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SYNOPSIS

An efficient and accurate numerical model for solving the two-dimensional
Richards’ equation in the mixed form is formulated. The model consists of a
finite-difference algorithm coupled with a Newton-Raphson linearization algorithm.
The numerical scheme is capable of accurately incorporating boundary conditions of
all types in a mass-conservative form. Included in the formulation are simple,
yet effective algorithms for handling problems associated with the presence of
seepage faces and for updating nodal pressure heads during nonlinear iterations.:
Four test examples are presented to demonstrate the performance of the model. The
examples illustrate the improved accuracy of the present solutions compared to the
corresponding pressure head-based solutions and the superiority of the present
linearization algorithm over existing algorithms for handling nonlinearities of
the problems.

INTRODUCTION

Nost groundwater is located in the saturated zone, however, it is the unsatu-
rated zone through which water recharges the saturated zone. In typical flow
situations, large variations in pressure head and/or soil constitutive relation-
ships render Richards’ equation, which governs flows in the unsaturated zone,
severely nonlinear. Consequently, any or all of such associated numerical diffi-
culties as iterative convergence problems, numerical oscillations, and large mass
balance errors often arise.

Common numerical models to Richards’ equation have been developed based on
the pressure head-based form and moisture content-based form. Pressure head-based
models are applicable to flows in saturated-unsaturated zones and layered zones,
but often incur large mass balance errors (Celia et al. (2), Hills et al. (6)).

On the other hand, moisture content-based models perfectly conserve mass within
the flow domain, but are not applicable to flows in saturated zones, and not
directly applicable to flows in layered zones due to discontinuities in moisture
content-profiles at the interfaces of layers.

Allen and Murphy (1) pointed out that numerical models based on the mixed
form of Richards’ equation can guarantee mass balance while having no limitations
when applied to field problems. Difficulties which arise in pressure head-based
models when attempting to properly evaluate the specific moisture capacity ternm
for conserving mass are naturally circumvented. However, for the finite-element
collocation method introduced by Allen and Murphy (1) it is difficult to incorpo-
rate the Neumann conditions at boundaries since no boundary integral arises in the
formulation. In addition, the slow convergence rate of the Newton-like iteration
was also reported. Despite the drawbacks mentioned, Allen and Murphy (1) provided
relevant arguments for asserting the advantages of numerical models based on the
mixed form of Richards’ equation. ,

The improved numerical behavior of a mixed-based model was later demonstrated
in Celia et al. (2). The one-dimensional Richards’ equation in the mixed form as



well as in the pressure head-based form was solved using the finite-difference and
linear finite-element methods coupled with the modified Picard iteration. The
mixed-based solution was shown not only to conserve mass but also to be insensi-
tive to time step size.

In what follows, a numerical model for solving the two-dimensional Richards’
equation in the mixed form is formulated. The equation is discretized using the
finite-difference method. The Newton-Raphson iteration is adopted to linearize
the resulting nonlinear equation. Accurate incorporation of boundary conditions
in a mass-conservative form is discussed. An algorithm for handling seepage face
problems, where location of the exit point is also part of the solution, is
presented. Included in the formulation is a simple, yet effective algorithm for
nonlinear updating nodal pressure heads. The efficiency and accuracy of the
present model are tested against existing solutions through four examples. The
model is developed for unsaturated flows, however, its application to variably
saturated flows is straightforward.

GOVERNING EQUATION

The two-dimensional continuity equation for an infinitesimal element of a
porous medium, without sources and sinks within the flow domain, can be written as

86/0t + OV/T%x =0 (1)

where & = (volumetric) moisture content; x« = spatial coordinate (k = 1, 2): V. =
Darcy velocity or specific flux; and t = elapsed time. Herein, the repeated index
in any product of terms indicates the summation over its possible range of values
(i.e. 1 and 2), unless otherwise stated.

Implicit in Eq. (1) are the assumptions: (1) the compressibilities of medium
and water are negligible; (2) the porosity and water density are constant: and (3)
the air phase is stagnant and at atmospheric pressure.

The Darcy velocity for flows in a homogeneous isotropic medium can be expre-
ssed by

Vk-‘-“K(aw/an”Ek) (2)

where ¥ = pressure head; K = hydraulic conductivity: and e« = unit vector in the
Xz direction which is oriented positively downwards.

Substituting Eq. (2) into Eq. (1) leads to the Richards’ equation in the
mixed form;

ae/at'a“((aw/a)(xf e)]/8x =0 (3)

In Egs. (2) and (3) K and & are related to % by nonlinear functions (i.e. soil
constitute relationships), which depend on the type of soil. The degree of non-
linearity of the problem depends on the extent of variations in values of X and/or
€ over the possible range of % within the flow domain. For highly nonlinear
problems, a small change in pressure head may result in significant variations in
values of K(% ) and/or 6 (¥).

The initial and boundary conditions may be given by

Y (xe, 1 =0) = ¥o(x) on Q (4)
$(Xk, t > 0) = wb(Xk, t) on I, (5)
Vine = Vn(Xk, t ) 0) on I'"2 (6)

where Q = flow domain; T" = T'; U T'; = boundary of Q; %. = initial pressure
head prescribed on the flow domain; % . = pressure head prescribed on the Dirich-
let boundary segment T :; V. = prescribed veloecity normal to the Neumann boundary
segment I'z; and n« = outward unit vector normal to the boundary segment T" .. The



sign convention for boundary flux is positive for mass withdrawal from and nega-
tive for mass injection into the flow domain.

FINITE-DIFFERENCE FORMULATION

Assume that the flow domain which has one unit width normal to the plane of
flows is divided into a number of small rectangular blocks, and nodes are placed
at the centers of blocks. Hereafter, the coordinate x: is replaced by x, and X2
by z. The finite-difference approximation to Eq. (1) for a typical block (i,Jj)
indicated in Fig. 1 can be written as .

(8, ;° -0, ;°)/At + (Vxn""VI‘)/AX + (va‘“le')‘/AZ =0 (7)
where n = previous time level; n+l = current time 0 i K
level; and * = superscript used to denote time
averaged values; € :.; = moisture content at the i-1 i i1
block (l,.}), Vx', Vlz*, VI!I*, Viv* = time-
averaged velocities normal to the interblocks I, 1 - .
11, III, IV, respectively; %, z = Cartesian coor- I
dinates; Ax, Az = nodal spacings in the x, z
directions, respectively; and At = time step §
size.

The time-averaged value for an arbitrary

velocity can be determined by 3t

V' = oV + (1 - w)V" (8) 2

where w = time-weighting factor (w = 0, 0.5,
and 1 correspond to the explicit, Crank-Nicolson, Fig.l Finite-difference grid
and fully implicit schemes, respectively).

" The discretized form of a typical velocity Viv (Fig. 1) at any instant is

Viv = = Kiv [{(&i.5¢1 - ¥i.5) - Azl/Az (9)
where K;v = hydraulic conductivity evaluated at the interblock IV between the two
blocks (i,j) and (i,j+1). The discretized forms of the velocities Vi, Vi:, and
Vir: can be derived in a similar way.
With the discretization procedure just described, Eq. (7) can be rewritten as
Q)At/AXz[' K111D+1(¢i+1.5n+1 - wi.5n+l)
+ Rt 5T - a5t
t wAL/AZZ- Kivrt (@, 5"t - Y st - Az)
R mt (g, s - L sttt - Az)]
O 5t - @ 57+ (1= w)AL/AR [Vt - V7]
+ (1 - w)At/AZ [V:vn - V:xn] =0 (10)

There exist various weighting means of estimating the interblock hydraulic
conductivity Kiv (see e.g. Cooley (3), Haverkamp and Vauclin (4), Narasimhan and
Witherspoon (12)). Among them the geometric mean, i.e.

Kiv = [K(zbi‘j)x(wi.jfl)]l/z (11)
is the best estimate for Kiv becausé of little weighting errors incurred as nodal

spacing changes (Haverkamp and Vauclin (4)). However, owing to the occurrence of
the product K(# ;. ;)K(% ;. +1), the mean of the two hydraulic conductivities tends
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to be strongly weighted toward the lower one. For many problems of infiltration
into initially dry soils the water can not drain downward. This results in a non-
physical buildup of water pressure at the ground surface. Consequently, the ite-
ration fails to converge to a solution. In this study, the interblock hydraulic
conductivity is estimated by the arithmetic mean;

Kiv = 0.5[K(¢0,. ) + K(eos. 5+1)] (12)

This results in a numerical model which is applicable to all flow problems.

Since @°*' and K"*' are nonlinear functions of ¥ °*', a proper linearization
with or without iteration must be introduced into Eq. (10). The Newton-Raphson
iteration is often recommended for highly nonlinear problems, for which the Picard
iteration may fail to converge or provide low convergence rates (Huyakorn et al.
(9), Kaluarachchi and Parker (10), Paniconi et al. (13)). Furthermore, Paniconi
et al. (13) found that the Newton-Raphson iteration is more robust and less sensi-
tive to nonlinearities and initial solution estimates than the Picard iteration.
The advantages of the Newton-Raphson iteration lie in the enhanced convergence
rate and the simplicity of the algorithm for updating nodal pressure heads.

Let the left-hand side of Eq. (10) denote a function R, ;°**. Application of
the Newton-Raphson iteration involves expanding Eq. (10) about the rth iteration
solution *°*' * in a Taylor series which is truncated after first derivatives.
This procedure results in

Re 5207 4+ (R, 5" "/ bn)Bt%Yn =0 (13)
where r = previous iteration level; r+l = current iteration level; % "** © = pres-
sure head after the rth iteration; and ¢ = ot r*1 - =t r = jterative
increment, i.e. change in pressure head between two iterations. In Eq. (13) the
index m indicates the summation over five nodes: (i,j), (i-1,j), (i+1,3), (i,j-1),
and (i,j+1). The term R; ;"' ¥ is often referred to as the residual since it
measures the amount by which the solution at the rth iteration fails to satisfy
the nonlinear equation (Eq. 10).
The linearization procedure just described enables us to recast Eq. (10) into
a simple form as
B s @ pir, s +Fi 5" 0 "8 hier. 5 +6:. 50780, 51
P TS s + D TS Yy 4 Ry 4T = 0 (14)
where
Ei‘an‘l.r - Q)At/sz["Kxﬂ+1'r
L T € I A RO LA V3 (15a)
Fo ogottr = WAL/ AX?[-Kiy T
- D£+1.Jn+1'r(wiﬂd,Jn+1'r — ¢1.3n+1.r)/21 (15b)
G: """ = wAt/AzZ?[-K; 7
+ Di.J—1n+1' r(wi._'xrki.r__wi,J_1n+1.r,Az)/2] (150)
Hi'3n+1,r - wAt/AZz[*Klv”l”

=Dy ser® (Y gt =g R T A ) /2] (15d)

n+l, r o at+i. r
Ii.j —Ci‘j

+ WAL/AXPK "t Di,jni’l'r(kwi,jui‘l"’ = Yu-r "t n) /2]



WAL/ AXP[Krr"t T = Dy st (g, 5P T = ) /2]
+ wAL/AZ?[K T T 4 Dy Rt (0, RN - gy st T - Az) /2]

+ wAt/AZz[vam“" - Dy, ot (?/)s.5+’1“+1'r -yttt - Az)/2]
~ ‘ (15¢)

Ri'jn‘i-l.r - ax'jn“)-l,r - ei'.’n
+ wAL/AX(Vi 2 tr = vyotier) 4 (1 - w)AL/ AVt - Vi®)

WAL/ AzZ(Viy™ 7 = ¥ ")+ (1 - o)A/ AZ(Vie® - V™)
(15€)

where C = d6/dy¥ = specific moisture capacity; and D = dK/dy = tangent slope of
the k-3 curve. The specific moisture capacity C in Eq. (15e) is computed analy-
tically from the soil constitutive function 6 (%), which is consistent with the
Taylor series expansion (Eq. 13). If all terms containing the coefficients Di.;
in Egs. (15a-e) are neglected, the iteration is referred to as the Newton-like
iteration by Allen and Murphy (1) or the modified Picard iteration by Celia et al.
(2). Such an iteration provides a linearization of first-order accuracy.

Writing Eq. (14) for all (i,j) leads to a system of linearized equations as

APt TS gp = - RRTLoT (16)

where A®*' 7 = matrix of coefficients; & ¥ = unknown vector; and R*** * = residu-
al vector. The matrix equation (Eq. 16) is solved using a direct solver decompo-
sition taking into account the banded feature of the matrix A®*' T,

For convergence in iteration, it is required that

| Ry 5ot | ( & for all (i,§) : (17

where & = water content convergence tolerance. Because a sufficiently small
value of & (say, 107°) is usually imposed, Eq. (17) (also refer to Eq. 15f)
practically represents the principle of mass conservation for an arbitrary block
(i,j). The mixed-based solution, therefore, conserves mass balance regardless of
time step size and nodal spacings. These advantages are very significant for
field-scale simulations, where the use of large nodal spacings is often required
because of limitations in computer storage capacity, and the use of large time
step size can greatly reduce computer time.

SOLUTION STRATEGY

Boundary Treatmeni
a. Fluy-Type Boundary Condiiion

In the proposed scheme, the grid is arranged in such a manner thét boundaries
of the flow domain fall on interblocks. Therefore, flux (or velocity)-type boun-
dary conditions can be naturally incorporated into Eq. (7).
b. Pressure Head-Type Boundary Condition

Without loss of generality, one can consider a one-dimensional problem in the
x direction. Assume that ¥ . is the pressure head prescribed at x = 0 (Fig. 2).
With the aid of the quadratic interpolation using pressure heads at ¥ = 0, Ax/2,
and 3A x/2, the pressure-head gradient at x = 0 is determined by

BW/BX | «m0 = (- 810u/3 + 381 - ¥1/3)/Ax (18)



From Eg. (2), one obtains the velocity (or flux) at x = 0 as

Val x=0 = - K(u)[(- 8%:/3 + 381 - ¥2/3)/A% - &1] (19)

The advantages of the treatment described above are:

(a) Assume that at some boundary segment the pressure head prescribed is const-
ant with time. However, the moisture contents at blocks adjacent to that boundary
segment are not necessarily constant. Eq.
(19) enables us to account for the varia-

tion with time of the moisture contents at v | [- I- i S ~I -] -j x
the boundary blocks in the approximation. glven L2 3

In contrast, for other alternatives where

nodes fall on boundaries, the moisture con- Fig. 2 Definition sketch used
tents at the boundary blocks always assume for treatment of pressure head-
constant values. type boundary condition

(b) For flow situations where seepage faces
are present, Dirichlet and Neumann conditions along the potential seepage faces
can be easily implemented. .

Treatment of Seepage Fac'ev

Under transient conditions, the length of the seepage face varies with time
in such a manner that the location of the exit point E (Fig. 3) is not known a
priori but must be computed as part of the solution. Along any portion of the
potential seepage face, two conditions must be simultaneously satisfied as

(a) If a zero-normal flux (V.: = 0) is imposed at the boundary, the computed
pressure head ®.: at that boundary must be negative. For short, we term this
boundary as type-1 boundary.

(b) If a zero-pressure head (¥ ,: = 0) is imposed at the boundary, the computed
normal flux V.. at that boundary must be positive. This boundary is termed as
type-2 boundary.

Without loss of generality, assume that
the potential seepage face is located at the o X
right face of the flow domain (Fig. 3). TFor
the present purpose, the location of the |
boundary segment in the z direction is im-
material. Therefore, the index used to S I B R B B o
denote the location of the row being consi- A
dered is dropped. To incorporate the bound-
ary conditions described above the following ¥ N
iteration algorithm is proposed: z

(a) At the beginning of each time step, the
boundary-condition type for each boundary Fig. 3 Definition sketch used for
block is assumed to be identical to that treatment of seepage face
obtained at the end of the previous time level.
(b) At the end of each iteration, the following conditions will be checked for
every boundary block:
- For type-1 boundary, if ©.s:r = (9%~ - ©¥n-1)/8 is positive, the boundary-
condition type is switched to type-2, where N = number of blocks in the row
being considered. X
- For type-2 boundary, if Ver = - Ko~ 3% + ¥ n-1/3 )/Ax is negative, the
boundary-condition type is switched to type-1, where K. = saturated hydrau-
lic conductivity.

The expressions for @ .: and V.. have been derived with the aid of quadratic
interpolations. -If none of the boundary-condition types needs to be altered and
the convergence condition for the whole flow domain (to be detailed below) is
satisfied at certain iteration, the 1terat10n is then terminated. Otherwise, new
iteration is required.

The (free) water surface, where the pressure head equals zero, has no direct
relation with the calculation algorithm.  For graphically illustrating purposes,




the position of the water surface is determined by simple linear interpolations
from the nodal pressure heads having opposite signs at two successive blocks in
the vertical direction (Fig. 3). The height of the seepage face, i.e. the posi-
tion of the exit point E, is computed by a quadratic extrapolation from the
heights of the water surface at the first three interior columns from the poten-
tial seepage face.

Updating Nodal Pressure Heads

To advance the approximate solution from the time level n to the next level
(n+1) the following algorithm is proposed:
Step 1: At the beginning of each time step (r = 0), replace (n+l) by n. Estimate
the initial nodal pressure heads by

lﬁﬁ‘jnﬂ'(’:?ﬁi.j"*' (L. ;" - i ") (20)

where #» = empirical function.
Step 2: Compute the residual vector R*** -,
Step 3: If | Ry ;""" | ( & for all (i,j), accept ;. ;"** 7 as the converged
value, then go to step 1. Otherwise, go to step 4.
Step 4: Compute the matrix of coefficients A®*' 7, then solve Eq. (16) for & ¥.
Step 5: Update the nodal pressure heads by :

wivjnfl.r-i'l = wi'jné-l,r + 6wi,j (21)

Then go to step 2.

The algorithm for nonlinear updating nodal pressure heads (Eg. 21) is very
simple, yet effective, because it results from the second-order accurate lineari-
zation (Eq. 13).

If the iterative increment & 2. ; is used for the convergence check, step 3
is omitted. Instead, another step (step 4a) is inserted between step 4 and step 5
as follows: .

Step 4a: If | 6¥:. 5 | {( &, for all (i,j), accept ¥, ;°"* * as the converged
value, then go to step 1. Otherwise, go to step 5. €, is the pressure
head convergence tolerance.

Either & and/or & . can be used as a convergence criterion. The use of &£
is preferred because & provides information, prior to obtaining the solution,
about the mass balance error in the numerical results regardless of time step size
and nodal spacings to be used in the simulation.

At the beginning of each time step, the initial pressure head for each node
in the flow domain is estimated by a linear extrapolation from the two most recent
calculated values (Eq. 20), in which the function # is empirically defined by

7 o= x[l + ln(Atn+1/Atn)} (22)

where At, = previous time step size; At.+: = current time step size; x = 0.6 =
an empirical coefficient; and In = natural logarithm.

The role that the coefficient x plays in the convergence rate is next clari-
fied. Without loss of generality, assume that At is constant. At the start of
each time step, if we simply assign ¥ to % *"** ° by setting ¥ = 0 in Eq. (22),
Eq. (15f) becomes ,

i s®* 20 = At[(Viei® - Vi) /A% + (Vie® - Vi:°)/Az] (23)

which, in general, differs from zero. Therefore, the above estimation is not
preferable. We also do not expect that the change in pressure head at each node
between two time levels is always of the same magnitude during simulation, i.e.

x = 1, These reasons suggest the “optimal® value of x to be roughly 0.6. Ea.
(22) with x = 0.6 greatly enhances the convergence rate during iteration as shown
in an earlier study (Hong et al. (7)).



Time-Stepping Scheme

For highly nonlinear problems, the pressure head in the flow domain varies
rapidly in the early stages of the solution process, that often results in conver-
gence problems. To circumvent this, it is desirable to use small time step sizes
during early time of simulations, thereafter time step sizes are gradually increa-
sed. Herein we employ the following time stepping scheme: the computation is
started with an initial time step size Ato, which is arbitrarily chosen provided
the convergence can be achieved. For subsequent time steps, time step sizes are
increased in the following manner: .

Atnj—l Atn ‘ if In g Imax (243)

Atosr = §Atn if In < Imnx (24b)

where I, = number of iterations required for the previous time step. In our com-
putations, & = 1.2 and In.x = 8 are imposed. The value of & wusually ranges from
1.04 to 1.4, and the value of In.x from 5 to 12 (Huyakorn et al. (8), Kaluarachchi
and Parker (10)). The time step sizes are also set smaller than a prescribed
maximum value Atn.x. The determination of the value of Atn.x depends on the
intermediate information needed from the solution. In addition, Atnax should not
be too large to degrade the accuracy of the solution.

Mass-Balance Check

Various errors may occur in the course of obtaining a numerical solution.
Possible sources of errors are: (1) discretization errors; (2) inaccuracy in
incorporating boundary conditions, including failure to reproduce the geometric
irregularities of the flow domain; (3) imposing relatively large value of the
convergence tolerance; and (4) programming errors. Thus, it is necessary to have
a means of verifying the results. The mass balance check provides an independent
means to assess accuracy of the numerical solution and should be part of every
program. However, it should be noted that the mass balance check provides a nece-
ssary but not sufficient condition for certifying the accuracy of the solution.
The (relative) mass balance error is defined by the ratio | Wa - Wr | /Wa, where
Wr = net cumulative flux into the flow domain through its boundary; and ¥Wa =
change in amount of water within the flow domain.

ILLUSTRATIVE EXAMPLES

Four examples will be presented to examine relative performance of the pre-
sent model and existing models. The computational parameters (time step size,
nodal spacings, convergence tolerance, and time-weighting factor) were the same as
those used by the referred authors, unless otherwise stated. For comparison pur-
poses, both the Newton-Raphson and modified Picard iterations were used in the
computations. The number of time steps for each simulation and the average number
of iterations per each time step are presented in Table 1.

Table 1 Number of time steps and number of iterations per time
step for the Newton-Raphson and modified Picard iterations

Newton-Raphson iteration | Modified Picard iteration
Total
simulation | Number of Iterations | Number of | Iterations
time time steps | per time step| time steps | per time step
Ex. 1| 0.8 hrs 55 2.82 93 T.17
Ex. 2| 3.05 days 31 6.8 31 54.
Ex. 3{ 2. hrs 37 1.62 37 1.62
Ex. 4| 8. hrs 133 2.53 142 5.30




Example 1: One- and Quasi-Two-Dimensional Infiliration

This problem concerns a one-dimensional infiltration into a uniform sand
column, for which the quasi-analytical solution by Philip (14) as well as the one-
step @ -based numerical solution by Haverkamp et al. (5) are available. This
example was selected to verify the accuracy of the proposed scheme. The computa-
tional parameters are given in Table 2. Time step sizes were generated by the
time-stepping scheme. Note that we implemented the free-drainage condition at the
lower boundary, which could be more adequate than the condition ¥ = ¥o, as also
asserted by McCord (11).

Calculated moisture content profiles at times t = Table 2 Computational
0.1, 0.2, and 0.8 hr are presented in Fig. 4. Also parameters used in
included in Fig. 4 are the moisture content profiles the Example 1
obtained by Philip and by Haverkamp et al. (both were
taken from Table 3 in Haverkamp et al. (5)). The agree- A
ment among the three results is excellent. It may be K=K ————
noted that the time step sizes in our computation were Av 1wl
increased gradually from 10 sec to 60 sec, while a much B(B. - &.)
smaller time step size of 5 sec was used in Haverkamp =06+ ———
et al.’s computation (5). B+ |o]"

To further test the performance of the proposed K. = 34 ca/hr
model, we again solved the flow problem in the two- A= 1.175%10°, m = 4.74
dimensional domain (20 cm, 100 cm). The initial and 6., =0.287, 8. = 0.075
boundary conditions were uniformly distributed in the B = 1.611x10%, n = 3.96
x direction. The zero-flux conditions were imposed 0(z, t=0)=0.1
along the two vertical boundaries of the flow domain. ggﬁ(fgo t > 0)=-20.73 cn

. co,t > 0)/8z =10

The computational parameters were those used for the Length of column = 100 cm
one-dimensional computation except that the nodal Az =1cm
spacings were Ax = Az = 2 cm. Since all calculated Ato = 105, Atnax = 60 5
results are uniformly distributed in the x direction, Tolerance & = 1.x107% 1
the moisture content profiles in the x direction will Time-weighting factor =

not be shown.

Moisture content Moisture content
é),O 0.1 0.2 0.3 8.0 0.1 0.2 0.3
L M // - r 0.1 hr 4
20 2 — 20 .
. SR - 57 br
40 40
z {cm) [ z (om) |
60 60
L 0.8 §£‘r4r4r‘( ] 0.8 hr _,ff‘//
80 W O Quasi-analytical 80 r,/:—dimensional
L & Haverkamp et al. L
———Calculated . ¢ .\ . -t Q7T 2-dimensional
100 - - 100 i i
Fig. 4 Comparison of moisture content Fig. 5 Computed moisture content
profiles profiles by the one and fwo-

dimensional simulations

Fig. 5 presents the moisture content profiles at times t = 0.1, 0.2, and 0.8
hr obtained by our one- and two-dimensional computations. The two results are
virtually indistinguishable even though a coarse grid was employed in the two-
dimensional computation. It appears that the mixed-based model conserves mass
within the flow domain, which, in turn, could substantially reduces the spatial-
discretization errors associated with large nodal spacings. The infiltration rate
and cumulative infiltration per unit area obtained by our one- and two-dimensional
computations and by Haverkamp et al. (5) are presented in Figs. 6a and 6b, respec-
tively. The agreement is again excellent. Philip’s solution was not included
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Fig. 6 Comparison of (a) infiltration rate (cm®/hr/cm?)
and (b) cumulative infiltration (cm®/cm?)

because it diverges at time t 2 0.3 hr (for further information see Haverkamp et

al. (5)). The mass balance errors in our solutions are less than 2x10°°.
Example 2: Quasi-Two-Dimensional Infilitration

This problem was previously examined by Cooley (3), who employed a subdomain
finite-element method to solve the ¥ -based Richards’ equation. Nonlinear soil
properties were treated by a Newton-like iteration. To avoid convergence problems
due to severe oscillations in iterative increments of pressure heads Cooley (3)
proposed an empirical nonlinear updating relaxation algorithm which accounts for
the maximum convergence error for the entire computational grid. This algorithm
was later adopted by Huyakorn et al. (8), Kaluarachchi and Parker (10).

The flow problem is in fact a one-dimensional case, however, 2 blocks in the
X direction were used in our computation, which is consistent with Cooley’s compu-
tation (3). The zero-flux conditions were imposed along the two vertical bounda-
ries of the flow domain. The computational parameters are given in Table 3.

Fig. 7 presents the profiles of water saturation (i.e., moisture content
normalized by the saturated moisture content) obtained by our computation and by
Cooley (3). The profile at time t = 1.2 hr obtained by Cooley (3) lags slightly
behind the present profile, but the deviation

is quite considerable at time t = 3.05 hr. As Table 3 Computational
time proceeds the profiles obtained by Cooley parameters used in
(3) exhibit an increasing cumulative-mass loss, the Example 2
Water saturation K = L@/l ¢ =-54cm
(())‘5 0.6 0.7 0.8 0.9 1.0 6=6.4/1%1)" ¥ < 5.4
& Cooley
——Calculated y K = K =3.125 eo/hr ¥ 2 5.4 cn

10 ’

[ 1.2 hr mﬁﬁgﬁéj 6 =6.=0.52 ¥ 254w
20 %g’ﬁ;hr A=54. m=2

z (om) ,_,.._-»——————-*““'"’I"T hr vz = 0) -

.5
30 Y0 cem t>0)=-54
- (49 en, t > 0)/8z=0
Length of column = 49 cn

2
cn
cn

407 WA,~,»~J-fr6§T;V ‘ Az=Ax=1cn
At = 0.1 hr = constant
50 " Tolerance &, = 0.001 cm

Time-weighting factor w =1

Fig. 7 Comparison of water saturation profiles
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probably due to large mass balance errors associated with pressure head-based
models.

It may be noted that once the front has been established, thereafter it has
moved with a theoretical velocity corresponding to a hydraulic gradient of unity.
The theoretical front velocity is vi = K./(@, - @) = 12.755 cm/hr, where K, =
saturated hydraulic conductivity; 8. = saturated moisture content; and 8. =
initial moisture content. If we adopt Cooley’s assumption (3) that the front has
been established at time t = 1.2 hr, the front velocity given by Cooley (3) is
12.432 cm/hr, which is 2.53 % lower than v:. The front velocity obtained by our
computation is 23.71/(3.05 - 1.2) = 12.816 cm/hr, which is 0.48 % higher than v:.

For reference purposes, the infiltration rate and cumulative infiltration per
unit area obtained by our computation are presented in Fig. 8 and Table 4. From

Table 4 Computed infiltration rate

12 12 N
—o—Infiltration rate “ (I) and cumulative infiltration (V)
Fi —e—Cumulative infiltration 3
8 ‘//,r’// § Time 1 y Time I v
5 8 g = (hr) {em/hr) (cm) (hr) [(em/hr) (cm)
g - g
=4k 5 0 0. 0. 1.6 | 3.126| 5.6%4
8 v 0.1 | 7.687 1 0.769 1.7 |3.125| 6.006
504 " 4 2 0.2 14.2767 1.196 1.8 13.125] 6.318
b OGO OO O G m o 3 0.3 |3.659 1.562 1.9 1 3.125| 6.631
g0 g 0.4 |3.412 1.903 2.0 |3.125] 6.944
a 0.5 [3.289| 2.232 2.1 |3.125| 7.256
0 i . . 0 0.6 |3.221| 2.554 2.2 |3.125| T7.569
0 L (hey G 3 0.7 |3.182| 2.872 | 2.3 |3.125] 7.881
‘ 0.8 {3.159| 3.188 2.4 13.125) 8.19%4
Fig. 8 Computed infiltration rate 0.3 |3.148] .30 | 2.8 30000 B8
*/hr/em?) and cumulative 1.0} 3.138 ) 3.817 : : .
(em’/hr/cn 1.1 13.133] 4.130 | 2.7 |3.125| 9.131
infiltration (cm®/cm?) 1.2 13.13 | 4.443 | 2.8 |3.125| 9.444
1.3 |3.128| 4.756 2.9 |3.125] 9.756
Table 4, we notice that the shape of the T R 335 gggg }gg%
front has actually been established at : : . : . .

time t = 1.7 hr. Therefore, the front .
velocity by our computation turns to be 17.31/(3.05 - 1.7) = 12.822 ca/hr, which
is 0.52 % higher than v:. Owing to the discretization errors inherent in the
numerical solution, we were not able to obtain the exact front velocity. This
comparison, however, demonstrates that the proposed model yields a solution which
is more accurate than the ¥ -based solution by Cooley (3). The mass balance error
in our solution is less than 3x107°¢.

It may be noted our model required an average of 6.8 iterations for each time
step, while Cooley’s model (3) required at least 53 iterations for each time step.

Example 3: Two-Dimensional Drainage from a Square Block

This problem was previously analyzed by Rubin Table 5 Computational
(15), who used an Alternating Direction Implicit parameters used in
(ADI) finite-difference method to solve the ¥- the Example 3
based Richards’ equation. The example was selected
to demonstrate the performance of the proposed K=K A
nodel for a transient flow sitwation involving a The e
significant variation in the water table position.

Geometry of the flow domain (30 cm, 30 cm), & = 0.6009 - 0.05708 In(10.0 - ¥)
initial and boundary conditions are depicted in + 0.0594/cosh(0.747 + 0.0415%)

Fig. 9. The domain was initially in a static equi- 0.0132 exp(0.4055 - 0.20%)
librium. The water level at the right face of the K, = 1.1575%10-° A= 4
domain was then lowered suddenly, from 30 cm to 10 o= L'Azi &x 3%8&3 -

cm, and maintained at 10 cm thereafter. The compu- Ato = 108, Atnax = 360 s
tational parameters are given in Table 5. Time Tolerance & = 1.x107°
step sizes were generated by the time-stepping Time-weighting factor w =1

scheme. Computational parameters were not reported
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30cm
[ =l
r Va= [ X
\ V.20, 0525z,
20cm
V=0 H=9¢ -z ¥=0, z,S2520cn
=0cnatt=290
10cn |H=-20cm, 20cnszS30cn
V=0

Fig. 9 Problem definition for Example 3

in Rubin (15).

Figs. 10a and 10b present the water table position at t = 2 hr and the time-
dependent water table crest (at x = 0), respectively, obtained by our computation
and by Rubin (15). The agreement between the two solutions is excellent. The
distribution of outflux from the seepage face at t = 2 hr obtained by the two
nuperical models is presented in Fig. 11. The two results are again in good
agreement. It may be noticed that the proposed model is of second-order accuracy
in space, the computed flux (or Darcy velocity), therefore, varies linearly bet-
ween centers of boundaries of blocks. From this observation, the outflux at the
water table (z = 20 cm) was computed via a linear extrapolation from the values of

0 10 ¥ (em) g 30 0 1 t (hr) 2
0 0

10‘M% -y 5\\A \
- \' z (om) T —

10

& Rubin 1| & Rubin
Caleoulated Caloulated
4 4 15

(a) (b)

30

Fig. 10 Comparison of (a) water table position at t = 2 hr
and (b) time-dependent water table crest (x = 0)

the outflux at the two blocks adjacent to the water table. For completeness, the
computed time-dependent outflow rate and cumulative outflow are plotted in Fig.
12, and the distribution of the hydraulic head within the flow domain at time t =
2 hr issshown in Fig. 13. The mass balance error in our solution is less than
0.2x107°, ;

1t may be noted from Table 1 that the Newton-Raphson iteration and the modi-
fied Picard iteration required identical the number of time steps and number of
iterations per time step. This fact could be explained as follows: the Newton-
Raphson iteration is mainly implemented to cope with the high nonlinearities of
soil properties; the more nonlinear the soil properties are, the more efficient
the Newton-Raphson iteration is. In this simulation, the flow domain was fully
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Outflux
0 5 10 15 20
0 3 3
4 Rubin —eo—Total outflow rate
Calculated ° —s—Cumulative outflow N
5 K]
10 2 2 W
. ~w-hﬁ“§ 1
~ o
‘ (cm) L—\\ ‘:):O'; MNM E‘:
20 > # =1 M‘b‘l s
L / é // g
30 : : 0
OO 1 t (hr) 2
Fig. 11 Comparison of distribution Fig. 12 Computed total outflow rate
of outflux at t = 2 hr and cumulative outflow
saturated at ¢ = 0, while the minimum % (cm)
value of pressure head at the end of 09 10 20 30
the simulation was approximately - 8.5 s r—_,/J”/
cm (it can be observed from Fig. 13). ——~——-~”’Wji§;E§%§§£B~—””‘_‘—”_
For such a very mildly nonlinear probl- 10 =9 e

em, it is not expected that the Newton-

-10
Raphson iteration is computationally z (cm)—*—'“”’f::’/,//”’/”’
more efficient than the modified Picard _*‘_”,,/”12 e ///’//’

iteration. This example demonstrates 20

77
that the proposed model performed well 3 /// -9
for the situation where the flows simul- 4 fs _fg-fh7 8
taneously occur in the unsaturated and 30 f

saturated zones involving a drastic
change in the water table position. Fig. 13 Computed distribution of
hydraulic head at t = 2 hr

Example 4: Two-Dimensional Water Table BRecharge

This problem was taken from an experimental and numerical study by Vauclin et
al. (16), in which the ¥ -based Richards’ equation was solved using an ADI finite-
difference method. It may be noticed that the pressure head ¥ and moisture con-
tent & at the ground surface which were obtained experimentally do not satisfy
the soil constitutive relationship & (¥ ) proposed
by Vauclin et al. (16). Due to such an inconsistency, Table 6 Computational
no quantitative comparison will be made in this study. parameters used in
The problem was selected to examine the response of a the Example 4
water table to infiltration from the soil surface.

Geometry of the flow domain (200 cm, 300 cm), A
initial and boundary conditions are depicted in Fig. K=K
14, The soil slab was initially in a static equili- Avlwls
brium. A constant flux of qo = 14.8 cm*/hr/cn? was B
then applied over a width of 50 em at the ground 8=8, —
surface. At the right face of the flow domain, the B+ |@ln
water level in the ditch was kept at a constant depth

of 65 cm. The computational parameters are given in ﬁ{ffg;?gr =5
Table 6. Time step sizes were generated by the time- 9::’&§ PmE o
stepping scheme with Ato = 10 sec and Atnax = 240 B=4.x10% n=2.9

sec. It may be noted that the ADI schemes are uncon- Az = Ax =10 cm
ditionally stable for linear problems, but this is Ato = 10's, Ataax = 240 s

Tolerance €, = 0.01 co

not the case for nonlinear problems. As such, a very Tine-veighting fastor @ = 1

small time step size of 10 sec was used by Vauclin et
al. (16).
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V.=qo= 14.8 cn®/hr/cn?
50;@
\L \L \L \[/ ) 5 V.=0 bt

Vu=0, 05252,
CH=9 -z 135cm
=-135cnatt=0
V=0
‘Water table at t = 0 ¥=0, z.S25135cn

- s

H=~135cm, 135cnSz<200cm
65cm

Fig. 14 Problem definition for Example 4

Figure 15 shows the water table position at times t = 2, 3, 4, and 8 hr
obtained by our computation and by Vauclin et al. (16). The agreement between the
two solutions is satisfactory. The cumulative volumes of water leaving and stored
within the soil slab of 5 cm thickness obtained by the two numericdl models are
presented in Fig. 16. The two results are quite different. It seems difficult to
assess the accuracy of the two solutions. However, direct measuring data present-
ed in Fig. 9 in Vauclin et al. (16) shows that the cumulative volumes of water
leaving and stored within the soil slab of 5 cm thickness at time t = 8 hr are
15.18 liter and 15 liter, respectively. Thus, the total cumulative influx comput-
ed by Vauclin et al. (16) is 30.18 liter, which is nearly 2 % different from the
exact value 14.8 cn®/hr/cm? x 50 cm x 5 cm x 8 hr = 29.6 liter. The mass balance
error in Vauclin et al.’s solution (16) could be attributed to the poor approxima-
tion of the specific moisture capacity C (e.g. Allen and Murphy (1), Celia et al.
(2)) and to the ADI procedure as well. Such a solution associated with a large

0 w0 X 1) g4 300
0 20
& Vauolin et al. ‘ & Vauclin et al.
Caloulated Caloulated
50.—. ...................................... 15 - &

100 ek ‘ 10 g
v (on] M%% a v

150 5
B
200 . . : 0 /
0 2 4 t (hr) 6 8
Fig. 15 Comparison of water table Fig. 16 Comparison of cumulative volumes
position (liter) of water leaving (V.) and

stored (V) within the domain
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Fig. 17 Computed moisture content profiles
at x = 5, 55, 105, and 155 cm
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Fig. 18 Computed distribution of hydraulic head
at t = 3, 8, and 24 hr
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mass balance error may not be as accurate as the present solution, in which the
mass balance error is less than 1x107° (i.e. 0.001 %).

For reference purposes the calculated evolutions of m01sture content at x =
5, 55, 105, and 155 cm are presented in Fig. 17. The distributions of the hydrau-
lic head within the flow domain at times t = 3, 8, and 24 hr are shown in Fig. 18.
Fig. 18 shows that the water keeps flowing upward to the right-hand-side upper
corner of the domain. Such a flow continues as long as the hydraulic head at the
lower part is greater than that at the upper one.

CONCLUSIONS

The following major conclusions can be drawn from the present study:

(a) The proposed model, which is developed for the mixed form of Richards’
equation, ensures mass balance in its solution regardless of time step size and
nodal spacings, and has no limitations when applied to field problems. Such a
mass-conservative solution is, undoubtedly, more accurate than the corresponding
i -based solution associated with mass loss.

(b) The Newton-Raphson iteration, when applied to the mixed form of Richards’
equation, provides a convergence rate of second order. Owing to such a highly
accurate linearization scheme, the proposed algorithms for nonlinear updating
nodal pressure heads and for estimating initial nodal pressure heads are simple
and efficient. Neither pressure head-based models, regardless of the iteration,
nor mixed-based models using the modified Picard iteration provides a second-order
accurate linearization. Therefore, these models can not be computationally as
efficient as the present model.

(c) The proposed model is capable of incorporating boundary conditions of all
types, including complex conditions along potential seepage faces, in a mass-
conservative form.
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APPENDIX - NOTATION

The following symbols are used in this paper:

A = matrix of coefficients;
(=d0 /dy¥ = specific moisture capacity;

D= dK/d% = tangent slope of the K-% curve;

ex = unit vector in the xz (or z) direction;

i, = subscripts used to denote location of blocks;

Ia = number of iterations for the time level n

k = subseript used to denote tensor where k = 1, 2;

K = unsaturated hydraulic conductivity;

| ST iv = hydraulic conductivities evaluated at the interblocks I, II, III,
IV, respectively;

Ke = saturated hydraulic conductivity;

n = superscript used to denote time level;

N = outward unit vector normal to the boundary segment I z;

N = pumber of blocks in the x: (or x) direction;

r = superscript used to denote iteration level;

R = residual vector;

t = time;

Vs = theoretical front velacity in Example 2;

Ve = Darcy velocity;

Vo = prescribed Darey velocity normal to the boundary segment T 2;

Ve = Darcy velocity normal to the potential seepage face;

Vi.. .. 1v = velocities normal to the interblocks I, II, III, IV, respectively;

i, Z = Cartesian coordinates;

X1,X2 = Cartesian coordinates;

Wr = net cumulative flux into the flow domain through the boundary T';
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change in total amount of water within the flow domain Q:

boundary of the flow domain;
Dirichlet boundary segment;

Neumann boundary segment;

iterative increment in pressure head;
unknown vector;

time step size;

maximum allowable time step size;
time step size for the time level n;
initial time step size;

nodal spacings in the x, z direction, respectively;
water content convergence tolerance;
pressure head convergence tolerance;
coefficient in Eq. (24b);

empirical function used for updating of nodal pressure heads;

volumetric moisture content;

pressure head;

initial pressure head;

prescribed pressure head on the boundary segment I':;
pressure head on the potential seepage face;
empirical coefficient in the function #;
time-weighting factor;

flow domain; and

superscript used to denote time-averaging.
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