73

Journal of Hydroscience and Hydraulic Engineering
Vol. 9, No. 2, January, 1992, 73-80

THE STYLE OF ON-LINE RAINFALL-RUNOFF FORECASTING INFORMATION
By

T. TAKASAO
M. SHIIBA
CY. LIU

Department of Civil Engineering, Kyoto University,
Kyoto, 606, Japan

and

Y. KANBAYASHI

NEWIJEC Inc., Tokyo Office,
1-3-3, Uchisaiwai~cho, Chiyoda-ku, Tokyo, 100, Japan

SYNOPSIS

Although the methodology of on-line rainfall-runoff forecasting has been basically established, there
are still many important problems when it is actually implemented in river management offices.

This paper especially focuses on the idea that on-line rainfall-runoff forecasting information should
be presented in a style which easily weaves into existing management systems, and proposes a new
algorithm of on-line forecasting to achieves this.

This method can give information on the whole hydrograph including the probability that the
hydrograph peak has already occurred, the probability distzribution of the total volume of future discharge,
the probability that the flood will surpass the warning water level, and the probability distribution of
the time to peak of discharge and the peak volume.

INTRODUCTION

Although the methodology of on-line rainfall-runoff forecasting has been basically established, there -
are still many important problems when it is used in actual river management offices. This paper
especially focuses on the point that on-line rainfall-runoff forecasting information should be given in a
style which easily weaves into existing management systems. Also, this paper introduces a new algorithm
of on-line forecasting for this purpose.

The authors have so far developed some methods of on-line runoff forecasting so far with the
following hypothetical framework:

1. Given the forecasted values and forecast error covariance matrices of future rainfall series at every
time step.

2. Forecast the runoff discharge and give the forecasted value’s error variance with some constant lead
time, for example, one or two hours.

However, rainfall forecasting information is not always provided in the above mentioned format. In most
cases, as Takeuchi (1) points out, it is given in a gross statement such as ”100mm - 200mm rainfall is
expected from tonight to early in the tomorrow morning”. Moreover, although the methods developed
under the above framework can give the designated time steps ahead information, they cannot give
information regarding the whole hydrograph. For instance, these methods are not useful to answer the
following questions:



74

o Whether the peak has already passed or not? What is the probability that the peak has passed?
o How much is the total volume of future discharge?

e What is the probability that the flood will surpass the warning water level from now on in the
future? :

e What are the expected values or the variances of the peak discharge and the time to peak? What
are the probability distributions of these quantities?

However as far as the authors have investigated, it is the answers to these questions that are needed
for managing flood-control dams and flood warning. It is desirable, regarding operations of usual dams,
that release be made according to a comparison between the current empty volume of the dam and the
forecasted future total flood volume, and it is important to obtain information on such items as the
time to peak of the inflow hydrograph and the probability that the flood will surpass the warning water
level. Using the on-line runoff forecasting algorithm presented by Takara et al. (3), we can also obtain
information about the future hydrograph to some extent when the lead-time of forecasting is prolonged,
because there is not a limit for the forecasting lead-time. However, we cannot obtain probabilistic
information on quantities that are defined relating the whole hydrograph, such as the time to peak, the
peak discharge and the total discharge volume.

In this paper, after a modification of the fundamental frameworks which were described above,
a new runoff forecasting method is proposed for providing information which can be more easily and
realistically used.

LINEAR LEAST-SQUARES ESTIMATION AND
THE PREREQUISITE FORMULATIONS OF RAINFALL-RUNOFF FORECASTING

Linear least-Squares Estimation

Let X and Z be jointedly distributed n-dimensional and p-dimensional random vectors, respectively.
If the value of Z is obtained, we can estimate the value of X, because X depends on Z. The estimate
equation X*[Z] which gives the minimum value of the mean square estimate error among all linear
equations of 7, and its estimate error variance Var{X — X*[Z]} can be expressed as follows:

X*12) = X + Sxs522-4(Z ~ 7) | )
Var{X — X*[Z]} = Zxx ~ Ex2%22 ' Exz"T (2)

where X = E(X) denotes the mean vector; Lyz = Cov{X,Z} denotes the variance matrix; the right
upper T denotes transposition.
Consider an n;-dimensional random vector X; which is determined by

Xi=0X +b+w ~ (3)

where w is a random vector which is uncorrelated with X and Z, and has mean 0 and variance matrix
R; @ is an n; x n-dimensional non-random matrix; b is an nq-dimensional non-random vector. In terms
of Egs. 1 and 2, the linear least-squares estimate of X7 and its estimate error variance can be expressed
as

X:i*[2] =“X_I—%'Exlz}:zz“l(z—f):@X*{Z]-{'b (4)
Var{X: — X1*[Z]} = x,x, = Ex,2822 ' Ex,2" = ®Var{X - X*[Z]}8"+ R (5)

Especially, if Z, X and w are normally distributed, then X; is also normally distributed, and the
conditional distribution given observation Z is normal with mean X}[Z] and variance Var{X; — X{[Z]},
and hence, the probabilistic calculation about X; is possible. Even if these requirements are not strictly
satisfied, the calculation can be still made under the assumption that they are normally distributed. It
may seem unappropriate to assume that a quantity relating to a rare phenomenon like a flood complies
satisfactorily with normal distribution. However, the assumption of the distribution being normal is still
realistic, because we make forecasting calculation while a storm or a flood is in progress, and hence the
phenomenon is not rare one in that occasion.
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The Prerequisite Conditions of Rainfall-Runoff Forecasting

By defining a state vector appropriately, most of the runoff models which have been developed so
far take the following state-space form:

State Equation dz;(t)/dt = fi(=z(t),r), i=1,...,N, (6)
Output Equation y(t) = g(z(t)) n

where z(t) is an N,-dimensional vector; z;(t) is the ith component of z(t); r is the rainfall intensity; y(1)
is the discharge at time ¢; f; and ¢ are scalar functions.

If we introduce a modeling error term and an observation error term to the above model, we can
obtain a stochastic runoff model described by the following equations.

State Equation  dz;(t)/dt = fi(2(t), ) + Go,p(t), k—-1<t<k, i=1,...,N,(8)
dpi(1)/dt = —(1/m)pi(t) +vp(t), i=1,..., ], (9)
Output Equation y(t) = g(z(2)) + Gyp(t) (10)

where p(t) is an Np-dimensional noise vector representing the model error and the observation error; the
ith component p;(t) is a first-order exponentially correlated process with time constant 7; and varince Ugs;
vp, (1) is a white, zero mean, continuous process noise; G, is the ith row vector of the N, X Np-dimensional
non-random. matrix G;; Gy is an Np-dimensional row vector. Moreover, it is assumed that the rainfall
intensity r takes a constant value u within an unit time interval, and the error due to disregarding the
variation of rainfall intensity within an unit time interval is incorporated to the error vector p(?).

Through the use of the above formulation, the prerequisite conditions of runoff forecasting are:

o We filter the state vector (z(t),p(t)) by using the obtained observation information at every time
step, and take the filtered estimate values as initial conditions to predict the future state values
and outputs. (In the following, we suppose that ¢t = 0 represents the current time and we are given
the estimate values and the estimate error variance matrix of the state vector (z(0), p(0)) which
were filtered with past observation information.)

We suppose that the forecasted value 4 and its forecast error variance matrix R, = Var{u — @} of
future M time units rainfall intensities u = (uy, ug, ..., ups) are available, where M is supposed
to be a rather large value which can contain the whole rainfall duration. If the probability models
from recent researches (ref. (4)) about precipitation fields are fully developed, then the mean value
and variance matrix obtained from these probability models at the beginning of rainfall can be
used as the information necessary here. Forecast information of short time intervals from radar
rain gauges or general information like ”From tonight to early in the tomorrow morning ...” ( this
case will be discussed later), eventually acts as additional information to be joined with Z and R,,.

¢ Using some linearization method and difference approximation methods, we can transfrom Egs. 8
and 9 into the following discrete-time linearized equations. -

x((j + 1)AL) = A;x(GAY) + By + vy, j=0,1,..., Mx K ~1 (11)
y(k;) =Aykx(k)+Byk+vyk; k=1,...,. M (12)

where each unit time is divided into K equal intervals with duration At = 1/ K; x(t) = (s(1)7, p(1)7,
@T)T is the extended Ny, (= N, + N, + M)-dimensional state vector; v;; is the N, ,,-dimensional
noise vector with mean 0 and variance matrix @;; vy is a noise with mean 0 and variance Qyx; 4;
B;, Ay, By are non-random coefficient matrices or column vectors.

Here, it should be noted that, in order to avoid treating infinite dimensional quantities, we do not
consider the problem of forecasting all the values of y(¢) during 0 < ¢ < M, but instead we consider
the values at discrete times y(k), k= 1,2, ..., M.
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HANDLING RAINFALL FORECASTING INFORMATION

Providing rainfall forecasting information of short time intervals using radar rain gauges has been tried
with some degree of accuracy (Ref. (6)). If, besides the rainfall probability model given at the beginning
of the rainfall, the rainfall forecast information with short time intervals is provided, it can be handled
as additional information. For example, suppose that in addition to previously obtained information %
and Ry, the one hour ahead forecast value @y’ of rainfall u; and its forecast error variance Var{u; — @'}
were given. In this case, treating this information as if we had made an observation of the future rainfall
4 through the observation equation yu, = 41 + € and had gotten the observation value %1/, where ¢ is a
noise with a mean of 0 and a variance of Var{u; — @'}, we filter the observation value and update g and
R,. ' ‘

As for the problem of incorporating forecasting information like ” About 100mm rainfall is expected
from tonight to next early morning”, one can consider it as a filtering problem with some hypothetical
observation information in the following manner.

e Let Ly and L denote ”tonight” and ”early in the tomorrow morning”, respectively. Suppose that

Ly M '
D g+ U1 = Yobat; D uk vz = Yobeo (13)
k=L k=Ip+1

are observation equations in which vy, v, are observation noises.

o Let observation value yops1 be 100mm, yobs2 be a small value, eg. 5mm because it will not rain after
”early in the tomorrow morning”. Expressing the uncertainty of the informaiton by the variances
of v; and vy, one can filter the observation values and update the estimate value @ and R, of the
future rainfall intensity.

Moreover, in order to take the uncertainty of the rainfall period into the account, we can suppose p;,
..., pr are the probabilities of rainfall periods (L1(3), L2(s)), s = 1, ..., I, then we can calculate the
mean rainfall period by using the posterior probability distzibution with these probabilities p; as weights.
When adding new information on rainfall to the rainfall information, one should note that, in the above
treatment, the noises of observation equations are supposed to be uncorrelated with prior probability
distributions of the values to be estimated.

ALGORITHM FOR FORECASTING THE STOCHASTIC STRUCTURE OF RUNOFF SERIES

In order to obtain the joint probability distribution of the runoff series y(1), ..., y(M), we propose
an algorithm which can give the estimate values and their estimate error covariance matrix of y(1), ...,
y{M) at the last step of the forecasting calculation. This algorithm differs from the algorithms which
the authors have presented so far in that it gives not only the variances of estimate errors but also the
covariances between estimate errors at different times. For this purpose, we extend further the state
vector x(t) and define it as follows. :

X(1) = (x(®) y(1) --y(B)T,  O0<k<i<k+1<M (14)

By this extension, X(#) becomes an (Nyp, + k)-dimensional column vector. Moreover, it follows from Eq.
11 that the transition of the state vector X(t) from ¢ = jA? to ¢ = (J + 1)At can be expressed as

X((j +1)A1) = [“éﬂ' 151 }xumn { %‘ ] + { ”gﬂ'} (15)

where & is an integer such that & < jAt < k + 1. Moreover, at time k, the state vector is extended as

x(k,‘-{—)‘z [ INxX;k-—l }X(k)+ sz } + [ Uik } ; (16)
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In Egs. 15 and 16, I is an unit matrix and the subscript of I denotes its dimension. Because these
transition equations have the same form as Eq. 3, using Eqs. 4 and 5, the estimate values and the
estimate error covariance can be calculated sequentially.

The previous calculation will be repeated until the estimate value X(M+) of X(M+) and its
estimate error variance Var{X(M+) — X(M+)} are obtained. By taking out the latter M dimensional
vector of X(M+) and the lower right M-dimensional square matrix of Var{X(M+) — X(M+)}, we get
the estimate series of y(1), ..., y(M) and their estimate error covariance. If the probability distribution
of y(1), ..., y(M) is normal, then the joint probability distribution of y(1), ..., y(M) can be determined,
because the normal distribution is identified by the mean vector and the covariance matrix.

As a result, the following calculations can be performed:

s calculation of Pop{y(K) < Qpo, k¥ = 1, ..., M} where Q0 is the maximum discharge up to the
cuirent time,

# calculation of the probability distribution of ZkM;1 y(k),

e calculation of P, {y(k) > Q,, for some k such that 1< K < M } where discharge Q,, corresponds
to the warning water level, and

o calculation of the probability distributions of y(k,) = max{y(l), Lo y(M)} and k.

If these calculations cannot be carried out analytically, we can still get an approximate value using
random simulations.

PRELIMINARY EXAMINATION BY NUMERICAL SIMULATION

In order to test the validity of the algorithm proposed in the previous section, a numerical simulation
was made on a nonlinear reservoir series model as follows:

dsl/dt = —K18™ 4+ o7 + pl(t)
dspfdt = —K285™ + fK151™ + apr + p2(2)
. (17

dspfdt = —K.8,"+ BpnKno15n-1™ + on7 + pu(t)

y(t) = AK,s,"+w
where the transition equation of n-dimensional noise vector p(t) is the same as Eq. 9; w is a white normal
error series; i, ..., 8, are storage heights of the reservoirs; A is the basin area; Ky, ..., K, o1, ..., 0y,
B2, -..; Bn ate constants.

The series of expected discharge, the probability distributions of the peak discharge and the time to
peak were calculated by the method presented in this paper, and is plotted in Figs. 1 ~ 4. Linearization
by Taylor series expansion around the estimate values was used. After calculating the expected values
of runoff series and their covariances, we generated normal random numbers which have those expected
values and covariances. In Figs. 1 ~ 4, we also plotted the results of the Monte Carlo simulation in which
pseudo-random numbers were generated for all random noises in Eq. 17 and then the equation was solved
with these generated values. We generated the same number of discharge series, but the calculation time
spent by the method proposed in this paper was one thirtieth of the time spent by the Monte Carlo
simulation.

For this calculation, we assumed n = 5, m = 5/3, 4 = 120km?, K; = 2275 Pmm~2?/*h"1, 8, =
/(i + 1), 7y = 5h, 0,2 = 0.4(mm/h)?, i = 1,...,5, and also gave appropriate values to the variance of
w, the expected values and their error variance of rainfall r, the initial estimate values and the estimate
error variance of the state vector.

The probability distributions of the peak discharge and the time of peak obtained by using the
method of this paper show little difference from those obtained with the Monte Carlo simulation. There-
fore, it was verified that stochastic forecasting of temporal runoff variation is possible by the method
proposed in this paper, however the influence of the variation of rainfall intensity with time and its
covariance should be examined in detail.
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CONCLUSION

In this work, we examined the practical problem of providing the forecasting information of rainfall
and runoff in a style convenient for real management work, and proposed a new on-line forecasting
algorithm. At the same time, its validity was demonstrated by a simple numerical simulation. In this
simulation, although only the probability distributions of the peak discharge and the time to peak were
calculated, the probability distributions of total discharge volume, and the probability of surpassing the
warning water level within a designated time period can be also calculated in the same way.
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