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SYNOPSIS

The effect of density gradient on longitudinal dispersion is studied in a
two-dimensional turbulent open channel flow. Using the k-eg turbulence model, the
longitudinal dispersion coefficient is evaluated as a function of the non-
dimensional density gradient parameter ¢ . It is confirmed that the dispersion
coefficient D increases with ¢ when O >0, and Dp is weakly sensitive to the
value of ¢ in the range of -0.2<0<0. The relationship between D and O is
almost same as the author's previous results in which a mixing length model and
the Monin-Obukhov theory have been employed. The damping trend of eddy viscosity
with Richardson number calculated by the k—¢ model is found to be similar to those
reported so far. The computations indicate reasonable agreement with the experi-
ments.

INTRODUCTION

This paper deals with the effect of density gradient on longitudinal disper-
sion in a turbulent open channel flow. When solute is injected into turbulent
flow, it spreads under the combined action of longitudinal convection and the
turbulent mixing. In case of buoyant solute, the vertical distribution of the
solute causes vertical density gradient, so that, the flow field becomes stable.
On the other hand, if the solute is heavier than the ambient fluid, the flow field
becomes unstable. In both cases, the longitudinal density gradient affects the
velocity profile through the static pressure difference.

The turbulent mixing of different density fluid is often observed such as the
flow of fresh water from rivers into estuaries and the discharge of heated water
from industrial plants into rivers., Therefore there are many studies on the mixing
of different density fluid. There, however, seems not so much work which treats
the effect of denmsity gradient on the dispersion phenomenon.

Empirical models representing the dispersion dependency on density gradient
have been presented by several researchers ( Holley et al(18), Harleman and
Thatcher(17) and Brocard and Harleman(3)). The dispersion of buoyant matter was
discussed in laminer flow through a tube(8) and in estuaries(6) by Erdogan and
Chatwin. To take account of the effect of density gradient, they introduced addi-
tive terms to the dispersion coefficient derived at first by Taylor(31).
Smith(29,30) showed that the secondary flow reduces the value of longitudinal
dispersion coefficient in a shallow channel,
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Using the mixing length model and the
Monin~Obukhov similarity theory, Fujisaki
et al.(9,10) studied the effect of density
on longitudinal dispersion as an extension
of Elder's work(7). Furumoto et al(l2) also
studied the similar problem by employing
the k-1 turbulence model.

In this paper, we discuss the disper- k
sion phenomena by the k-¢ turbulence model, Fig.l Coordinate system
and propose the longitudinal dispersion
coefficient as a function of a nondimensional density gradient parameter,
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BASIC EQUATIONS AND NUMERICAL COMPUTATION
Characteristics of flow with density gradient

The flow field is assumed to be two-dimensional. Turbulent mixing is represe-
nted by eddy diffusivity. Furthermore, it is assumed that the Boussinesq approxi-
mation holds., Taking x axis in flow direction and y axis vertical(Fig.l),
the equations of motion are
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where u= flow velocity in the x direction,vi= eddy viscosity, P = density of fluid,
p= pressure, i= the slope of the channel bottom and g=acceleration due to gravity
The concentration of solute is assumed so dilute that the excess density of fluid
is proportional to its concentration c,thus

P =(1-¢)po +¢Pec = Po + ¢ (Pc—Po) (3)

where Poand pc= the density of fluid and matter respectively, and the subscript 0
refers to values of the case C=0,

Substituting Eq.3 to Eq.2 and integrating, we have vertical distribution of
static pressure p. So that Eq.l can be rewritten
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In the case that the dispersion theory can be applied, the distribution of
concentration must be fully developed. Therefore the concentration can be expres—
sed by

c:co(l + gﬂm)-kE(y)

(5)
x1=x-{ut (6)

in which t= time, Co= the reference concentration,gﬂ=a the longitudinal gradient
of ¢, and < > means cross-sectional mean over flow depth, The assumption given by
Eq.5 is generally employed in discussing the longitudinal dispersion(31,7). Sub~
stituting Eq.5 in Eq.4, we obtain the equation of motion in a nondimensional form
1 dn 9 (—.@E
:1——;— 201~ + = Ve =
0=1-5 & 200 N*55 My ™
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in which
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where hp and h= flow depth in case of 0=( and O=( respectively,us= shear velocity.
The parameter ¢ means the ratio of excesses hydrostatic pressure gradient to the
bottom shear of the bulk flow.

The purpose of this study is to investigate the value of longitudinal disper-
sion coefficient Dy, in turbulent open channel flow with longitudinal density gra-
dient. In the following, we will discuss the effect of G on the longitudinal
dispersion.

Another basic equation is the equation of conservation of solute, given by

g9 _ 9 (v @)
ax oy

(e 13 E)?

(11)

where O; =turbulent Schmidt number 1.0 in the present work.

To the turbulent diffusivity, we employ the standard k-g¢ model. In the
model, the turbulent energy k and the viscous dissipation rate of turbulenceeg,
are controled by the following transport equations

v;gg)2+%%g.§)+zog %-E:o (12)

Clsig_{;,;(%g_)%zoa-cgg)gf %Jr%(é’ie -gi) —ng%}w (13)
in which

K=k/u? , e=¢thy/ul (14)
and the eddy viscosity is represented by

vi=Ck’ /e (15)

where Cy is an empirical constant.

To the boundary condition at the channel bottom, we assume the logarithmic
flow velocity distribution and the local equilibrium of turbulence at near bottom
point. Thus we have the following normally used wall boundary conditions

a:%{m%lna (16) k=1/Vc, ¢
e=1/xy (18) Vi/Or dc/dy =0 (19)

where y=4Ay is the height of the first grid cell from channel bottom, Kk is the
Karman constant, 0.4 and E is a numerical constant, 5.5.
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A condition of symmetry is adapted as boundary condition at the water sur—
face for u,c and ¢, thus

du/dy=0 , oc/dy=0 , d&/dy=0 (20)

It is not appropriate to use the symmetry condition in k equation at water
surface, because the turbulence damps vertically at the water surface(4,15). In
the present study, a simple method proposed by Nezu and Nakagawa(24) is used. The
outline of the method is as follows. At first we seek the solution with the
symmetry condition(Eq.21.1), then the new boundary condition is given by Eq.21.2,

ak/dy=0 (21.1), k = 0ks (21.2)

where Ks is the value of k at the water surface obtained with Eq 21.1, and @ is a
numerical constant. Using this boundary condition(Eq.21.2), the total flow field
is computed again. The value of & is taken 0.8, because it was confirmed that this
gives a good agreement with the measurement in turbulent open channel uniform
flow(24).

In the computation, the value of u*is assumed to be constant independent ofO.
The value of dh/dx in Eq.1 is determined by an iteration to satisfy this condi-
tion. Numerical solutions are obtained for Re=hUm/V =10000, where Um is the mean
velocity., The cartesian, non-eqidistance mesh is employed in the calculations. The
flow depth is divided by 100 node in the lower part(0<y<0.05) and 200 nodes in the
upper part(0.05=<y<1.0). For the computation of the k- ¢ model so-called TEACH(16)
code is referred. The values of numerical constant in the k-g model are given in
Table 1 and these are widely used values
except Cse =2.5. The effect of the values
of C3¢ will be discussed later.

Cu| Ct] 6| Cie| Cue| Csae Cu

1.0 | 1.0 1.3 1.44 1 1.92 2.5 {0.09

Dispersion coefficient

Substituting Eq.5, in Eq.ll, we have Table 1 Values of the constants
in the k-£ model
N '
c Ut[ = a2
e — udy + A 22
Co L Vi Jo ( )
u=u-@ (23)

where A is a numerical constant.
The dispersion coefficient Dy in this case is given by

Dr= DL/ (hous) =—(u (24)

EXPERIMENTS

Dispersion experiments were carried out in the 10m length, 0.4m width strait
tilting flume as shown in Fig.2. A wire roughness is set at the bottom of the
upper end, to get the logarithmic velocity profile, The injection point of matter
is at 2m downstream from the upper end of the flume. Five probes of the conducti-
vity meter are set as shown in Fig.2.

A flow velocity is varied 0.25 to 0.4m/s and water depth 2.5 to 4cm. Salt
water is used as solute, and the variation of salt concentration along the flow
direction are measured by using the conductivity meters,

Two types of injection are carried out ; (A4) pulse response, in which the
solute is hand injected instantaneously as a slug and (B) step response, in which
the injection is continued for a certain time. This continuous injection is done



31

injection conductivity meter type of injection
point probe X
A)pulse |(B) ste
1.5m © @ ORI ONO) ; :
ko =40 m~ 1n ] In | 1n im ) 0,5 m salt
. P SN SR concentration 130 0.5%10
gl-'-—-ﬂ_ it = 1 (wt. 7))
H tk \ . injected 20 180
ce
nl Ll ”@ L volume ce
) . injection
| 10m ] time ——— 12 sec.

Table 2 Condition of injection

=l *‘éi%%

Fig.3 Example of recorded chart Fig.4 Example of recorded chart
pulse response step response

by the discharge trough set laterally in the channel. In both cases, the solute is
injected from the position 1 cm above the water surface. Another conditions for
injection are given in Table 2,

Examples of output signal of conductivity meter are shown in Figs.3 and 4. To
evaluate dispersion coefficients from these output data shown in Fig.3, we em-
ployed the method used by Taylor(31).

1 ds
T2 odt (25)

where s is the standard deviation of measured concentration curve and t is time.
In the forward part of longitudinal concentration distribution shown in Fig.3, the
concentration decreases with distance x , thus dc/dx<0, so that <0 and in the
backward part O >0. In the present study, therefore, the value of s is obtained
from each half part of the cloud of solute, since they are influenced by demsity
gradient.

The step response type injection is dome to get rather large value of G. In
case of step injection, the concentration distribution of solute can be divided
into three parts as shown in Fig. 4. They are increasing region from C=0 to C=CO,
constant concentration region C=CO and decreasing region from C=CO to C=0, These
three part respectively correspond toG<0,0 =0 and ¢>0.

The longitudinal dispersion coefficient can also be obtained from the varia-
tion of the concentration distribution of both these two regions ¢ >0 and 0 <0,
because this phenomena corresponds to the integration of the pulse response with
respect to time(5), The value of G between two proves in the flow is approximated
to be constant in all experiments, thus we can obtain the relation between Dy and
G, as shown in Fig,10.



32

5.0 -

e AR RRRAR AN TTTTTT ku? L L B B
Y o=-01-2"] :
. 0 ;
i 017 7 ]
0.5 — ]

07m!-»-;§mﬁmlmf 0 s,

-10 0 o 10 . y .

Fig.5 Effect of density gradient

Fig.6 Effect of density gradient
on turbulent energy

on flow velocity u E.O T T [ T [ ;
y I N
T T T eh/u? = -
L - —l1n2 -0 =~0.1 -
- g= 8’1 - 10 0.5 }— 0 —
- 01 7 01 1
= =10 Ao ber o L
= = 0 005 5 01
- ] Fig.8 Effect of density gradient
n * on eddy viscosity
— 1 LO lsninu‘uu
E - .)7 — - C3e=2.5 g
t |||il£li SRR 0.5“"‘ - —
0.01 0.1 y 1 » n -
. . O=—0.1-"1. 7
Fig.7 Effect of density gradient » Y |
on turbulent dissipation N 0.1~ i
OHIIHHIHI! wlingg

Fig.9 Effect of density gradient
on additional concentration

RESULTS AND DISCUSSIONS

Effect of density gradient on flow field

Figures 5-9 show the variation of flow characteristics for several values
of O, As given in Eq.8, O means the ratio of potential energy due to excess
density to the bottom shear of the bulk flow and O is also proportional to the
longitudinal density gradient. Therefore the flow stability is determined by the
sign of ¢, that isg>0 ; stable, ¢ =0; neutral,0 <0 ; unstable,

The velocity profiles are shown in Fig.5, In the case of ¢ >0, the flow
velocity near the water surface becomes large due to depressed turbulent viscosi-
ty. Turbulent energy k shown in Fig.6 takes larger values with decrease in the
value of ¢ . Figure 7 shows that the turbulent dissipation g€ also increases with
decrease in ¢ , in the lower part of the flow depth.
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The values of turbulent viscosity calculated by Eq.15 is given in Fig.8. It
should be mentioned that there is clear effect of O on V;, while the effect of Gon
k and ¢ seemed not so large. In addition, at the lower part of flow depth, Vishows
apparent insensitivity to the value of ¢ . This may be caused by the boundary
condition Eqs.16 ~ 19, that is the flow velocity profile is assumed to be loga-—

rithmic in the near bottom region.
: The additive term of concentration of solute is shown in Fig.9, which is
obtained from Eq.22 and the numerical constant A in Eq.22 is taken so as to
<e>=0,

Effect of longitudinal density gradient on dispersion coefficient

The longitudinal dispersion coeffi-
cient calculated by Eq.25 is shown in D/ hu- ,
Fig.10. This figure shows that the value @ ' [T T T T T T T AT
of Di, increases rapidly with increase of o Furumoto et al® -
if 0 >0. On the other hand, when ¢ <0,
the effect of O on Di is not so sensitive.
Open circles in Fig.l10 indicate the ex- 10
perimental results. It can be concluded

Present work

\lll‘llllll

that the theoretical solution of the (C3e=2.5) 7]
present work well predicts the experi- A opr(%se“f 1“‘6;“_
mental results, 5 ‘ L
. . - G
In Fig.10, the results of previous N ‘é% 7

study(10) are also compared, in which the
Monin-Obukhov theory is employed in addi-
tion to the mixing length model, Using 0

~  Fujisaki et al(1987)° :
(Eq.26)
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the perturbation method with respect to ~0-2 -0-1 0 0.1 o 0.2
G , the dispersion coefficient has been
given by Fig.10 Effect of density gradient
on longitudinal dispersion
Dr = 6.25 + 45.70 + 196 o (26) coefficient

Furumoto's numerical solution which is

obtained by using the one-equation turbule-

nce model(12) is also presented in Fig.l10.

Fig.10 shows that the three theoretical predictions takes close values with each
other, although they are derived by making use of different turbulence models.

Numerical values of the parameter Cse

The k- ¢ model has nine numerical parameters to be given, which values are
given in Table 1 and they are widely used values except C3g. There seems
no definite value of C3, so far. Plumb and Kennedy(25), To and Humphery(3Z) and
Iwasa et al(20) pointed out that the buoyancy term in the € —equation is quite
gensitive for the thermal stratification of water. On the other hand, Gibson and
Launder(14), Murota et al(22,23) and some others(11,28) report that the effect of
buoyancy term in € -equation on flow field is not so important, therefore they
recommend to take Czc=1 in Eq.13.

To determine the numerical value of (3¢, numerical solutions are obtained for
various values of C3; and compared with measurements. As the result, the value of
2.5 is used throughout this paper, because this value gives the best fit to
experimental data., In addition, we couldn't predict well experimental results in
case of C3¢=1, as shown in Fig.10.

Effect of density gradient on turbulent viscosity

The relationships between turbulent viscosity vy and flux Richardson number
Ry, defined by Eq.27, are shown in Fig.l1l.

__ a_u)z} ;
Ri= gay/\p 3y 27)
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Open circles plotted in Figs.11l and 12
indicate numerical solutions of various
flow condition.

To the relationship between V¢ and Rf,
the following equation is generally used
(21,25,27).

Ve = Vio(1 + BRy) " (28)

the numerical values of n and P are taken
within a range of 1¢n<1.5, 2.5<B<13 (2,19).
As can be seen in Fig.ll, the following
values of these parameter fit the plotted
values well,

n=—1 B =-4.5 (©>0) (29)
n=-1f=-2.0 (0<0)

In our previous studies(9,10), the values
of n=-1 and B=-5 were obtained.

On the relationship between turbulent
intensity and density gradient, the mixing
length 1 is also examined. The mixing leng-
th is defined in Eq.30

3/2
@ maks oo

R
=1 dy

The dependency of 1 on Ri is given in Fig.12,
where lp is the value of uniform fresh water.

Using the mixing length model, the damping
trend of eddy viscosity due to the density
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Fig,11 Variation of eddy viscosity
with Richardson number
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Fig.12 Variation of mixing length
with Richardson number

gradient has been reported(1,27,33,34). Some of them are also presented in Fig.ll,
The following relationship between 1 and Rf is often used.

1/lo=(1-BRy)

(31)

In this study, the numerical values of parameter may be taken as

B =44 [Rp0) ,

B =23 (Ri<0)

(32)

Furumoto(13) also investigated the effect of Ry on 1 and obtained semi-
empirical equation as shown in Fig.12, It can be concluded that the k- € model and
k-1 model give similar numerical results to the effect of the Richardson number

on the mixing lengh.

CONCLUDING REMARK

The paper has described the effect of density gradient on longitudinal dispe-
rsion in two-dimensional turbulent open channel flow. By employing the k-~ € turbu-
lence model, the longitudinal dispersion coefficient is given as a function of
nondimensional density gradient parameter¢ . The results obtained in this work
gives very close value to our previous work in which a mixing length model and

Monin~-Obukhov theory has been employed.

Numerical value of parameter (3 is taken as 2.5, since this value gives the
best fit to the experimental results. The numerical solution of this work also
predicts well the Richardson Number dependency of turbulent viscosity reported so

far.,

The theoretical solution of this work is compared with laboratory experimen-
tal data and found to be in reasonable agreement.
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APPENDIX-NOTATION

The following symbols are used in this paper

(@
i

volume concentration of solute;

Eﬁ = additive concentration given by Eq.22;
Cye = coefficient in € ~equation(Eq.13);

Cye = coefficient in ¢ -equation(Eq.13);

Cse = coefficient in ¢ -equation(Eq.13);

Cy = coefficient in Eq.15;
DL = longitudinal dispersion coefficient;
g = acceleration due to gravity;

h = flow depth;

i = slope of the cannel bottom;



longitudinal concentration gradient as defined by Eq.5;

k= kinetic energy of turbulence;
1 = mixing length;
u = flow velocity in the x direction;
u*» = shear velocity;
Rt = Richardson number (Eq.27);
x = coordinate in the flow direction;
v = coordinate normal to the x direction;
£ = viscous dissipation rate of turbulence;
Kk = von Karman's universal constant;
V¢ = eddy viscosity;
o = non-dimensional density gradient(Eq.8);
O; = turbulent Scmidt number;
p = density of water with solute;
Pc = density of the solute and
Po = density of the fresh water.
notation
< % > : mean value of ¥ over flow depth

: non-dimensional expression of *
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