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SYNOPSIS

Natural operiods of surface and internal seiche in Lake Suwa and Lake Nojiri
are determined by using a numerical model on the one hand and from the field
observation data of water temperature and free water level on the other. The
finite element technique has been applied to describe the surface seiche behaviors
and it has also been extended to the internal seiche.

The natural periods computed from the numerical model agree well with those
obtained from observation data. The natural periods of first mode of the surface
seiche in Lake Suwa and Lake Nojiri are about 1350s and 480s respectively, and
those of the internal seiche in Lake Nojiri vary from 220 to 270 minutes.

INTRODUCTION

Oscillation characteristics present in the natural periods of seiche in
closed waters, lakes and ponds are very important to understand flow <characteris-
tics in closed waters. There are many studies concerning these problems in for-
eign countries but quite few in Japan. The oscillation periods, amplitudes and
shapes were examined only in Lake Chuzenji (2). Lake Biwa (3). Lake Kasumi (4) and
others. :

In this paper, the natural periods of seiche in Lake Suwa and Lake Nojiri
selected as typical shallow and deep lakes., respectively, are determined by means
of a new numerical model and from the field observation data of free water level
and water temperature in the thermocline region. So far, many numerical models of
the natural periods of seiche in one-layered state have been introduced. In these
models, an eigenvalue probiem model(5) is proposed, which is obtained from two
dimensional wave equations by using a finite element method. These wave equations
are derived from the egquations of continuity and motion, in which convective and
viscous terms are neglected. This model can be applied to the lake with complicat-
ed lake shores and lake bottoms., but there is not such model, which can be applied
to the two-lavered lakes. Hence. in this paper, we extended above one-lavered
mode! and proposed a new model for prediction of the natural periods of seiche,
that can be applied to the two-lavered lakes with complicated lake shores and
lake bottoms. And the validity of this model has been investigated by considering
analytically solved examples and field observation results as well.

NUMER!ICAL MODEL OF NATURAL PERIODS OF SEICHE

Basic equations of seiche (1)
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The x and v coordinates are taken on the

undisturbed free surface and z coordinate verti=- z

cally upward to x-y plane, as shown in Fig.1. The y

densities of water in the upper and lower lavers

are assumed to be constant as 21 and P2, vrespec- (7 %

tively. Assuming that the horizontal length scale

is very much larger than the water depth scale in o d

the closed water, the hydrostatic assumption could !

be aepplied to the equations of motion of the =z —F T

direction. Integrating over the upper and lower h-d

layers, -respectively, the equations of motion of Pa

the =z direction become /m”/ﬁfﬂn
. i S

£;=z:g§§+;§+ng(_d_2) } ‘ ) Fig.1 Definition sketch

in which p, and p; are the pressures for the upper and lower lavers, respectively.
We substitute Eq.(1) into the equations of motion of the x and v directions, in
which convective and viscous terms are neglected because the flow is weak. By
integrating them over the upper and lower lavers, the following equations of
metion are obtained.

duy & _ du, ¢

3¢ P90 ¢ t95,=0 (2)
dus {a(§+d’)_6’d'}_ GV, {8(§+d‘)_5d’}_ (3)
a1 T9° T a% ax 70 5t 3y ER

in which (u:,v() and (Y2,V2) are the components of depth mean velocity for the
upper and lower lavers., respectively. |t is also assumed that &=P1/Pa,d="d+d and
d»d’and d»z. Furthermore. integrating the eauations of continuity over the
corresponding laver and wusing kinematic boundary conditions on the free and
internal surfaces, we obtain

a(L+d") ~(au. 80‘)_

Ex ax 1oy )0 : 4
6(~d’) 5 (5?},2 avz)_
5t +{h—d) T +~——ay =0 ‘ (5)

Eliminating u, and v, from Eqs.(2) and (4), and u} and vz from Eqs.(3) and
(8), respectively, we obtain

d2(g+d’") -( 82¢ | 9%¢ )= (&)
gtz 5x? tay?) 0

9B(~d’) _~—{ (62§ 82¢ )__ _ (6261' azd’)}= %3
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Furthermore., adding Eq.(B) to Eq.(7), we obtain

07¢  _o%¢ o%¢ ) “afe( 2 AT (e aza')}u_ \
oL gd(ax2+ay2 olh-Die(F5+575 )=o) S+ 55 =0 @

As a result, Eqs.(7) and (8) are the wave equations of seiche in the stratified
closed water. Since the wave motion is harmonic, the following relationship
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Z(x,y, t)=B(x,y)coslot), d"(x,y,1)=7(x,¥)cos (5 1) (9
can be assumed between ({.d’) énd the maximum, or minimum, value (8 ,7) at the

particular coordinate location. Substituting Eq.(8) into Egqs.(7) and (8), we
obtain

-AQB"‘{(h—a—)e-FE}(Z—;B;-%-g—?%) +(n—d)( 1-e)( ‘;yr) =0 (10)

A?v-—(h—?)e(‘;;a-g;’i) +{n— )“'a’(axz g;,) =0 an
where

Ag=%i, (6=§TE_) (12)

where T is the period of oscillation.

Finite element discretization (5)

For the discretization of the basic equations, two variables are approximated
as follows:

B=N;B;, vr=N;r; (J=i,1k) (13
where N;=N;{x.y) is a shape function, and in this paper we use a standard - linear
function based on the three nodes(i.j.k) triangular finite element. Here and

henceforth, the summation convention with repeated indices is employed. After
substituting Eq.(13) into Egs.(10) and (11), and integrating these equations which
is multiplied by the weighting function N;(j=i,j.k) over the element, we obtain
the following finite element equations for a single element.

Az-Us N;N,-ds]-ﬂ,=[~L{(h-a“)e+a“}(if:’c‘ ‘f;j;+ ‘;A;‘ %’z’)-ds}-ﬁf

= = dN: dN; , N, aN;). j!’
+Us(h a) a)(ax L as |y (14)

2, vdelin = T dN; dN; aNzaNﬁ‘ }
A USN‘N! ds] 7 Us(h d?e(ax ax +ay a8y as| 8

_ 1 — oy [N IN; BN am). . (15)
Us(n ) e)(ax 3% T oy 3y dS]”ff

where we use the Green-Gauss theorem on the second order derivatives in Eqs.(10)
and (11), and also the zero velocity conditions normal to the shore line. I f
there are many elements, the finite element equations are assembled for all ele-

ments by standard finite element procedure, and we obtain the global discretized
equation in matrix form

2 |Min O ]{ﬁ}=[Kn sz} B
A [0 Mez] (7 Kai Ka2 {7‘} (!8)‘

in which My;, Maz s K4y » Ko» « etc. are the square matrices whose terms are the
corresponding ones in the brackets multiplied by B8, and 7; in Eas.(14) and (15)., O

the zero matrix. 8 and 7 the column vectors whose terms are B; and 7; . respec-—
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tively. Therefore. Eq.(168) is reduced to an eigenvalue problem. Since the matrix
of the right hand side of Eq.(16) is not symmetric., the equation is transformed

~into a asymmetric matrix. Then, the equation can be solved by means of standard
computer programs.

Mode! application to analvtically solved problems and Treatment of shallows

In order to examine the validity of above model, we compute the natural
periods of seiche in a long rectangular lake, 100m in width, 5000m in length.
The depths of bottom and internal surface are assumed to be constant, and are 20m
and 10m. respectively, the specific density is €=01/02=0.99/1.00. From the inter-
facial wave model(2) for the two-layered state. the analvtical solutions for
natural periods of internal seiche are 14286s, 7143s, etc. which are in good
agreement with the numerical ones.

The natural periods of surface seiche can be obtained by this numerical
mode!. So, by thinning the lower laver thickness and equaling its water density to
that of wupper laver, this model can be applied to the one-lavered water. The
values obtained by this numerical model
according to above ftreatment agree well

with the analytical ones, T=2L/(gh)%= Ti4s, | V4

etc., in which L is the lake length. The I =

reason of the agreement is considered that Py '

Eq.(15) gives good approximation to the l o1

equation for the total water depth and the ! Internal
surface

right hand side of Ea.(16) in this case is
negligibly small, which gives extremely
large natural periods.

From the above reason., the treatment of
shallows., where the total water depths are l
smaller than the upper laver depths., is that l
we imagine a very thin lower laver near the
bottom in shallows and the density of this
layer is equal to that of upper laver, as
shown in Fig.2.

Pi1=Pe

plé‘ipa

Fig.2 Treatment of shallows

OSCILLATION PERIODS OF LAKE SUWA AND LAKE NOJIRI
Lake Suwa and Lake Nojiri

Lake Suwa shown in Fig.3 is quite shallow and is 759m above the sea-level,
14.2km® in area, 18.3km in shore length, 6.8m in maximum depth and about 4.0m in
mean depth. There is no shallows because all of the shores are protected by the
embankments, A weak thermal stratification is formed after several fine and no
wind days in summer but is easily mixed by weak winds. ~Thus, Lake Suwa is homoge-
neous during almost all the vear. Lake Suwa is usually frozen over from the last
ten days of January to February.

Lake Nojiri shown in Fig.4 has very complicated lake shores and lake bottoms
and the deep water depth against to the lake area. those are peculiar to the
mountain lake, and is B45m above the sea-level. 4.0km? in area, 14.0km in shore
length, 42.0m in maximum depth, and about 18.7m in mean depth. The thermal
stratification is formed from the beginning of summer to fall, and a typical two-
layered state with a thin thermocline region is formed from September to the
beginning of October. Lake Nojiri is frozen over from the last ten davs of Janu-
ary to the first ten davs of March.

Observation methods
To observe surface seiche behaviors, variances of the free Water level in the

lake are measured by using a capacity tvpe wave meter. In order to cut off the
high frequency components of waves. the wave meter is installed in a vinyl chlo-



71

; “
R. To 55 0

Fig.3 Topography of Lake Suwa Fig.4 Topography of Lake Nojiri
(O Suwa Meteorological station, (X Pumping Station and Obser-
X Observation station of water vation station of water level,
level Othat of water temperature)

ride pipe, 20cm in diameter, with a bottom cover and small holes boring through
the pipe wall. The observation periods are 2-5 hours. At the beginning and  the
end of the free water level measurements, vertical profiles of water temperature
are measured by scanning a thermistor thermometer from water surface to the
bottom with sampling spacings of 1.0m; but in the thermocline region., where the
water temperature variance is very
large, temperature measurements are
made at every 0.5m.

In Lake Nojiri, the typical two-
layered state with the thin thermo-
cline region is formed from September
to the beginning of October as shown
in Fig.12. As the observation of
internal seiche, the water temperature
in the thermocline region are measured
by using a multimodal thermometer with
sampling intervals of one minute. As
shown in Fig.5, two sensors of ther-  Sensor -
mometer are installed at interval of
im from the bottom on a wire linking a
weight and a buoy which is sinking
under water. The sampling periods are

Printer
i

Sensor -

two days but the record papers of Fig.5 Water temperature observation
thermometer are changed after one day. in thermocline region
Lake Suwa

) An example of observed time series of the free water level in Lake Suwa is
shown in Fig.B6. The wind directions observed at Suwa Meteorological Station are
WNW during both of the observation periods and the wind velocities range from 3 to
Tm/s. Sampling B00 data with interval of 20s and wusing MEM{Maximum Entropy
Method), we computed the power spectra of the free water level variance shown In
Fig.7 and the oscillation periods of the variance shown in Table 1. Difference of
the mean free water levels between the observations is small and could can be
neglected in the analysis. Then. the numerical solutions of oscillation period
are found to be 1335s, 915s, 797s. 700s. etc. The observation value of the first
order is very close to a natural period of longitudinal first mode, 1341s which is
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Table 1 Observed oscillation period -
of free water level (s) -
Lake Suwa - "
Month | first second oL
/day order order :
10/22 1370 694 X
11/17 1351 746 .
Lake Nojiri -
Month | first second 3
/day order order
8/6 476 345 i
8/29 470 346 A
9/28 500 333 =60 0,005 001
9/26 490 333 . f(1/s)
10/21 479 352 Fig.T Spectra of free
490 355 water level vari-
11/25 ance in Lake Suwa

obtained when Lake Suwa is approximated to be a rectangular lake. 4.0m in depth.
3.0km wide and 4.2km long. So., this period is corresponding to the oscillation
period of first mode. And, this period is a little longer than 1250s which was
obtained about twenty vears ago. The reason of such a difference is due to de-
crease in water depth in Lake Suwa. During observation, the water temperature is
almost kept constant and the maximum amplitude of seiche is less than fem, but in
other term that is about 5cm at Kamaguchi Water Gate.

Lake Nojiri

An example of observed time series of the free water level in Lake Nojiri is
shown in Fig.8, and the time-development of temperature profile is also shown in
Fig.9. The predominant wind components observed at Tohoku Electric Power Pumping
Station are in north and south directions and the wind velocities are less than
4m/s. Sampling 600 data with interval of 10s and using MEM. we obtained the
spectra of the free water level variance as shown in Fig.10 and the corresponding
oscillation periods of seiche are shown in Table 1. For the one-layered state the
numerical solutions of oscillation period are 487s., 362s, 287s. etc.: and the
component of 487s is in good agreement with the first order value of Table | and
also that of 362s is almost near the second order value. Although the observation
results are for the one-lavered or two-laver states, the difference between them
can not be found., This is because the numerical values of natural period of the
free surface for the two-lavered state are very similar to that for the one-lay-
ered state. The maximum amplitudes of seiche in the observation periods and in
other term have respectively the same range as those of Lake Suwa.
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To show an example of internal seiche behaviors., the temperature variances
observed in the thermocline region are shown in Fig.11.; and the temperature
profiles at that time are shown in Fig.12. |In addition, an example of spectra of
the water temperature variance is shown in Fig.13. In this figure, the numbers
of sampling data are 1000-1400 and the sampling period 20s. The observation and
numerical values of the temperature oscillation periods are shown in Table 2,
where the maximum values of observed oscillation period are shown in the same
order position of numerical values. whose value is most near to the maximum ones.
Also, because the depth of thermocline was kept almost constant for all observa-
tions, the upper layer thickness is fixed to be 10.33m. and the mean water tem-
peratures of upper and lower layers are calculated and the water densities for
these temperature are used.

The corresponding numerical and observation values almost coincide with each
other, although there exist partially small errors. The reasons of these errors
can be considered that there are decision errors of the upper laver thickness and
the mean upper and lower laver temperatures, and that the amplitudes of internal
seiche are small.

CONCLUS ION

In this paper. the natural periods of seiche in Lake Suwa and Lake Nojiri
were analyzed by using the numerical model and the field observations. A new
numerical model for predicting natural periods of seiche in the two-lavered lake
with the complicated lake shores and lake bottoms were also proposed. The follow-
ing results are obtained.
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Table 2 Oscillation period of water temperature T E
in Lake Nojiri {minute) Eig
; Observation value Numerical value ]
Month | first second Month | first second R
/day order order | /day order order —
8/26 238 8/26 236 170 3
8/27 187 8/27 238 171 o
9/8 250 9/8 245 177 S ]
9/9 208 8/9 245 177 LR '1 hE: .
9/13 189 | 9/18 | 258 | 186 1(1/ain.)
9/14 172 9/14 258 186 i
9/18 286 /18 957 185 Fig.13 ipectra of water
emperature vari-
9/18 286 9/18 255 184 ance in Lake Nojiri

The new mode! for the natural periods of seiche has been found to be valid by
comparing the numerical solutions with the analytical solutions and the observa-
tion results. The natural periods of first mode of the surface seiche in Lake
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Suwa and Lake Nojiri are about 1350s and 490s, respectively. and also those of the
internal seiche in Lake Nojiri vary from 220 to 270 minutes.
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APPENDIX-NOTATION

The following symbols are used in this paper:;

d = depth of internal surface measured from undisturbed free surface;
d = mean depth of internal surface measured from undisturbed free surface:
d’ = depth of internal surface measured from mean internal surface:

E = sgpectra of variance

f = frequency

g = gravitational acceleration:

h = depth of water bottom measured from undisturbed free surface:

N; = shape function ; |

uy.v; = % and v component of mean velocity in upper laver:

Us,Vz = x and v component of mean velocity in lower laver:

T = oscillation period:

B.,7 = maximum ,or minimum amplitude of harmonic wave:

e = PPz

¢ = water level above undisturbed free surface;

AZ = @2/0

P21 p2 = densities of upper laver and lower laver and

[e] = angular frequency.
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