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ABSTRACT

Sand-bed instability due to non-equilibrium suspended sediment is analyzed. Non-equilibrium
concentration distribution of suspended sediment is described by using a convolution-integral model for
turbulent flux distribution of suspended sediment of which impulse response is determined from the
experimental data obtained in the transition process of the Reynolds-stress distribution of flow with
abrupt change of bed roughness. The results reveals the effect of non-equilibrium suspended sediment
on sand-bed instability, or sand-wave formation, by comparing them with those by the analysis based
on non-equilibrium bed-load transport model previously conducted by Nakagawa & Tsujimoto.

INTRODUCTION

Kennedy (8) clarified that sand waves develop as a result of sand-bed instability and that the cause
of sand-bed instability is the phase shift of sediment-transport rate from the bed geometry. This phase
shift is composed of (1) phase lag of the bed shear stress to the bed geometry and (ii) the lag of sediment-
transport rate to the bed shear stress. Since his paper, a lot of works have been done to evaluate (i) and
(ii) quantitatively. Particularly as for the latter, Nakagawa & Tsujimoto (9) investigated it based on non-
equilibrium bed-load transport model and evaluated it reasonably related to the step length of bed-load
motion. In the case of suspended load, it is expected to take the excursion length instead of the step

length of bed-load motion. Previously, Engelund & Fredsde (1) analyzed sand-bed instability by taking
account of the fact that the excursion length of suspended sediment is considerably long. The difference
of sediment suspension from bed-load motion is, however, not only on the excursion length but on the
concentration profile of suspended sediment is distorted along the flow depth and even the change of the
sediment transport condition near the bed is somewhat influenced by the change of the concentration
profile. Watanabe & Hirano (18) analyzed sand-bed instability by focussing on the non-equilibrium
properties, but they hardly referred to whether their treatment of non-equilibrium sediment transport was
certainly reasonable or not.

In this study, it is especially focussed on how to describe non-equilibrium transport of suspended
sediment reasonably and in a simple mathematical form in order to conduct sand-bed instability analysis.
The authors carried out a series of research which is necessary to be done before the present study. The
summary is described below: (i) the proposal of relaxation model of turbulent-flux distribution due to
the change of bed shear stress, which is prepared as a convolution-integral form with the impulse
response; (ii) the determination of impulse response by using a wind-tunnel data of Jacobs (6) as for the
investigation on the transition process of Reynolds-stress due to abrupt change of bed roughness; (iii) to
confirm the applicability of the determined impulse-response function to an open-channel flow with
abrupt change of bed roughness; (iv) to inspect the applicability of relaxation model to the various
changing patterns of bed shear stress; (v) the application of the above model to the turbulent mass
exchange of suspended sediment according to Reynolds' analogy; (vi) the deduction of non-equilibrium
concentration profile of suspended sediment; and (vii) the experimental verification of the derived profile
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in a sediment laden flow with spatial change of bed shear stress. The above (i), (ii) and (iii) are
mentioned in Ref.(12). And (iv) was also inspected in Ref.(12) in case of open channel flow with
monotonous increase of shear velocity. The applicability of the model to an open channel flow with
higher Reynolds number was confirmed by field measurement of turbulence in Ref.(14), and the
applicability to flows with cyclic changes of bed roughness such as a flow over a diffuse gravel sheet (a
fluvial bed with longitudinally alternate sorting) was also inspected in Ref.(16). Furthermore, Ref.(15)
treated (v), (vi) and (vii). Mathematical expressions required to the main purpose of the present paper
are summarized in the following two chapters. If the non-equilibrium transport model is prepared, the
sand-bed instability analysis can be conducted though several problems should be provisionally solved.
In this paper, the analysis is proceeded being compared with the bed-instability analysis based on the
non-equilibrium bed-load motion of Nakagawa & Tsujimoto (9). Thus, one can easily recognize the
difference between sand bed instability due to suspension and that due to bed-load motion.

RELAXATION MODEL OF TURBULENT FLUX DISTRIBUTION

The response of the turbulent flux due to the change of the bed shear stress would be similar
between the momentum and the mass. The turbulent flux would adapt the new condition faster near the
bed and the response would delays more with distance from the bed. When the impulse response is
known, the transition process of the turbulent flux distribution can be described as follows (12):

T8 = [TunE-8-gr(SImas | )
0

in which T(n |£)=turbulent flux distribution at & &=x/h; x=longitudinal distance; 7=y/k; y=distance from
the bed; A=flow depth in the case of open channel flow; Te(n) |&)=equilibrium turbulent flux distribution;

and gr(d |n)=impulse—rcsponse function of the turbulent flux at the relative height 7. In the following,
the subscript ¢ indicates the values under equilibrium. The impulse-response function is often
approximated by an exponential function as follows (12):

[ = 1 _...é_. 2
gr(&lm) A(m‘”‘p[ A(m] @)

in which A(7)=relaxation scale made dimensionless by /4 at the relative height 7.

In the case of the Reynolds-stress distribution (#(n 1£)), its equilibrium profile is triangular, and
thus Eq.1 is rewritten as ‘

w19 = 1-n) (j T(E-8)-gr(SlMAS = (1-men(E)e En 1) 3)

oo

ojrb@-a)-gkcain)da - |
= _8)egr(8lmdé 4
0 Jvfb@ 8)-gr(S1m) @

in which (&)=bed shear stress at & and yi(E-O)=To(&-8)/1(E). E(n |6) represents the distortion of the

Reynolds-stress profile from the equilibrium profile (1-77). Applying the mixing length theory to the
distorted Reynolds-stress profile, one can obtain the velocity distribution under non-equilibrium (12).

A(1) was determined (Tsujimoto et al. (12)) as follows, according to the wind-tunnel data of
Jacobs (6) which clarified the transition process of the Reynolds-stress distribution.

Enlo=

A() = 20n(1+1.573) GY
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When 71=0, A=0 and then gg(£ 0) becomes a delta function. It implies that T(n 0)= (N 0). Tsujimoto
et al. (12) also confirmed the applicability of Eqgs.2 and 5 to an open-channel flow by comparing them
with the experimental data by Nezu et al. (1 1) which was obtained in open channel flows with an abrupt
change of the bed roughness.

TURBULENT FLUX OF SUSPEDED SEDIMENT UNDER NON-EQUILIBRIUM

The turbulent momentum flux (the Reynolds stress) and the turbulent flux of suspended sediment
are written as follows, respectively:

—= d dc
T = -pu'v =PVra"§ ; V=7V =g e dy 0

in which #', v'=turbulence in the longitudinal and the vertical directions, respectively; p=mass density
of fluid; vr=kinematic eddy viscosity (turbulent diffusion coefficient of momentum); u=velocity;

C=concentration of suspended sediment; c¢'=fluctuation of suspended sediment concentration; and &=
turbulent diffusion coefficient of suspended sediment.

Considering the analogy between the mass exchange and the momentum exchange due to
turbulence, one can write the following equation for the relaxation process of the turbulent flux of
sediment with the same impulse response (15):

e = G[%(n |&-8)gr(51mds | ®)

in which ggr(é fr}) is given by Eq.5; and the subscript e represents the values under equilibrium.
Under equilibrium, the upward flux of sediment by turbulence (¢v') must equal the downward
flux by the terminal fall velocity (Cevp), and thus,

(1 E) = vpeCe(n &) ©)

in which vy=terminal fall velocity of sediment. By applying Eq.7 to Eq.9, the equlhbnum concentration
profile of suspended sediment is obtained. When the diffusion coefficient of suspended sediment is
identified with the depth-averaged value of the kinematic eddy viscosity (gs=koush/6; Ky=Kdrmén
constant; us=shear velocity), the equilibrinm concentration profile is obtained as follows:

e(n) = exp(-En) : (10)

in which C,=bottom concentration (C at 17=0); and Ezvphlss=(6/ Ko)(vp/is). Then,

Fo(11€) = Caevpexp(-En) (1

As for the bottom concentration under equilibrium, a lot of works have been carried out, but still it
is difficult to judge which formulation gives the best evaluation among them (see Nakagawa &

Tsujimoto (10)). It can be expressed as a function of (vp/ux) and d*=(o/p-1)gd3/2, in which o=mass

density of sediment; g=gravitational acceleration; v=kinematic viscosity; and d=sediment diameter.
When the shear velocity varies spatially, we can rewrite Eq.8 as follows:

18 = v, d[cae(éé)'R(é—é)ogR(almds | (12)
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in which R(n |&)=exp[-E(&)-n].
NON-EQUILIBRIUM CONCENTRATION PROFILE OF SUSPENDED SEDIMENT

‘When the turbulent flux of suspended sediment is estimated, its integration through the flow depth
deduces a concentration profile as follows:

o
___h_
cmle = " Ofmlé)d4+ coly | | (13)

Without determining the boundary condition at 71=0 (C(0 Iéj)ECa(cf)), the following quantity can be
calculated.

7
C -Cy
ol = N L1 a4

in which the subscript 0 implies the undisturbed value.
The bottom boundary condition cannot be directly determined under non-equilibrium because of

possible erosion and deposition. While, the boundary condition at y=h (1)=1) is easily obtained by the
fact that a suspended particle cannot pass through the water surface, and that is,

vpCs(&) = (118 (15)

in which C4(&)=C(1|€). The right-hand side of Eq.15 has been already known by applying the
relaxation model, as follows:

C® = d{cae@«a)-Rs(é.&rgR(ah)da ; (16)

in which the subscript s implies the values at the water surface (17=1). ,
Non-equilibrium concentration distribution of suspended sediment is obtained as

B _anlp-aalp+S2 an

The applicability of the above profile was verified in Ref.(15) by using the data of Yalin & Finlayson
(17) and Kanda et al.(7).

The bottom concentration is obtained by setting 17=0 in Eq.17, as follows:

Cal s

vpC, implies the downward flux of sediment at the bottom. On the other hand, the upward flux is
regarded as the turbulent flux of sediment at the bottom, and since this responds immediately to the local
bed shear stress, it is expressed as vpCae. The difference between the downward and the upward fluxes
of sediment at the bottom brings about the variation of the bed elevation, and thus,

QLD _ y 1Ci0-Carl] (19)




FRAMEWORK OF BED INSTABILITY ANALYSIS

When the bed is undulated, the intensity of
the flow and subsequently the sediment transport g water surface :
rate vary longitudinally, and the change of X
sediment transport rate brings the change of the flow
bed geometry. In other words, an interacted T hy
closed system takes place. Sand-wave formation L
can be treated as an instability analysis of this T M}’—" - M;.,,j
system (Kennedy (8)). Particularly, when a linear / - T o nd bed
approximation is allowed, the initial small z(x,t)=a(t)esink(x-ct)
disturbance of the bed elevation (z), which is sinu-
soidal (Fig.1), brings about the small sinusoidal Fig.1 Definition sketch
perturbation of 9z/dt through the interaction of the
system, as written by

2(x,1) = @esink(x-ct) (20
% = grysin] k(x-ct)-¢71] 21

in which g=amplitude of bed undulation; x=angular wave number (=2n/L; L=wave length); c= propa-

gation celerity of the disturbance; and arr, ¢r=amplitude and phase shift of the perturbation of 9z/0t from
z, respectively. Comparing Eq.21 with the time derivative of Eq.20, we obtain the following relations:

%‘—%‘-:; =prcosgr 5  cK=prsingr 22)

Eq.22 implies that one can judge whether the disturbance grows or decays and which direction it
propagates if one can evaluate the phase shift ¢y, as shown in Table 1.

Table 1 Behavior of the bed disturbance

quadrature of ¢t behavior of bed disturbance
1 unstable moving downstream
2 stable moving downstream
3 stable moving upstream
4 unstable moving upstream

LINEARIZATION OF GOVERNING EQUATIONS

When the bed is undulated as written by Eq.20, the shear velocity varies in general with lag. Ttis
to be described as follows in a linearized mode:

ux(x,8) = uxo{ 1+regesin[ k(x-ct)-¢¢ } 23)

in which rpausg, ¢r=amplitude of the perturbation of the shear velocity and its phase shift from the bed

geometry, respectively; and the subscript 0 indicates the undisturbed values. ryand ¢ are evaluated by
an appropriate model of flow over a wavy bed. In the following, the dimensionless perturbation of the

shear velocity is represented by ax as follows:

o = regesin] k(x-c1)-¢¢] = rraesin® 24)



E and C, in Eq.10 are functions of the shear velocity, and thus the perturbations of E and Ce

normalized by their respective undisturbed values, wg and (Dcge, CAN be related to @y as follows under
hneax approximation:

_OE | M0 _ . _0Cq | Hx0 . ,
8= us lg Ep "% ="0x 5 Bcae =508 | Top 20 = Aluso)ax (26)

Moreover, the dimensionless perturbation of R involved in Eqs.12 and 16, ag, is expressed as follows: |

3;,;[ Ry "@x = Eomeax . : @7

Then, Eqs.12 and 16 are rewritten as follows:

» -
el E = Ro(n [[1+(A+EomanE-O)-gn(lpas

= Rom)[1+(A+Eon>ofwg<§-b)-gx<5ln)dé] | @8)

%@ ~Ros6{[1+<A+Eo>wf<§ -9)-gr(81)d6 = ROS[1+(A+E0)OI@<§ Srgr(3lnas]  @9)

By using Eq.28, (1 I§) is expressed as
1 ' oo
Quly= -EOJRO(H)[H(A"PEOH) OI ox(&-8)-gr(Slmas]dn
1 1 : e :
= ol JRotman + [(a+EgmRon [ex&-d-gr(@hnaslan

o .
=-1+Ros - Eg 6[ (A+EgmRo(1) 0! wi(&-8)gr(8lmdsdn | (30)

Then, the bottom concentration is expressed as follows:
. ,
T — 1+ RatasED0ED + Eo JasEmRoIarElman Gy
in which
x(E ln)Ed{wf(f-&'gR(Sln)d6 | | 32)

When the shear velocity has a sinusoidal perturbation (@) as written in Eq.23 or Eq.24, (¢ ln) is
calculated as follows by using the impulse-response function given by Eq.2:

(€ n) = r(mearpsin[©-¢,(1)] = ard By(n)+sin@-By(m)+cos6] (33)




in which
. K*A() - 1
Bi(m=r{n)esin = et = Bo(=r(1)°C0S = e 34
1(m=r(m)esin{g(m)] LA 2(M=re(1)ecos[¢:(N)] LAME (34
and x*=xhy (hp=undisturbed flow depth). A(%n) is given by Eq.5.
The dimensionless perturbation of C,, tx,, is written by
0ca = ar Kosin@- K1c0s0)] = arre,sin(6-cy) e (35)
in which
1
TeaSin@ca = K1 = Ros(A+E)B1s+ Eg [(A+EomRo(MB1(mdn ;
, . 1
7caCOSPea = K3 = Ros(A+Eg)Bas+ Eg [(A+EemRo(mB2Am)dn (36)
Substituting Eqs.26 and 36 into Eq.19, we obtain the following equation.
d .
'a'i" = VpCaet Dea- Weae) = a7 prCan[(KZ‘A)Sm 6K icos06)]
= arVpCactrusin(@-¢,) = arrsin(E-¢,) 37
in which | |
rasingy =K1 ; ruCos Py = Ko-A (38)

and arr=av,Cacp?u's, Px=amplitude of the perturbation of dz/ot and its phase shift from the perturbation
of the shear velocity (ax), respectively. The phase shift of dz/d¢ from the bed geometry (2) is given as
- ¢r=0,+¢r, and thus,

rusingr = Kicosge+(Ko-A)singe ; racos¢r = -Kysinge+(Ko-A)cosde (39)

When Eq.22 is applied, the behavior of the bed disturbance is characterized by the following
equations:

*Eh_oaa

vl 31 = r1cosdy = Caepl -K1ressingeH(Ko-A)rpcosds) ' (40)
N* = = prsingp =C20 [k Ky-Arpsing] | 1)
=5, = prsingr = " 1rescos@et(Kop-A)rprsings

in which ree=rehg (dimensionless). Eg, Ro and A are in generaly expressed as functions of (uxo/vp) for
the constant sediment properties. Bj and B> are functions of x*. Thus, K and K are functions of

(uso/vp) and x*. Meanwhile, rpsings and re<cos¢e might be functions of x* and the flow parameters
such as the Froude number and the relative depth.



MODELS FOR FLOW OVER WAVY BED AND SEDIMENT ENTRAINMENT

When ¢r is evaluated, one can judge the stability of the bed for non-equilibrium suspended
sediment transport. The problems which remain to be resolved are (i) to establish a model for flow over

a wavy bed to determine ¢; and (ii) to establish a model to estimate the equilibrium bottom concentration
Cae0 and to evaluate A(usg). : : :

Model of Flow over a Wavy Bed:

For the problem (i), turbulent shear flow model has succeeded in shear flow analysis (see Ref.(10)
for example) though the earlier studies adopted a potential flow model or a one-dimensional flow model.
In this paper, a model proposed by Nakagawa & Tsujimoto (9), which is never a rigorous flow model in
these days but by which the bed instability due to bed-load motion is analyzed, is adopted, in order to
compare the effect of non-equilibrium sediment suspension on sand-bed instability with that of non-
equilibrium bed-load motion. The following resistance law is assumed here:

700 = BpU?(1- 23 @)

in which U=representative flow velocity; Se=resistance coefficient; and %=empirical constant. In the
above, the effect of the spatial acceleration was taken into account. A similar expression was already
adopted in Hayashi's analysis (3). When the flow depth and the representative velocity are assumed to
be given by the potential flow model over a wavy bed (Kennedy (8)), the dimensionless perturbation of

the bed shear stress, @, which is twice @r because us~V 1, is expressed as follows:

@ = 20 = 2rgaesin[K(r-cr)- ¢ | ' 43)

K*(R*-1
ressinge = &—2—%5——2 ; resCOS@y = K¥F* 44)
Fr2x*sechk* 1-Frix*tanhx* :
R¥= ——oooor— F¥= ——ooo 45
Fr2g*-tanhx* tanhi*-Fr2x* “3)

in which Fr=Uy/N ghp=Froude number of the undisturbed flow. Without the effect of the spatial
acceleration, %=0 and the shear velocity and the flow velocity are in phase, and ¢ is O or .

Model for Sediment Entrainment from a Bed:

For the problem (ii), the following empirical formula is adopted here:
U 2
Cee=o5-)"[1- DT (46)
P i .

in which «, m, n=empirical constants (0=0.002 m=2; n=1.5 according to the previous experimental
data, see Nakagawa & Tsujimoto (10)); ﬁcE(u*va)z; and usc=critical shear velocity. f; depends on
d*=(o/p-1)gd3/v2. Then, Eq.26 provides an expression for A as follows:

A =ms2nB( -3; > 8.7 | @n
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If the argument is limited to the range where (us/vp) is sufficiently larger than fB;, A=m. As for the

critical tractive force, Iwagaki's formula (5) is familiar, and it can be approximated by the following
equation (Tsujimoto & Saito (15)).

} ,
\B.= TE;S =(0.04554*)065+0.25 “8)

in which Rubey's formula (see Ref.(10) for example) has been used to determine the terminal fall
velocity.

RESULT OF INSTABILITY ANALYSIS

When the above-mentioned models of flow and sediment entrainment are provisionally adopted,
the dimensionless growth rate and propagation celerity of the perturbation are written as follows:

M* ho K 1’)’2(R -1)
Lk

+(K-A)F* | i+ @9

(K2-A)pp(R*-1)

‘ %
gk oz o & *y
N K\ F¥+ 272

G0

The singularity, which makes the denominators of Eq.49 or Eq.45 zero, is expressed by the
following relation, which is often termed "Airy's relation.”

e tanhx*

(&Y

Eq.51 gives the critical Froude number, and if the Froude number is smaller than it, the flow is in the
lower regime; otherwise in the upper regime.
The neutral stability (M*=0) is given by the following relation.

D1FrA-DoFr2+D; =0 (52)
Dy =2(Ky-A)i*tanhi* ; Do = Ky ppK*(sechk*-1)+2(K2-A) ; D3 =-Ki1ptanhx*  (55)
Thus,

Fr2= Doty %—41) 1D3

: (56)

When (D72-4D1D3)<0, the neutral relation does not exist; and when the right-hand side of Eq.56 is
negative, such a relation is meaningless. Egs.51 and 56 represent the borders which distinguish
unstable regions from stable ones.

The relation which corresponds to N*=0 (stationary disturbance) is expressed as follows:

D4FrA-DsFr2+Dg =0 57)

D4 =2K x*tanhx* ;  Ds=2K;-[(Ky-A)psechx®-]x*;  Dg = (Kr-A)ptanhi*  (60)
Thus,

Fri=

D5\ Ds2-4D4Dg 61)
2D

4
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When (D32-4D4D¢)<0, no relation exists where N*=0; and when the right-hand side of Eq.61 is
negative, such a relation is meaningless. Egs.51 and 61 represent the borders at which the propagation
celerity of the disturbance changes the sign. '

Phase Shift of 0210t from the Shear Velocity, ¢x:

The phase shift ¢, has been calculated by Eq.38 with the aid of Eqs.34 and 35. On calculation, it
has been assumed that §,=0.8, which corresponds to the sediment whose diameter is almost 0.5mm.
The calculated values of ¢ are plotted against x* with uxo/vp as a parameter in Fig.2. ¢y increases

with x* monotonously from O to &; that is, ¢, varies in the 1st quadrature in the range of lower wave
number, and then varies in the 2nd in the range of higher wave number. ¢ increases more gradually
with x* for the smaller value ofuk*o/vp, while more rapidly approaches to ® for the larger value of
UsolVp.

The dashed curves in Fig.2 are the results in the case of non-equilibrium bed-load transport
(Nakagawa & Tsujimoto (9)), in which Ag represents the mean step length of bed load. The dashed
curve (e) corresponds to Ag/ho=1.0 and (f) to Ap/ho=10. Since the mean step length is roughly

proportional to the sand diameter, y1=Ap/hg increases with the relative submergence (ho/d). In the case
of bed-load motion, 9z/0r is expressed as a difference of the deposition rate to the pick-up rate instead of
Eq.19. When the perturbation of the pick-up rate is expressed as a sinusoidal curve, that of the
deposition rate becomes a sinusoidal curve with the same amplitude and the phase shift belonging to the
1st quadrature. Then, the phase shift of dz/dt from the perturbation of the pick-up rate belongs to the
2nd quadrature. In the case of suspended sediment, on the other hand, 9z/0¢ is expressed as the
difference between C, and C,, and C,, has a phase shift belonging to the 1st quadrature and the different

(suppressed) amplitude against C,.. Hence, the cosine of ¢ is not always positive while its sine is
always positive, and thus ¢, belongs to the 1st or the 2nd quadrature. This study emphasizes that the
sand-bed instability due to a non-equilibrium suspended sediment cannot be explained by the model for

bed-load transport even if one simply replaces the step length of bed-load motion by the larger excursion
length of suspension. i

at

n : —

1.0 1.5 2.0
: K*
(@) usofvp= 1.0 (b) uso/vp=3.0; (c) Uso/Vp= 5.0, (d) u*o/v;,:‘l().()
----- non-equilibrium bed-load model: (e) Ap/ho=1.0; (f) Ap/hy=10
) (Ap=mean step length)

Fig.2 Phase shift between 0z/9f and shear velocity, ¢z

Phase Shift of the Shear Velocity from the Bed Geometry, ¢

The calculated result of Eq.44 is shown in Fig.3, which was already published by Nakagawa &
Tsujimoto (9). The parameter 7, was set 1.0. The figure suggests that ¢¢ decreases against k* from

zero and belongs to the 4th quadrature in the case of the lower regime; while it is nearly = in the case of

the upper regime unless the flow depth is out of phase to the bed geometry (R*>1 for relatively lower
wave number range), otherwise it is nearly zero.
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Fig.3 Phase shift between shear velocity and bed geometry, ¢

Phase Shift of 3219 from the Bed Geometry, ¢y, and Bed Instability:

The sum of the phase shifts ¢r and ¢,; provides the phase shift of dz/0t from the bed geometry, ¢r,
and it is used for judgement of the bed instability (see Table 1). The calculated value of ¢y is shown
against x* with Fr and uso/vp as parameters in Fig.4. In the lower regime, ¢t may belong to the 1st
quadrature for relatively lower wave number range (k*<=1.0), and it corresponds to unstable bed

disturbance propagating downstream. On the other hand, in the upper regime, ¢ may belong to the 4th
quadrature for the relatively lower wave number range, and bed disturbance falls unstable propagating

upstream. For the relatively higher wave number range, ¢r may belong to the 2nd quadrature.

2n 3
st - unstable
moving upstream
Ly
T stable
unstable
moving downstream
0

0 0.5 1.0 1.5 2.0 -
— Fr=02 (@) usofv=10 "
== Fr=0.4  (b) usg/vp= 3.0
e Fr=(0,8 (©) usg/vy= 5.0
T FELS ) usglvg=10.0
Fig.4 Phase shift between 0z/9f and bed geometry, ¢1

Now that the quadrature which ¢r belongs to is known, the regions are divided in the Fr~x* plane
according to whether the disturbance is unstable or stable as shown in Fig.5. The borders of the
regions are expressed by Eqs.51 and 56. In Fig 6 is shown the result of Nakagawa & Tsujimoto (9) for

bed-load motion, which is consistent to the result by Hayashi (3). In Fig.6(a), unstable region in Fr~x*
is shown (while Fig.6(b), propagating directions are shown; and in Fig.6(c) unstable regions are
compared with the observed data). Comparing Fig.5 with Fig.6, one can see that the present result has
different aspects from the results based on bed-load transport model as follows: In the lower regime,
 disturbances with the wave number near the wave number which satisfies the Airy's relation are stable,
and thus the lower-regime unstable disturbance, or lower-regime bed-forms have relatively low wave

number when the Froude number is relatively high (but of course smaller than the critical Froude
number). In the upper regime, disturbances with extremely low wave number are stable.
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Fig.5 Unstable region in Fr~x* plane based on the present model for suspended sediment
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Fig.6 Results of bed instability analysis based on bed-load model by Nakagawa & Tsujimoto

The regions are divided in Fr~x* plane
according to the propagation direction of disturbance
as shown in Fig.7. The borders are expresscd by
Eqgs.51 and 61.

Equation 51 and the following equauon
represent the borders between the region where the
flow depth is in phase to the bed geometry and that
where it is out of phase to the bed.

tanhx*

Frls—m———
k*(sechx*-1)

(62)

The change of the dimensionless growth rate of
disturbance (M’ **) against the wave number with Fr
as a parameter is shown for two different values of
(uso/vp) in Fig.8. ~(uxo/vp) represents the predomi-

4.0 T
Fr \ : uso/vp=5.0

3.0 \

migrating upstream
2.0 |- migrating
| upstream \
1.0 o
o /mg7rat ng downstrcam
0 0.5 1.0 1.5 2.0

K*

Fig.7 Propagating direction of disturbance

nance of suspension compared with bed-load motion, and the relation among M**, x* and Fr changes
with this parameter obviously. M** has a maximum at a certain value of k* under a constant value of

Fr. The dimensionless wave number corresponding to such a maximum growth rate (x*p) is shown as
a function of the Froude number in Fig.9. This relation would estimate the predominant wave length of

sand waves when suspended sediment dominates.
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" Fig.8 Growth rate of bed disturbance due to non-equilibrium suspended load
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Fig.9 Predominant wave length defined by maximum growth rate

CONCLUSIONS

The results obtained in this study are summarized below:

(1) When the suspended sediment is predominant, the bed deformation is expressed as the
difference between the upward turbulent flux of sediment and the downward flux due to fall velocity at
the bottom. For the spatial change of the shear velocity, the turbulent flux responds immediately at the
bed but the relaxation distance of the response of the turbulent flux increases with the distance from the
bed. Itimplies that the upward flux responds to the bed shear instantaneously.

(2) Applying the relaxation model of the turbulent flux with the concept of impulse response, the
non-equilibrium profile of turbulent sediment flux can be estimated. The impulse response has been
determined by the investigation of the transition process of the Reynolds-stress (turbulent flux of
momentum of the water) of flow with an abrupt change of the bed roughness.

(3) By integrating the turbulent flux profile of suspended sediment, the concentration distribution
is obtained. The boundary condition is given at the water surface based on the following fact: Even
under non-equilibrium, the (upward) turbulent flux of sediment is equivalent to the downward flux
expressed by the product of the fall velocity and the concentration at the water surface.

(4) From the boundary condition at the water surface and the calculated turbulent flux of sediment,
one can estimate the non-equilibrium bottom concentration. The product of it with the fall velocity gives
the downward flux of sediment at the bottom.

(5) When the spatial change of the shear velocity of the flow is expressed by a sinusoidal wave
with a small amplitude, the phase lags and the amplitudes of the perturbations of the responding
equilibrium and non-equilibrium bottom concentrations are deduced as functions of the wave number
and the shear velocity. The amplitudes of these two are different. The phase shift of the equilibrium
bottom concentration has the same phase with the shear velocity but that of the non-equilibrium bottom
concentration is larger than that of shear velocity by the phase belonging to the 1st quadrature. As a

result, the phase shift of the time derivative of the bed elevation (dz/07) from the shear velocity, ¢y,
belongs to the 1st or the 2nd quadrature.

(6) The effect of the spatial derivative of the flow depth has been taken into account in the relation
between the shear velocity and the representative flow velocity. By applying the potential flow model,
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the spatial change of the flow depth and the representative velocity over a wavy bed have been estimated.

As a result, the phase shift of the shear velocity from the bed geometry, ¢y, is estimated as a function of
the wave number and the Froude number of the undisturbed flow.

(7) The phase shift between dz/d¢ and the bed geometry, ¢r, has been evaluated as ¢,,+¢r. The

linear instability analysis reveals the relation between the behavior of the bed disturbance and ¢r. The
growth rate of the amplitude and the propagation celerity of the bed disturbance have been evaluated
against the wave number with the Froude number and the shear velocity as parameters. The relation
between the predominant wave number and the Froude number has been also deduced.

(8) The difference of the results based on the theory of non-equilibrium suspended sediment
transport from those based on the non-equilibrium bed-load transport model has been pointed out, but it
has not yet confirmed by the flume data.

Sand-bed instability usually observed is caused not only by non-equilibrium suspended sediment
transport but also by non-equilibrium bed-load transport. In this study, the role of the former has been
separately treated. Sand bed instability due to a combination of the both transports should be inspected
as the next step of research. :

The basic idea and the outline of the analysis were already published in Ref.(13) in Japanese.
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APPENDIX - NOTATION

The following symbols are used in this paper:

a = amplitude of bed-surface disturbance;

A = defined by Eq.47;

B; = defined in Eq.34 (j=1, 2);

¢ = propagation celerity of perturbation;

C,c = concentration distribution of suspended sediment and its fluctuation;

Ca Ca = concentration of suspended sediment at bottom and at water surface,
tespectively; -

d = sediment diameter;

a* = (o/p-Dgd*V2,

D; = defined by Egs.55 and 60 (j=1~6);

E = VphfEs;

F* = defined by Eq.45;

Fr = Up/N ghy = Froude number of undisturbed flow;

g = gravitational acceleration;

ar(8lm) = impulse response of turbulent flux at the relative height 7;

h = depth of flow; '

K; = defined in Eq.36 (j=1, 2);

L = wave length of bed undulation;

m,n = empirical constants in Eq.46;

M*, M** = dimensionless growth rate of perturbation defined in Eqs.40 and 49,
respectively;

N*, N** = dimensionless propagation celerity of perturbation defined in Eqs.41 and 50,
respectively;

o = ratio of amplitude of the perturbation of the quantity Q to that of bed geometry;

rix =rehg;

R =exp(-En);

R* = defined by eq.45;

t = time;

T = turbulent flux;

u, U = local velocity and depth-averaged velocity;

Uske, Uk = shear velocity and critical shear velocity;

u',v' = turbulence in longitudinal and vertical directions;

Vp = terminal velocity of sand;

= longitudinal distance;
¥ = height from the bed;

z = height of bed surface from the mean bed level;
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o = empirical constant in Eq.46;

Be = Uso/Vp;

B = a kind of resistance coefficient;

n = Ap/hy;

¥ = empirical constant in Eq.42;

o = deviation of turbulent flux under non equilibrium from equilibrium one and

defined in Eq.4;

& = diffusion coefficient of suspended sediment;

n = y/h = relative height;

o = Kl (x-cn)-¢xl;

K, K* = angular wave number and its dimensionless version (ihp);
Ko = Kdrmdn constant; ' ‘

A(M), Ag =relaxation scale non-dimensionalized by h at 77 and its value at the surface;
Ap = step length of bed load,

v, v = kinematic viscosity and eddy kinematic viscosity;

& =x/h;

= = dimensionless change of bed shear stress defined by Eq.4;
p, o =mass density of water and mass density of sand;

T = Reynolds stress;

T = bed shear stress;

T, Tih = dimensionless bed shear stress and dimensionless critical tractive force;
o = phase shift of the quantity O from the bed geometry;
¥(6-6) = 1p(S-0)/T(8);

b d = turbulent flux of suspended sediment;

[0 = dimensionless perturbation of the quantity @; and

£ = defined by Eq.14.

Subscripts:

€ = values under equilibrium conditions;
f = values with respect to the perturbation of shear velocity;

K = values at the water surface;

T = values with respect to dz/d¢ and z;

7t = values with respect to dz/d¢ and shear velocity;

0 = undisturbed values.
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