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SYNOPSIS

The intrinsic permeability may be a useful index for determining the
excavation-damaged, loosened zones in fissured and fractured rock mass. Jakubick
and Klein performed a vacuum borehole logging test in dry rock and deduced the
permeability employing methods based on the equations for two—dimensional,
axisymmetric gas flows in an isotropic, homogeneous porous medium. However, the
flow induced by the test is considered quite different from the one assumed in
their data analysis.

Numerical simulations are carried out herein to know how the pressure recovery
in a borehole test section is affected by the extent and degree of the loosened
zone, and what the derived permeabilities represent. In addition, an inverse
analysis is performed to determine the permeabilities from the pressure-recovery
data obtained in the aforementioned simulations.

The results indicate the following: a) the extent of the loosened zone can be
infered from the pressure and the rate of its recovery at the late stage of the
test; Db) the degree of looseness can be estimated from the rate of pressure
recovery at the early stage as well as from the flow rate during the pumping phase;
and c¢) the permeability determined by the inverse analysis seems to represent the
permeability of the vicinity of test section.

INTRODUCTION

Large—scale excavations in a rock mass cause the enlargement of interstices in
the fissured and fractured zones because of the vibrations during excavations and
stress relaxation. As a result, the permeability becomes larger in the excavation-
loosened zone around the cavern compared to deeper zones. Hence, the permeability
can be a measure of the degree and the extent of the loosened zone. Jakubick and
Klein (4) carried out a vacuum borehole logging test to determine the excavation-
damaged zone from the permeability distribution along a borehole. The procedure of
this test follows closely the standard pressure buildup testing procedure used in
the petroleum industry. For the estimation of permeability from the raw data of
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pressure in the test section and the air flow rate, Jakubick and Klein (3) employed
the relationships for two-dimensional axisymmetric air-flow in an isotropic
homogeneous porous medium. The actual flow induced in rocks during the test,
however, is considered quite different from the flow mentioned above. Since the
openings are larger in the loosened zone around the cavern than in deeper zones,
it is expected that the air flowing into the test section is supplied mostly
through the excavation surface. This means that the flow field is three~dimensional
and heterogeneous. Therefore, it is important to know prior to the data analyses
how the pressure-recovery process is affected by the extent of the loosened zone
and the position of test section, and what the evaluated permeabilities represent.
The objective of this numerical study is to clarify the above points. The
simulation is performed employing a Galerkin finite element method and solving the
governing equations for three-dimensional axisymmetric gas—flow.

An inverse analysis is also performed to examine its applicability to the data
analysis. In the inverse analysis, the pressure recoveries obtained in the
simulation are taken as inputs assuming the porous medium to be homogeneous, and
the permeabilities which reproduce the input are determined.

MODELING

Before setting up a model for the simulation, the test performed by Jakubick
and Klein(4) is described in the following. The vacuum permeability measurements
were performed in dry rocks. The boreholes were drilled nearly at right angle to
the excavation surface. They were 6m long and 37.7mm in diameter. Both ends of the
test section were sealed by packers. The test section was 25cm long, although the
length is adjustable from 10 to 50cm by the sealing equipment. Using a vacuum pump,
the air in the test section was evacuated until both pressure and flow conditions
were stabilized. The pump was then shut off to initiate the pressure recovery
process. Throughout the pumping and the recovery phases, the pressure in the test
section was measured together with the ambient pressure and temperature. The air—
flow rate was also monitored during the pumping phase. The permeability
distribution along the borehole was obtained by moving the test section and
performing the measurement repeatedly.

As mentioned above, Jakubick and Klein(3) assumed in the data analy31s that
the flow was a two dimensional, radial flow in a homogeneous formation of infinite
horizontal extent. It is deduced from their assumption that the rock formation
consists of layers perpendicular to the borehole axis each of which is 25em thick
and the flow in a certain layer is independent of
those in other layers. In fact, as shown schemat-
ically in Fig.l, the air flowing into the test
section is considered to enter the interstices of
rock mass mainly through the excavation surface.
Taking these points into account, the following
model is employed.

The density of interstices is assumed to be so
high that the fractured rock is regarded as a
porous medium. Air enters the openings only from
the excavation surface. The flow field is
symmetric with respect to the borehole axis which
is perpendicular to the excavation surface.
Namely, the flow region is a cylinder whose axis
coincides with the borehole axis. One end of the
cylinder corresponds to the excavation surface. The flow region is 7m long and 10m
in diameter. The diameter of the borehole is 4cm. The test section is 25cm long.
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Fig. 1 Schematic flow induced
by a permeability test.

METHOD OF SIMULATION

The continuity equation for axisymmetric seepage flows is

o 19 d -
02 + —== (PG + =—(Pq,) = O (1)
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where t is the time, z and r are the longitudinal and radial coordinates, respec—
tively, p is the density of the air, g, and g, are the apparent velocities in the r-
and z—-directions and ¢ is the porosity.

When Darcy’s law is applicable and the coordinates coincide with the principal
axes of the permeability tensor, the apparent velocities are given by

k, ap ) _ k, dap

" = - (2)
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where p is the air pressure, k, and k, are the intrinsic permeabilities in the r-—
and z-directions and JL is the viscosity of the air.

The equation of state for an ideal gas is applicable to the air with sufficient
accuracy (6) . Thus, p = p/RT where T is the temperature, and R stands for the gas
constant for air. In a special case in which the thermodynamic process is
adiabatic, the equation of state is written as p/p* = const where K= cp/Cyr Cp and
¢, are the specific heat capacities at constant pressure and at constant volume,
respectively. ¥=1.40 for dry air. Hence, for both isothermal and adiabatic
processes, the equation of state can be written as

p = cp" (3)

where 1 =1.0 (for isothermal process) or 1/1.4 (for adiabatic process), and C is
a constant.
The equation is obtained from Egs.l, 2 and 3 as follows,

19¢ 9 rk: ¥ ) rkz v
p ot or\ u or dz| M oz

where ¥ = p*1,
The pressure in the test section during the recovery phase is calculated by

following processes. The equation for mass conservation in the test section is
written as

=0 (4)

ap_(t
% Ps )=M (5)

o9t ®

where Py (t) is the density of the air in the test section at t, Vg denotes the volume
of the test section, and M; is the mass flux into the test section given by

dz

Ck, v
Moo= - ZKrBL’pqu ez, dz = ﬂrB‘L’m—a-;i rer,
in which r, and z, denote the radius and length of the test section, respectively.
Then, the finite difference approximation of Eq.5 is ps (t+At) = pp(t) + MeAL/Vy
where At is the time increment. Thus, in a case of isothermal or adiabatic process,
the pressure in the section at t+At is

pa{t+At) = {ps (t+AL) /pe} /o, (6)
where p; is the pressure in the test section, p, is the atmospheric pressure (1l atm),

and p, is the density of the air at p,.
The discretization of Eq.4 by means of a Galerkin finite element method yields

[A]{—?VE}+[B]{W}={D} ‘ o
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where the elements of the matrices [A] and [B], and the column vector {D} are
Amn = EfkeaPI"I’"dR
k,9I,dI, k, 91, oI,
j‘ N, .t
rRel 1 dr dr L 9z 9z
Dn = - EfseQBI"ds

and o,=pnr/p. Here, I, stands for an interpolation function, R, and S, are the flow
region and its boundary, respectively, and ¥ denotes the summation over all
elements. Also, Qp is the prescribed flux across the boundary of the flow region and
is given by

k k
0, = - r_iEYn + n.iEYnz
por © u oz

Replacement of the time derivative in Eg.7 by a three~time-level finite
difference approximation(2) yields

[E]{W{“‘m }={F} (8)

where the elements of the matrix [E] and the column vector {F} are given by

3 (t}
Fon = Sag e T e
3
{t) {t) {t-At) 14}
Fn - BIW;“'r -Z‘ZEAHM - Bnm W . + 3Dﬂ

and superscript (t) means the values at time t. The numerical solution of Eq.7 is
unconditionally stable. On the other hand, a forward finite difference approxi-
mation of the same equation gives

LB g2t} = { F/} (9)
where the elements of the matrix [E’] and the column vector {F’} are given by

El =2 [§2]

nm nm
(&)
F; - (Amm _ AtDn“’) wm(c; + AtD, ¢

Treating the medium as homogeneous, an inverse analysis is performed to
determine the permeabilities which reproduce the pressure-recovery processes
obtained in the forward analyses described above as close as possible. A con-
strained simplex method(1,5) is used for the inverse analysis in which the
objective function is defined by

2
*lp, - p
£o= Dt 2

(10)
J im1 pl

7

where fj is the objective function evaluated at the j-th vertex of a simplex, p,
and p,;" are the test-section pressures at the time-level i obtained by the forward
and the inverse analyses, respectively, and N stands for the number of the pressure
data.
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SIMULATION CONDITIONS

The flow region is, as explained before, 7m deep and 10m in diameter. The air
pressure on the excavation surface is fixed at 1 atm, and the initial pressure in
the entire flow region is 1 atm as well. The pressure in the test section is
instantaneously reduced to 0.1 atm and kept at 0.1 atm during the pumping phase.
on the other hand, during recovery phase, the pressure in the test section
calculated by Eq.6 is employed as the prescribed pressure on the test—-section wall.
All boundaries except the excavation surface and the test section are impermeable.

The intrinsic permeability of the undamaged rock mass is assumed to be 10-cm?.
The permeability in the excavation-damaged
zone is assumed to be three times as large as
that in the undamaged zone. The extent of the Table 1 = Extent of loosened zone
loosened zones studied here 1is listed in
Table 1. The viscosity of air is 1.84x1%Pa-s.
The porosity is 0.1 regardless of the loosen-
ess. Assuming the process to be isothermal,

Case Extent of loosened zone

the value of N in Eq.6 is 1.0, Co none
The flow region is divided into quadri-
lateral elements. The number of the elements Cl z £ 2.75m
is 680 and that of the nodes is 738. The
largest element is 50cm(Ar) x 25cm(Az) while c2 z < 3.00m

the smallest is 2cm{Ar) x 5cm(Az). The time
increment At is 10 seconds.

o X Cc3 z £ 3.50m
Preliminary calculations were performed
to examine the effects of the size of the A R .
excavation surface. The pressure recoveries ¢ entire region

were calculated in the cases where the exca-
vation surfaces were circles of diameter Tm c5 2.50m £ z £ 3.75m
and 10 m, respectively. The area of the and r < 0.5m
former is about one half of the latter. The
difference between the two was found to be
sufficiently small. The effect of the distance between the test section and the
excavation surface was also investigated. The pressure recoveries in the cases
where the test section was z=3 to 3.25m and z=6 to 6.25m were quite similar to each
other. Hence, in the following simulations, the diameter of the excavation surface
is fixed at 10m and the test section is located at z=3 to 3.25 cm.

The pressure-recovery curves used in the inverse analysis are those obtained
after the flow attained a steady state. The objective functions are evaluated at
30 seconds, 1,2,3,4 and 5 minutes after the start of the pressure-recovery phase.
Four vertices are taken to define a simplex. The permeabilities corresponding to
the initial vertices are taken to be random numbers larger than 1.0x107*cm? but
smaller than 1.0x107%m?. The porosity is fixed at 0.1. The search of the optimal
permeability is terminated when the standard deviation of £, becomes less than
0.001.

RESULTS

The flow rates during the pumping phase where the pressure in the test section
was kept at 0.1 atm are shown in Fig.2. These results show that the flow rates are
much larger in cases C3,C4 and C5 where the test section is in the loosened zone
than in cases C0,Cl and C2 where the test section is in the undamaged zone. It is
interesting that the flow rate in case C5 where the loosened zone is limited in a
small area around the test section is almost the same as that in case C4 where the
whole flow region is loosened. On the other hand, in case C2 where the loosened zone
extends from the excavation surface to the top of the test section but the test
section itself is in undamaged zone, the flow rate is quite similar to case CO where
there is no loosened zone. The flow rates are virtually constant by 45 minutes
after the pumping is started.

The pressure distributions in the flow region 90 minutes after the pumping is
started are shown in Fig.3. It can be seen that the area of the pressure depression
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is larger in the loosened zone than in the undamaged zone. This can be understood
as follows. Equation 4 implies that the coefficient A=kp/pni is the diffusivity of
¥ which is larger for larger values of the intrinsic permeability k. Thus, the
depression spreads faster and wider in the loosened zone.

If the pressure gradient of case C5 is compared with those of other cases, it
is noticed that the gradient of case C5 is smaller in the loosened zone but larger
in the undamaged .zone. The pressure distributions in the loosened zones of cases

C3 and C4 are quite similar, while the depression in the undamaged zone of the
former case is smaller.
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Fig. 2 Flow rates into the test section during pumping phase.
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Fig. 3 (1) Pressure distributions 90 min after pumping phase started.
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Fig. 3 (2) Pressure distributions 90 min after pumping phase started.

Figure 4 shows the pressure recoveries in the test section after a vacuum pump
is activated for 30 minutes and then shut off. Figures 5 and 6 show the pressure
recoveries in the cases of the pumping for 60 and 90 minutes, respectively. At the
early stages of recovery, the rates of pressure-buildup in loosened zones (i.e.,
cases C3,C4,C5) are much faster than those in undamaged zones (i.e., cases
¢c0,C1,C2). Therefore, it is said that the rate of pressure recovery at the early
stages depends on whether or not the vicinity of the test section is loosened. The
effect of the extent of loosened zone on the pressure recovery appears at the late
stages and becomes more apparent as the depression zone spreads out. In Fig.6, it
can be seen that the pressure recovery for case C5 becomes slower than those in
cases C3 and C4 as the pressure increases. Moreover, at the late stages of
recovery, the pressures in case C5 is lower than those in cases C0, Cl and C2Z,
although in the latter cases the test section is located in the undamaged zone. The
following is the reason for this.
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Fig. 4 Test-section pressure recoveries (pumping for 30 min before shut-off}).
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Fig. 5 Test-section pressure recoveries (pumping for 60 min before shut—off).
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Fig. 6 Test-section pressure recoveries (pumping for 90 min before shut-off).

In order for the test-section pressure to rise, the pressure in the depression
zone which surrounds the test section needs to rise as well. At the late stages of
recovery, when the depression zone in which the pressure is comparable to the test~
section pressure extends over a wide area, a large air supply is required to fill
the test section and the pores in the depression zone. For cases C3 and C4, although
the depression zones are large, the air supply is also large because of the large
permeability, and the recoveries are fast. In case C5, the depression zone below
0.99 atm is the largest among all the cases studied here, and extends over the
undamaged zone where the air supply is small. On the other hand, in case C2, the
depression zone is smaller than that of C5, and extends over the loosened zone.
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Thus, after t= 13 minutes, the pressure recovery in the test section becomes faster
for case C2 than for case C5. Similar conclusion is reached in comparing cases CO
and C1 with case C5. Consequently, the extent of loosened zone around the test
section can be estimated by continuing the pressure measurement until the
depression zone is developed sufficiently large.

The results of the inverse
analysis are given in Table 2. i
The deviation d, shown in Table Table 2 Permeabilities determined

2 is defined as by inverse analysis
- E_N Ipi"pil Case Calculated permeability Deviation
v N1 P,
co 1.00 x 107 (cm?) 0.001
In cases CO0 and C4 where
the entire region is ok} 1.06 x 107 (cm?) 0.007
homogeneous, the calculated
permeabilities are practically - c2 1.16 x 107 (cm?) 0.015

equal to the true values. In
cases Ccl and c2, the

=11 2
calculated permeabilities are €3 2.89 x 1077 (cm?) 0.009
somewhat larger than the true 1 2
value of undamaged zone, ca 3.01 x 107 (cm?) 0.002

although both the calculated
permeability and the deviation C5 2.28 x 107 (cm?) 0.048
are larger in case C2 because
the loosened zone extends
closer to the test section. For case C3 where the loosened zone extends to the test
section but the zone beyond the test section is undamaged, the calculated
permeability is slightly smaller that the true value of the loosened zone. In case
C5 where the loosened zone is limited in the vicinity of the test section, the
calculated permeability is rather small, i.e., 76% of the true value of the
loosened zone. Moreover, the deviation is considerably large compared with those
in other cases.

CONCLUSIONS

A numerical simulation of a vacuum permeavility test was carried out to study
how the pressure-recovery process was affected by the extent and the degree of
excavation—damaged zone in the fissured and fractured rock mass. In the simulation,
it was assumed that the density of the interstices in rock mass were so high that
the rock was regarded as porous medium. An inverse analysis was also performed
making use of the pressure-recovery curves obtained in the forward analysis. The
results summarized in the following indicate that a vacuum permeability test is
applicable to determine the extent and the degree of excavation—loosened zone.
1) The degree of looseness can be estimated from the rate of pressure recovery at
the early stage as well as the flow rate in a stabilized state during the pumping
phase. .
2) The extent of loosened zone can be infered from the value to which the pressure
in the test section rises asymptotically. The rate of pressure recovery at the late
stages of the process is also useful in estimating the extent of the loosened zone.
3) The permeabilities, assuming the medium to be homogeneous, which reproduce the
pressure-recovery curves obtained in heterogeneous media represent more or less
those in the vicinity of the test section. The deviation evaluated in the inverse
analysis appears useful to infer the extent of loosened zone around the test
section.
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APPENDIX-NOTATION

The following symbols are used in this paper:

Cpr Cy = specific heats at constant pressure and at constant volume,
respectively;

d, = deviation defined in Table 2;

£y = objective function evaluated at the j—th vertex of a simplex;

k. k, = intrinsic permeabilities in the r and z directions:

M, = mass flux into the test section;

N, N, = r— and z—components of an outer unit vector normal to the flow~region
boundary;

N = number of pressure data for the inverse analysis;

= pressure;

Ps = pressure in the test section;

Py = test-section pressure at i-th time level obtained by the forward
analysis;

p. = test-section pressure at i-th time level obtained by the inverse
analysis;

Po = atmospheric pressure;

qrr 9. = apparennt velocities in the r and z directions, respectively;

Qs = prescribed flux across the boundary of flow region;

r = radial coordinate of cylindrical coordinates;

Ty = radius of the test section;

= gas constant;

R, = area of a finite element;

Se = boundary of a finite element which is a part of the boundary of flow
region;

t = time;

At = time increment;

T = temperature;
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volume of the test section of a borehole;

longitudinal coordinate of cylindrical coordinates;

length of the test section;

ratio of specific heat at constant pressure to that at constant

volume;

I

i

it

viscosity of air;

density of air;

density of air at atmospheric pressure;

summation over

porosity;

all elementé; and
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