ )]-
5 [e(c;‘:f 2ty -0y (8 - ci-2cr )] @

where 0 = temporal weighting coefficient and Cp, = the weighted average concentration at a time level
which is given by
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Fig. 1 Finite difference grids
Cp = 61Cj.1 + Eij + €3Cj+1 3
subject to the constraint that
g+ e +e3=1 @

Values for the arbitrary weighting coefficients ey, €, &3 are obtained by mathematical manipulation
to obtain the best accuracy from the numerical algorithm. These coefficients are functions of Courant
number (Cy), diffusion coefficient (D), and the temporal weighting coefficient (6), but not on the
concentration itself., Thus, for a given velocity field and a known diffusion coefficient one can easily

calculate the values of these arbitrary coefficients. Details of this calculation are presented more fully ina
Iatter section.

Substitution of Eq. 3 into Eq. 2 results, after rearrangement of the terms, in

(81 . Qg_f__ sx)cjf‘_?ﬂez + 2540) Cji““ + (83 + e—%- Sxejcﬁll =

(81 + & GEL Sx - Sx8 C1, + (2 - 28 + 25:0)CP +

(es- S+ "Cf + Sy - 850 Ch, ©)
where C; = the Courant number which is deﬁned by

o =5 ©
and  Sx = diffusion parameter which is defined by

5. = 2% ™

Application of Eq. 5 along a spatial domain results in a set of finite difference equations which are
banded about centre diagonal. The bandwidth of this set of equations is three which enables their solution
using simple tridiagonal matrix manipulation techniques.
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Truncation Error

The magnitude of any potential numerical diffusion may be considered by assessing the consistency
of the finite difference scheme with respect to the original partial differential equation when a Taylor's
series expansion is applied. A Taylor's series about the node (j,n) in the temporal and spatial directions
may be written as

" ALCI | A2 [2C]P  AB @3CP
Cy™ = G + T{at}j ¥ ’i’r{z{f}j *?{“5{3‘}1- ¥ ®
and
n Ax [9C Ax2 [92C1* | Ax3 [3C)
[Cly = G + x{ax} %{éﬁ}j +53r {a_xf?}J t ®

Similar functions may be developed for other nodes.
Through the application of the appropriate Taylor's series in Eq. 5, the consitency and the leading
term of the truncation error may be determined as

aC dC . 0%C

S+ US - D5 = [es-e1+ G (0-0.5)] A
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c?
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3
ING: | Crl Ax3d3C
(81 + €3 - :—3‘) —QL -+ -g—} %A); aX3 (10)

In order to obtain the best accuracy for the numerical algorithm, each term of the right hand side of
Eq. 10 must be equal to zero. It follows that

e3-€1+Cr(6-05) =0 1n

C2 G C2
CrSx(1-0)+(e1-£3-CO) | Sy + == +(81+83- ) =0 (12)

Since the coefficients €1, €, and e3 are arbitrary, their values can be assumed to satisfy the
conditions given by Eqs. 11 and 12. Eq. 11 is satisfied by assuming that &1 is equal to &3 and that the
temporal weighting coefficient 0 is equal to 0.5. Knowing the values of Cp, and Sy the coefficient &,
can then be solved using Eq. 12. Satisfying Eqs. 11 and 12 results in the proposed finite difference
approximation having a fourth order consistency with the partial differential equation.

NUMERICAL TESTS OF PROPOSED TECHNIQUE

A series of tests of the predicted pollutant mass transportation obtained using the proposed solution
technique and those previously presented by Holly and Preissmann (3) and Stone and Brian (7) were
undertaken. All tests were carried outon a 13km. hypothetical channel of unit width; spatial increments
along the channel were constant at 200m. Flow characteristics within the channel were constant at
0.5m/s. A Gaussian pollutant mass as shown in Fig. 2 was introduced to the channel. The peak value of
inflow concentration was equal to 10 units. ‘
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Fig.2 Initial concentration profile
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Fig. 3 Comparison of results for purely advection problem

Shown in Fig. 3 are the predicted pollutant concentration obtained for the pure advection problem.
It is noted that a greater attenuation in the peak is observed for lower values of the Courant number, both
for the proposed numerical model and Holly-Preissman Scheme. For a Courant number equal to 0.25,
the amplitude error obtained from the proposed model is 12% after 19200 seconds. It was found that the
scheme became unstable when the weighting coefficient © was less than 0.5 and that the concentration

peak could be preserved for 6 approximeately 0.47 at the expense of a visible wiggle in the tail portion of
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the curve. It was also found that the ideal value of 6 was equal to 0.5.

Similar tests were made for the combined advection and diffusion transport of pollutant mass.
Results for these tests are shown in Fig.4. The error in the peak at a time of 19200 seconds for the
proposed scheme and Holly-Preissman (3) scheme are 4 percent and 7.6 percent respectively when the
diffusion coefficient was equal to 1 m?/s.

Shown in Fig. 5 are the results from Stone and Brian (7) scheme and the proposed numencal
model. As far as the peak of concentration, there is no significant difference between the two schemes.
However, the Stone and Brian scheme shows significant numerical dispersion.
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Fig. 4 Test results of present model and Holly—Preissman's scheme
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Fig. 5 Comparison between present model and Stone and Brian scheme
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CONCLUSION

The proposed numerical scheme using a combined—operator approach for solution of the partial
differential equation describing the advection and diffusion provides a simple yet accurate solution
algorithm for water quality modeling in open channel flows. The proposed numerical scheme provides a
fourth order consistency with the partial differential equation. By introducing the weighting coefficients
in the temporal direction on the pollutant concentration, the numerical scheme could give high accuracy in
the prediction of pollutant constituent. The amplitude and phase error in the estimation of the pollutant
concentration can be greatly reduced.
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APPENDIX - NOTATION

The following symbols defined below are used in this paper:

Ci,bp = cross-sectional average pollutant concentation;
Cr = Courant number;

D = diffusion coefficient;

ij = grid index point;

n = time index;

Sx = diffusion parameter;

t = time coordinate;

U(x,t) = cross-sectional average velocity;
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coordinate along x-axis;
coordinate along y-axis;

prefix for incremental quantity;
coefficients; and

temporal weighting coefficient.
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