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SYNOPSIS

Water flow path generated by micro-scale irregularity in uniformly-appearing
unsaturated media was examined for its fractal dimension. This was done by
experiments using the unsaturated media of glass-beads and by computer simulation
using 'water path invasion model’.

Experimental water paths were visualized with colored water and their fractal
dimensions were measured with the box-counting method. The experimental results
showed that the water path develops a fractal pattern and its fractal dimension
decreases as particle size increases.

Based on the experimental results, the 'water path invasion model' supposed
that water selects its path according to the order of the possible flow
rate resulting from the combined effects of capillary force, viscous force, and
gravity. Computer simulation showed that the model can make the similar fractal
water paths to the experimental ones, if it is supposed that relatively small
pores can play no role for water path development.

INTRODUCTION

Water flow path plays a significant role for water and contaminants transport
through unsaturated media. This water path is made mainly by wmacro-scale non-
uniformity such as macro-pores or fissures in the media. But in some cases, the
water path may be generated by micro-scale probabilistic irregularity such as pore
size distribution even in uniformly-appearing unsaturated media. I dinvestigated
this type of water path on the basis of its fractal dimension by experiments using
glass-bead layers and by computer simulation using ‘'water path invasion model'
which involves the combined effects of capillary force, viscous force, and
gravity.

FRACTAL DIMENSION OF WATER PATH THROUGH EXPERIMENTAL UNSATURATED MEDIA

Experimental Method

The experimental apparatus (as shown in Fig.l) consists of an acrylic box and
a needle from which colored water drops onto the surface of @ an wunsaturated
medium. Initially, the bottom of the box was overlaid with big glass-beads
(diameters of 4.0 mm and 2.8 mm ) for drainage and the box was filled with water.
Then glass-beads of several diameters was gradually put into the box and was
compacted to make a stable layer of 76 cm depth. Finally, the water in the box
was drained- by gravity for about 30 minutes and the glass-bead layer was made to
be a unsaturated medium. In this paper, the medium is treated as a two-
dimensional field because the width of the medium surface is adequately small
compared to its length.

The physical parameters of glass-bead layers are listed in Table 1. "Mixture’
in Table 1 means the mixture of glass—beads of two sizes. Mixture A consists of
glass-beads of 1.41-1.71 mm and 0.84~1.00 mm diameter (ratio of average diameter =
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1.69:1). Mixture B consists of glass-beads of 0.84-1.00 mm f— 20cn—y
and 0.50-0.60 mm diameter (ratio of average diameter= 1.67:1). :
The ratio of numbers of big and small glass-beads is 5:2 for I :
both mixture A and B. In this research, I assume that the -
experimental conditions made a statistically similar void
space in each uniform glass~bead layer regardless of the
difference in particle and pore sizes. For the mixtures,
the similarity is supposed to be assured by setting the ratios
of particle size and number in common between the two
mixtures, A and B.

In Table 1, the parameters, b and ¢e are the constants of
water retention curves defined by the equation:

Glass-beads

76cm

b=, (6767 e

where ¥ = capillary potential; we = air entry potential; 8 =
unsaturated water content; § = saturated water content; and
b = a constant. s Fig.! Experimental
To make steady water paths, droplets of dilute NaCl Apparatus
solution were supplied onto the surface of
the medium for about two hours at first. - - -
Then the water paths were visualized by Pa?ﬂar PMﬂfl' barcy's Const. for Eq.1

Table 1 Physical parameters of particle layers

tracer water colored with KMnO4 of the same o w %) ks(ca/s) volem) b()

concentration as NaCl solution. Water ggg:ggg g%g 8%82 13- 8%%
supply rates were controlled by a micro-tube (lg4-1.00 39.0 0.370 -5.3  0.38
gump with a speed controller (Cole Parmer igg_h%é 28;% &ggg -%g 8&%
nstrument Co.). Water supply rates Mixture A 38.7 0.595 47 094
represented as intensity onto 20cm x 0.5cm Mixture B 35.8 0.278 -7.0 0.25

surface were 45, 80, 150, and 200 mm/h.
Resultant fractal patterns of water paths were
recorded by photographs.

Measurement of Fractal Dimensions of Water Paths

Fractal dimensions of water paths were measured
by the box—-counting method using the photographs.
The pattern of water paths between 0 cm and 40 cm
depths was covered with square boxes of size L x L and
the number N(L) of boxes in which a part of water path
exists were counted. If there is such relation
between N(L) and L as presented below by Eq.2 , then D

in Eq.2 is the fractal dimension: L=0.59cm [=1.18cm
. N(L)=731 N(L)=182
N(L) « 1P (2) Fig.2 Boxes covering water path

The box size, L used for the experiments
were 0.59, 1.18, 1.77, and 2.36 cm, which
corresponds to 1, 2, 3, and 4 mm on 82 mm
x 116 mm photographic prints,
respectively. TFig.2 exhibits the example
of water path covered with the boxes.

Experimental Results and Discussions

Fig.3 shows the example of water path
observed in the experimental layers of
glass-beads of : (a)small uniform diameter
of 0.71-0.84mm, (b)big uniform diameter
of 1.41-1.70 mm, (c¢)mixture A, and
(d)mixture B. Fig.3 exhibits that the
water path through a small particle medium

(b)1.41- (c)Mixture A  (d)Mixture B
1.70mn

(2)0.71-
0.84mm

Fig.3 Examples of experimental water paths
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Fig.4 In N(L) vs. In L for experiments Fig.5 In N(L) vs. In L for experiments
with several water supply rates with several particle sizes
is. more tortuous than one through a big
particle medium. Figs. 4 and 5 shows the
relation between In L and 1n N(L) for —~1.9F
different water supply rates and for A O

Mixture B

different particle size, respectively. These
figures shows that 1n L and 1n N(L) are
linearly related to each other for every case
and that the water paths are fractal. We can
also find that the fractal dimension does not
depend on the water supply rate, but

et
o]

Mixture A

Fractal dimension (-
-3
H

considerably depends on the particle size. 1'8E Uniform diameter
The relation between the average 7

diameter of particles and the fractal I;‘ ;O ﬁs

dimension is shown in Fig.6. In Fig.6, 0.5 o '

triangles and squares represent the average Diameter of particle (mn)

diameters of small and big particles in Fig.6 Ffractal dimension of water path vs.

mixture A and B. Fig.6 shows that the diameter of particle for experiments

fractal dimension of water path for uniform~diameter particles decreases as the
particle size increases and that the fractal dimension for the mixtures dis more
strongly influenced by the size of small particles than by that of bigger omes.

If only capillary force is dominant for water path formation, the resultant
water paths through the media with similar void space are expected to be
statistically similar regardless of the difference in particle and pore sizes.
This expectation is based on the principle of the invasion percolation model
which will be explained later. The experimental results shows that the similar
void space can produce the water paths of different fractal dimensions, if the
particle and pore sizes are different. This result suggests that there are other
factors such as gravity that are also dominant for water path formation.

FRACTAL DIMENSION OF WATER PATH PRODUCED BY COMPUTER SIMULATION

Water Path Invasion Model

In this paper, I propose the 'water path invasion model’. This model is
named after the 'invasion percolation model' that has been proposed for capillary
displacement in porous media (1,2,5). At first, the 'invasion percolation model’
will be discussed.

Lenormand et al. (2,3) have presented a phase diagram for two-dimensional
immiscible displacements in porous media, and have classified those displacements
to three categories characterized by two dimensionless numbers; the capillary

number and the ratio of the viscosities of two fluids. The three categories
are:
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(a)capillary fingering when capillary forces are very strong compared to viscous
force;

(b)viscous fingering when a less viscous fluid is displacing a more viscous one;

(c)stable displacement in the opposite case.
The invasion percolation model have been presented to describe the capillary
fingering. In this model, a porous medium is represented as a finite two-
dimensional network (or lattice) of pores (located on the sites or nodes) and
throats (on the bond or links). The fluid motion through the medium is
represented as a stepwise Monte Carlo process on the lattice, where at each step
the fluid interface moves through the lattice link where the displacing force 1is
largest. In this model, the only displacing force ' is the capillary force, and
inertial and gravity effects are supposed to be negligible. In this model, the
order of displacing force of each 1link determines the order of pores to be
displaced. Therefore the simulation can be performed only if the order is given
for links, and the size of each 1link has nonsense. The experimental results
mentioned above shows the effect of the size on the fractal dimension of water
path for the similar void space. I thought this contradiction 1is due to the
gravity effect and revised the invasion percolation model to make the 'water path
invasion model' that applies the combined force of gravity and capillary force to
the displacing force.

The 'water path invasion model' supposes that the driving forces for
displacement are capillary force and gravity, and that the flow through each link
is a Poiseuille flow. The direction of the 1links is set to be horizontal or
vertical. In this model, which node (or pore) is to be displaced at next step is
determined by comparing the possible flow rate of each link (or throat) contacted
with the interface between water and air. The possible flow rate, q 1is defined
for horizontal and vertical links by:

horizontal: q = Fl (3)

vertical(downward): q = F1 4+ F2 (4)

verical (upward): q=Fl - F2 (5)
using

Fl1 = (mw2ycosa/8u) 33/1 (6)

F2 = (pgn/8u) a*n/1 M

where a = the diameter of link (or throat); 1 = length of link; h = the difference
in hydraulic head between the both ends of 1ink; P = the density; u = the
viscosity; Y = the surface tension; o = the contact angle; and g = the
gravitational acceleration.

F1 and F2 represent the contribution coefflclents of capillary force and
gravity to the possible flow rate, respectively. By supposing that h = 1 and
putting the values of physical characteristics of water (i.e. Y= 0.072752 kg/sec2,
a= 9° etc.) into the constants in Eqs. 6 and 7, the contributions of capillary

force and gravity can be summarized as:
Table 2 Simulation conditions

3
f1 = a’/1 (8) g=2r a/r r Comments
3 4 (mm) (=) (-
£2 = '68.2x107xa"  (9) Case Al.1 1.56 0.155-1.000 1.15-3.46
Case A1.2 1.56 0.414-1.000 2.00-3.46
where £1, £2 = the contribution indices ggg’g ﬁiz %gg 8%86:%888 %gg:ggg
(in units of 1/m2) of capillary force o o6 0.707-1.000 2.733.46 o1
and gravity for water flow, respectively. iS85 158 (1707-1.000 7.73-3.48 No Gravity
Case A4 1.56 0.285-1.000 1.58-3.46 Vertical
Simulation Conditions (Anisotropy) 0.165-0.707 1.15-2.73 Horizontal
Case B 1.21 0.707-1.000 2.73-3.46
To calculate the indices, £1 and £2 Case G 0.52 0.707-1.000 2.73-3.46 6000 Steps
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for each link, the ratios of a and 1 to particle radius, r for each link were
assigned within the range shown in Table 2. The minimum and maximum values of the
range in Table 2 are originated from the values for such regular arrangements as
simple rhombic layer (a/r=0.155, 1/r=1.15), square layer (a/r=0.414, 1/r=2.0), and
simple rhombic layer with pores of particle size (a/r=1.0, 1/r=3.46).

of a/r and 1/r for each link were determined in the range
uniform~distribution random numbers generated by computer.

The values

by using the {0,1}
Because a/r and 1/r of

each link were determined by using the same  random  number, the link of small
diameter was assigned with more short length than that of big diameter.

The number of nodes, n, for the particles of
diameter d was set to be 100/d for horizontal direction
and 2.5 x n for vertical direction. The boundary
condition for side walls was set to be closed. The
simulations were ended when the front of the displacing
water reached the lowest line of nodes except for Case D,
where the simulation was ended at 6,000 steps (the CPU
time was 4 hours and 10 minutes by 24.0 MIPS computer).
The effect of entrapped air was also introduced by
preventing the water path from invading into the trapped
air area.

Some special conditions such as no trapping
(Case A2), no gravity (Case A3), and anisotropy
(Case A4) were also examined. The anisotropy was
simulated by using the different ranges of a/r and 1/r
for the horizontal and vertical directions. For Case
Al.1-Al.4, two or three random number series were used
and the averaged fractal dimension was determined. For
other cases, only one series was used.
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Fig.7 1n N(L) vs. In L for
simulations

Simulation Results and Comparison with Experimental Results

Fig.7 shows relation between 1n N(L)
and In L. Here L 1is represented by the
number of nodes. The  area for box~
counting was limited to the upper 2 xn
lines to eliminate some outlet effects.
Fig.7 shows that there 1is a linear
relation between In L and In N(L) when L
is bigger than 3. Therefore, the fractal
dimension for each case was calculated
using data of r > 3.

The examples of simulated water paths
are shown for the same series of random

numbers in Fig.8. In Fig.8, (a) is the () Trapping:Q
case with air-trapping and gravity effect, %g&thig
(b) is without air-trapping effect but .
with gravity effect, and (c¢) is without
both air-trapping and gravity effects.
The fractal dimensions are 1.63 for (a),
1.67 for (b), and 1.73 for (c). These
figures show that the air-trapping does
not have a significant effect on the shape
of the water path, and that gravity
restrains the water path expansion toward
the lateral direction. The fractal
dimension for the case without gravity is
significantly bigger than those of the

b)Trapping: x
( Gravgty Hej
(Case A2)

experimental results. This suggests the

important role of gravity for water path ”’%25 %.U

formation.
The relation between a/fr and the

(e)Anisotropy
(Case Aég

(£)D=0.92mp
(Case C)

Fig.8 Examples of simulated water paths
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fractal dimension is shown for 1.56 mm

particles in Fig.9. Fig.9 shows that if there 0 2.0 aNo Trap (A2)

are relatively small 1links, the fractal s L a No Gravity (A3)
dimension is bigger than those observed at the g I v Anisotropy (A4)
experiments. The water path for this case is §

shown in Fig.8 (d). This figure 1is very - §

similar to that for no gravity shown din Fig.8 = A

(c). The results of the simulations suggest +

that the relatively small link does not play a £ 1.5 AT 05 1.0

significant role for actual water path Relative pore size, a/r (-)

formation. . . .

The anisotropy in  the simulations made Fig.9 ?2?2%%‘1;'3?3332eogoﬁaﬁ?h g%?oggf
the trapped-air zone lengthened toward
longitudinal <direction as shown in Fig.8 (e). The trapped-air  zones of

experiments were not similar to those of simulations. Therefore the experimental
conditions make no significant effect of anisotropy.

The water path for small particles is shown in Fig.8 (f) which is the result
of simulation with 0.92 mm particle at 6,000 steps. The fractal dimension of
this case is 1.71 which is bigger than 1.61 for 1.56 mm, while the fractal
dimension for 1.21 mm (Case B) is 1.60 which is almost same as for 1.56 mm. This
suggests that the model can make similar relation between the fractal dimensions
and the pore sizes to that of the experiments as shown in Fig.6.

CONCLUSIONS

In this paper, I examined the fractal dimension of water path through
uniformly-appearing unsaturated media by the experiments using glass-bead layers
and the simulation using 'water path invasion model'. The model supposes that the
water path invades the easiest link to go into on the basis of possible flow rate
derived by gravity and capillary force. The conclusions of this paper are listed
below.

For the experiments:

(1)The water paths through unsaturated glass-bead layers are fractal.

(2)The fractal dimension of the water path is not significantly influenced by
flow rates, but significantly influenced by particle size.

(3)The fractal dimension decreases as particle size increases. The fractal
dimension for the mixture of two size glass-beads is more influenced by the size
of small particle.

These results indicates the contribution of gravity.
For the simulations:

(4)Water path invasion model can make the water path of similar fractal
dimension to that of experiments if it is supposed that the relatively small pore
plays no significant role for actual water path formation.

(5)The model can also simulate the effect of pore size on the dimensions.
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APPENDIX-NOTATION

The following symbols are used in this paper:

=z
~
()
~

< € 0 ® T @ © <X 2 0

diameter of link;

constant of water retention curve;

particle diameter;

fractal dimension of water pathj;

contribution index of capillary force to water flow;
contribution index of gravity to water flow;
contribution coefficient of capillary force to possible flow rate, q;
contribution coefficient of gravity to possible flow rate, q;
gravitational acceleration;

difference in hydraulic head between both ends of link;
hydraulic conductivity of a saturated medium;

length of link;

size of box used for box-counting method;

pore number in one line which was used by simulation;
number of L-size boxes which cover the water path;
possible flow rate through link;

contact angle;

surface tension;

unsaturated water content;

saturated water content;

viscositys

3.14159....3

density;

capillary potential; and

air entry potential, respectively.
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