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SYNOPSIS

A flood control environment, which is composed of the Inference System (IS) and the Procedural
Knowledge System (PKS), is designed. PKS deals with problems which can be solved mathematically,
while IS takes charge of problems which need a knowledge-based approach. IS is composed of self-
contained knowledge-based systems, each of which is an expert system to deal with a partial issue of
flood control problems. Knowledge-based systems are classified into two types of problems: a system
with a deterministic inference process based on a production system and the other with a fuzzy inference
process.

INTRODUCTION

Flood management by the use of storage reservoirs comprises various types of information gath-
ering and processing, such as the observation of rainfall and discharge, the on-line prediction of those
quantitative data and the comparison of observations and predictions with reservoir operation regula-
tions. Hence it should integrate the two types of information processing: namely, the procedural one
and the qualitative one. The former uses mathematical models such as rainfall and runoff prediction
the latter mainly utilizes knowledge, in linguistic style, like reservoir operation regulations and expe-
rience of reservoir operators. Therefore, an attempt only based on an Al method which is popular in.
developing medical examination systems is not practical to design a flood control support system.

From this point of view, we propose a flood control support environment based on distributed
and cooperating knowledge-based systems. The system proposed herein has two levels of cooperation
among its subsystems. On the upper level of cooperation, a procedural knowledge system, which
processes quantitative data with mathematical algorithm, is linked with an inference system, which
deals with qualitative information and knowledge expressed in the form of language. They synthetically
support flood control work through information processing in each system and information interchange
between them.

The lower level of cooperation takes place among knowledge-based systems in the inference sys-
tem. The inference system proposed here is composed of several self-contained knowledge-based sys-
tems, each of which is an expert system with an inference engine, a knowledge base and a data base.
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Each knowledge-based system deals with a partial issue of a flood control problem. Flood control
problems, such as how much water should be released from a storage reservoir, are solved through the
inference process in each knowledge-based system and the communication among them. In this study,
we adopt two types of knowledge-based systems according to the information types to be processed
" in each system: one with an inference process based on a production system and the other with a
fuzzy inference process. The environment based on the two levels of cooperation described above can
synthetically support the flood control work.

WHOLE STRUCTURE OF THE FLOOD CONTROL SUPPORT SYSTEM

In order to support the total process of flood control work and to harmonize the algorithmic
approach and the knowledge-based approach, we have to note the followings in designing a whole
structure of a flood control support system. )

1. An accurate linkage should be maintained between a procedural knowledge system, which pro-
cesses quantitative data based on mathematical algorithm, and an inference system, which mainly
utilizes knowledge expressed in a linguistic form, and the two systems should be able to inter-
change data and information automatically and immediately.

2. Quantitative data such as rainfall and discharge must be automatically transmitted to the flood
control support system from a data acquisition system. A system with much manual input work
is not suitable for supporting flood management because backup information has to be provided
without delay.

3. A flood control support system should be equipped with a graphical and interactive display
system so that its users can easily understand backup information provided by the system.

Taking these conditions into consideration, we introduce the whole structure of the flood control
environment shown in Fig. 1. Inference Environment Management System (IEMS) provides an inter-
face between the Data Acquisition System (IDAS) and the Inference System (IS), and supervises IS
and the Display System (DS). IEMS, keeping watch on the time when new data are transmitted from
DAS, processes the transmitted data in a fixed form and gives them to IS with an instruction to start
inference. In IS, supporting information such as a recommended release from a reservoir is prepared
through the inference based on knowledge bases with reference to acquired data. If the predictions of
rainfall or discharge are necessary in the inference process, IS calls the Procedural Knowledge System
(PKS) automatically. PKS, composed of programs for on-line prediction of rainfall and runoff, re-
turns the predictions to IS. Using the predictions returned from PKS, IS advances the inference for
determination of supporting information in a continued series. When the inference process ends, IS
gives the results to IEMS. Then IEMS comes-into action again and puts the results of inference and
the observed data in the Recording Data Base. Then DS receives instructions to display graphically
supporting information such as recommended release with the observations transmitted from DAS.

IS and PKS are installed on different types of CPUs because the former needs a different way of
information processing from the latter. Using two types of CPUs reduces the computational burden on
a computer. Thus the flood control support system can immediately provide supporting information
to its users who are required to make decisions without delay.

The flood control support system with the structure described above can easily be installed in
local river management offices by only adding another work station to existing procedural knowledge
systems and data acquisition systems so that IEMS, IS and DS as developed here can work.

THE INFERENCE SYSTEM

Framework of the Inference System for Supporting System on Flood Control

Flood control by the use of storage reservoirs comprises various units of information processing
as mentioned in the introduction and the number of these units may increase as hydrologic observation
systems are improved. Therefore, in order to support river managers in flood control problems which
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Fig. 1 Whole structure of the flood control support system.

will become more complex, it is necessary to design an inference system, the performance of which
can be easily improved through the addition or correction of knowledge. From this viewpoint, we
divide a flood control problem into several partial issues, make knowledge-based systems, each of
which takes charge of a partial issue, and design an inference system in which these knowledge-based
systems cooperate to solve the problem. Each knowledge-based system is an expert system with its
own inference engine, data base and knowledge base, and has an interface to communicate with other
systems. This framework of knowledge-based approach based on cooperating knowledge-based systems
is called a distributed knowledge-base model (Smith and Davis (1)).

In this study, we design an inference system composed of five knowledge-based systems for appli-
cation to flood control by the Amagase Dam reservoir as shown in Fig. 2 (for the explanation about
the Amagase Dam reservoir and its operational regulations, see APPLICATION). Let us explain the
framework of these knowledge-based systems below. KXSDOR has reservoir operation regulations in
its rule base and takes a fundamental role in determining a release from the reservoir. KSDOR is the
first system to begin inference when the Inference System receives the instruction to come into action.
When KSDOR needs judgement from other knowledge-based systems for its application process of
reservoir operation regulations, it sends messages to KSMWL, KSRCR and KSMID.

At each time during flood control, KSMID gives judgement on whether or not inflow discharge
to the reservoir has already passed its peak (for detail rules regarding this judgement, see APPLICA-
TION). KSMWL supports decisions on maximum water level at the lower reach of the river. It gives
judgement on whether or not the water-level at the lower reach of the river has already passed its peak.
Whether or not the remaining capacity of the reservoir is sufficient for control of the coming flood is
judged by KSRCR. KSRCR plays an important role particularly in determining the time when the
control strategy shifts to the second control stage from the first and determining the time when the
second control stage should be terminated (see APPLICATION for explanation of the first and second
control stages and details about the rule base). These knowledge-based systems have to utilize pre-
dictions of rainfall and discharge. And they can call the Procedural Knowledge System automatically
when they need these data in their inference processes.

The three knowledge-based systems mentioned above, namely, KSMID, KSMWL and KSRCR,
serve to support KSDOR in applying reservoir operation regulations. Furthermore, KSACR judges
whether or not the difference between a current release and that determined by the above four
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Fig. 2 Framework of the inference system for flood control supporting system.

knowledge-based systems exceeds the allowable discharge value. A sudden change in the release from a
storage reservoir imperils residents at the lower reach of the river and has bad effects on flood fighting
work and on refuge activity. If KSACR draws the conclusion that the release selected by the above
four systems is not acceptable, it gives KSDOR an instruction to make another inference, taking the
fact into consideration. The reader may refer to Takasao et al. (2) for an example of communication
between knowledge-based systems.

The framework of the inference system mentioned above is intended to support flood control by
the Amagase Dam reservoir, but it is also valid for flood control by other reservoir systems, for operation
regulations of other storage reservoirs have a similar structure and the Amagase Dam reservoir has
one of the most complex operation regulations in Japan.

The introduction of cooperating knowledge-based systems enables us to modularize knowledge.
Therefore the performance of the Inference System can easily be improved by addition of new knowledge-
based systems which can treat new problems to be solved without reconstruction of whole knowledge
bases. . :
The implementation of the Inference System based on cooperating knowledge-based systems
requires programming techniques to generate all of the knowledge-based systems on a computer and
make them communicate one another. These techniques can be accomplished through object-oriented
programming (Cox (3)), in which a system to be implemented is divided into self-contained modules
called “objects” and the processing is made by “message passing”. Furthermore, knowledge-based
systems to be generated in a computer have similar structure, that is, each of them has an inference
engine, a knowledge base and a data base. The “class” description provided by the object-oriented
programming makes it easy to implement the knowledge-based systems with similar structures. For
this purpose we adopt Smalltalk-80 (Goldberg and Robson (4)), which is a typical object-oriented
programming language, for implementation of the Inference System.
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Design of each knowledge-based system

The knowledge-based systems introduced in the previous subsection are classified into two cate-
gories: one includes a system which has a knowledge base composed of deterministic production rules,
and the other includes a system with a knowledge base composed of fuzzy rules. KSDOR is a typical
knowledge-based system belonging to the former category. KSMID also belongs to the former when
the Procedural Knowledge System (PKS) is equipped with stochastic runoff algorithm because the
PKS can provide KSMID a probability distribution of the time of inflow peak. On the contrary,
if PKS is not equipped with the stochastic algorithm but with a simulation model of future inflow,
which can provide several cases of simulated hydrographs but cannot provide its probability distribu-
tion, KSMID needs to judge based on incomplete information. In this case, it is suitable that KSMID
is equipped with a fuzzy inference structure (the reader may refer to Mamdani (5) concerning fuzzy
inference theory, ). The same statements are also true for KSMWL and KSRCR.

(1) A knowledge-based system with a deterministic inference process based on a production system

A knowledge-based system with a deterministic inference process has a knowledge base composed
of production rules (the reader may refer to Bundy (6) about the framework of a production system),
each of which represents knowledge in an if-then form. A deterministic inference process means a
process in which a rule is adopted only when the condition part of the rule matches the data in a data
base symbolically. The inference engine designed in this study has following characteristics:

1. When several rules match the data in a data base at the same time, the rule which matches the
newest data is adopted. This way of conflict dissolution makes results of inference unrelated to
the order of production rules, which enables it easier to correct a rule base.

2. While each knowledge-based system has a deterministic rule base, the data referred to in its
inference process may be an uncertain datum when it is an answer from a knowledge-based
system with a fuzzy inference process. A fuzzy knowledge-based system gives the inference
results with. certainty degree. For example, let us explain the case in which KSMID is a fuzzy
knowledge-based system and it concludes that the inflow peak has passed with certainty degree of
0.8 and not 0.2. The knowledge-based system which received the answer has to infer; considering
two cases of conflicts between data. In this case, it produces two inference processes for the data
and the result of each inference process has its certainty degree equal to that of the datum. When
a rule has two conditions and data matching them are both with certainty degrees, the result has
a certainty degree which is the product of the certainty degrees of the two data. This inference
method with the propagation of certainty degree provides the interface with fuzzy knowledge-
based systems and enables the Inference System to treat both deterministic data and uncertainty
data.

(2) A knowledge-based system with a fuzzy inference process

In designing a fuzzy knowledge-based system, how to decide fuzzy rules is the most important
problem, Relations between a condition and a conclusion expressed by these rules are essentially
uncertain. Therefore, even if rules are determined through an interview to reservoir operators, it is
necessary to design a rule making framework which enables systematic correction of the rules based
on the system performance. Taking this point into account, we introduce parameters which denote
an effect of each condition on a conclusion and provide a rule making system which automatically
produces a fuzzy rule set when the parameters are given.

Let us take KSMID as an example to observe the rule making process. In judging whether or
not the reservoir inflow has passed its peak, KSMID uses four input ' variables: estimation about the
accuracy of inflow prediction model (z;), the ratio of the maximum inflow observations acquired until
then to the maximum of inflow predictions during the coming five hours (z2), the elapsed time since
the maximum inflow is observed (z3) and the current rainfall (z4). The output variable (y) is denoted
by a number from -1 to 1 according to whether the inflow peak has passed or not (the closer to 1, with
greater certainty the system concludes that the inflow peak has passed). Using these input and output
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Table 1 Sample data for explanation of a fuzzy rule making system.

(a) Values of weight parameters according to z;

1 o e ]
good 0.80 | 0.10 | 0.10
meduim | 0.50 | 0.25 | 0.25
bad 0.20 | 0.40 | 0.40

(b) Values of pa, p3 and ps in making a fuzzy rule set

T P2 Z3 P3 T4 P4
large  -1.0 | short -1.0| much -1.0
medium 0.0 | medium 0.0 | medium 0.0
small 1.0 long 1.0 little 1.0

(c) Pre-determined range of 6 for the scopes of y

y é
small -1.00< 6 <-0.70
more or less small | -0.70< 4 <-0.25
medium -0.25< 4 <0.25
more or less large | 0.25< 6 <0.70
large 0.70< § <1.00

variables, inference rules can be made based on the following concept: when the estimation of the
inflow prediction model (z1) is good, reservoir operators attach importance to £5 rather than zs and
74, while they attach importance to z3 and 4 in the case that z; is bad. In this rule framework, z,
can be regarded as a special variable because it determines the effect of z5, z3 and z4 on y. Therefore,
in making fuzzy inference rules, we introduce the parameters o, 8 and v, each of which denotes the
weight of each input variable on the output, and use the variable § to indicate whether the inflow peak
has passed. Furthermore, let pz, p3 and py be the variables used in making rules, which correspond to
T2, o3 and z4, respectively. Then we use the following relation among them:

0= oaxy+ Py +yzy, a+f+v=1, o,5,720

B is a value close to 1 when the inflow prediction model is good, while « and 7y will be rather high in the
case of an unreliable prediction model. Once the parameters are determined, we put the combination
of-1,0 and 1 into pz, p3 and py according to the combination of sub-scopes of these input variables and
computes the value of §. Then the sub-scope of the output variable according to the combination of
sub-scopes of the input variables is determined by comparing the computed 6 value with predetermined
range of y for its sub-scopes.

For example, let us use the values shown in Table 1, and consider the problem: which sub-scope
to select for y in the case where z1 is “good”, z; is “large”, z3 is “medium” and 4 is “little”. In this
case, the rule making system compute 8 like the following:

6=0.80 x ~1.0-+0.10 X 0.0 +0.10 x 1.0 = ~0.7.

According to Table 1, the scope of output variable which corresponds this condition should be “little”.
Consequently, the system automatically produces the fuzzy inference rule like the foliwing based on
the value of §:

IF 2 is good and z3 is large and 23 is medium and =4 is little THEN y is “little”.

Using this approach for making fuzzy rules, we can clarify the decision making strategy of reservoir
operators, and hence the flood control support system can be used not only as a decision aid for flood
control but as a training simulator for flood control work. This system can automatically simulate the
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Fig. 3 A Reservoir for system application.

process of decision making itself. Reservoir operators can realize the defects in their decision making
principles thanks to the results simulated by the system and can correct their decision making.

APPLICATION TO THE REAL RESERVOIR SYSTEM

In this section, we will test the flood control support system designed in this study on the Amagase
Dam reservoir using the data from the flood caused by Typhoon No. 10 in 1982. The Amagase Dam
reservoir is located on the upper strzeam of the Yodo River (see Fig. 3) and has a flood control capacity
of 2.0 x 107 m®. The core systems of the flood control support system, IEMS, IS and DS, are installed
using Smalltalk-80 on Sony Tektronix Artificial Intelligence System 4404.

The control strategy indicated by reservoir operation regulations (Yodo River Dams Control
Office (7)) has two parts: int the first control stage, the release from the reservoir should be 840m3 /s
if the inflow discharge is more than 840m®/s and less than its maximum, and in the second control
stage, the release from the reservoir should be 160m®/s until the water-level at Hirakata point reaches
its peak). These regulations are stored in the knowledge base of KSDOR. The italicized parts of
the above-mentioned regulations of the Amagase Dam reservoir require reservoir operators to make
judgements on the maximum inflow to the reservoir, the maximum water-level at Hirakata point and
the remaining reservoir capacity, each of which is supported by KSMID, KSMWL and KSRCR,
respectively. In this application, we assume that the stochastic runoff prediction systems are available
in PKS and do not use fuzzy rules but deterministic production rules for the implementation of these
three systems. KSMID concludes that the inflow discharge has reached its maximum when none of
the inflow predictions during the coming five hours exceeds the maximum of the inflow observations
acquired until then. In the same way, KSMWL concludes that the water-level at Hirakata point has
reached its maximum when none of the water-level predictions during the coming five hours exceed
the maximum of the observations acquired until that time. KSRCR computes the future reservoir
pondage at 15 minutes’ intervals based on inflow predictions under the condition that the second
control stage begins 30 minutes later. Using these predictions, KSRCR concludes that the remaining
capacity is not sufficient for the second control stage when either of the following two cases occurs:
firstly, if the prediction of reservoir inflow at the time when the prediction of reservoir pondage exceeds
the capacity is more than 840m?®/s, and secondly if, during the next 150 minutes, the second control
stage causes the reservoir pondage to exceed the flood control capacxty

The releases from 12:00 a.m. on August 1 to 12:00 p.m. on August 2 in 1982 were decided by the
flood control support system based on the rule bases as mentioned above. Each process of inference
by the system took about 2 or 3 seconds at the longest, in this example. Figure 4 shows a typical
result of reservoir control during the whole term by the flood control support system. According to
the control results shown in Flg 4, the time when the system began the second control stage was later
than the actual time of the inflow peak. One teason for this time lag is that the judgement on the
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Fig. 4 Typical result of reservoir control by the flood control support system.

time of inflow peak has to be based on predictions of inflow discharge and the control stage indicated
by the regulations cannot be redone. Another reason is that the knowledge-based system, KSRCR,,
concluded that the remaining capacity of the reservoir was not sufficient for the second stage control
right after KSMID concluded that the inflow peak had passed.

Figure 5 shows the sample ontput of the Display System. The screen is divided into four sub-
windows and observations and releases determined by the flood control support system are displayed
graphically. These windows are automatically renewed according to data acquisition and progress of
the inference process. The explanation windows of the inference process and its reasoning should be
added to the Display System, which is now under development.

CONCLUSION

In this study, we have proposed a flood control support system based on the combined use of
traditional algorithmic approach and knowledge-based approach. In the knowledge-based approach, we
introduced into the inference system two types of knowledge-based approach: the first has a knowledge
base composed of deterministic production rules while the second has fuzzy inference rules. Design of
flood control support systems along this concept is promising because it can provide an environment
which enables to treat various types of information necessary in flood control.

This research was paitially supported by River Environment Fund (No. 201) with a principal

investigator of Takuma Takasao).
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APPENDIX-NOTATION

The following symbols are used in this paper:

DAS = Data Acquisition System

DS = Display System;

IEMS = Inference Environment Management System;
Is = Inference System,;

KSACR = knowledge-based system which supports decisions about allowable change of release

dischrge;

KSDOR = knowledgé—based system which supports reference work to dam operational regula-
tions;

KSMID = knowledge-based system which judges whether or not inflow dischrge to a dam
reservoir has alreday passed its peak;

KSMWL = knowledge-based system which supports decisions about maximum water level at a

lower reach of a river;

KSRCR = knowledge-based system which judeges whether or not the remaining capacity of a

reservoir is sufficient for control of coming flood;
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PKS

P2
»3
P4

3

T2

z3

T4

D R ™

Procedural Knowledge System;

parameter used in the fuzzy rule making, wkich correponds to zg;
parameter used in the fuzzy rule making, which correponds to z3;
parameter used in the fuzzy rule ‘making, which correponds to z4;

input variable of a fuzzy inference rule (estimation about the accuracy of inflow
prediction model);

input variable of a fuzzy inference rule (the ratio of the maximum of inflow obser-
vations acquired till then to the maximum of inflow predictions during the coming
five hours);

input variable of a fuzzy inference rule (elapsed time since the maximum inflow is
observated);

input variable of a fuzzy inference rule {current rainfall);

output variable of a fuzzy inference rule , which denotes by a number from -1 to 1
whether the inflow peak has passed or not;

parameter which denotes the effect of input variable z; on the output;
parameter which denotes the effect of input variable z3 on the output;
parameter which denotes the effect of input variable z4 on the ontput; and

variable to indicate whether the inflow peak has passed, which is used in the rule
making process.
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