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SYNOPSIS

This paper describes a probability model of heavy storm patterns with
multi-local peak intensities. The definitions of a storm cluster and a storm part
lead that these occurrences follow Poisson and logarithmic series probability
distributions, respectively. Using combined Freund's bivariate probability
density functions we have the joint probability distribution of duration, depth,
and local peak for a storm part. From those of multi-storm parts, the joint
probability distribution function of total duration, local depths, and local peak
intensities for a single storm cluster with multi-storm parts is derived.
Examples of 2-peak design storm patterns are demonstrated.

INTRODUCTION

According to the technical manual for river engineering and erosion control
(a revised draft), Ministry of Construction, Japan, published in 1977, a design
storm for flood-control and multi-purpose projects in river drainage areas in
Japan was defined to have three characteristics, the total rainfall, temporal, and
spatial distributions. Considering the magnitude of drainage area, the rainfall,
and reglonal characteristics, we usually set the design storm duration at 1 to 3
days. In essence, the magnitude of project has been evaluated by the return
period of the design total rainfall. Following the determination of the design
total rainfall depth, the time distribution-shape (storm pattern) is determined to
be almost the same as the storm pattern of a historical heavy storm that had
caused a large flood. This method is called the enlargement method of historical
storms, and i1s easy and simple in application. However, this method often leads to
overestimation of the peak rainfall intensity, so that some empirical modification
of the storm pattern should be required. Thus, the current method for
determination of a design storm pattern in Japan has not been strongly supported
by the theory of probability. Especially, the joint probability of the design
total rainfall and hourly rainfall intensities around the peak intensity governing
the maximum discharge of flood has not been clearly clarified, although it is very
important for the determination of the design storm patterm.

Hashino(4) proposed a new method for evaluation of the joint occurrence
probability of total rainfall and peak intensity for a single storm part using
Freund's bivariate probability density function, and stochastic criteria for
determination of design storm patterns were demonstrated. This method takes
into account the autocorrelation coefficient of heavy hourly rainfall intensities
around the peak, as well as the crosscorrelation coefficient of total rainfall and
peak intensity.

Although the theory of this method is based on a single storm part with a
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single peak, actual heavy storms with long durations often have multi-local peaks
(local maximum rainfall intensities). Therefore, in this paper we propose a
probability model for evaluating multi~local peaked design storms using combined
Freund's bivariate probability  density functions that were developed by
Hashino(2).

DEFINITION OF A STORM CLUSTER AND A STORM PART

As shown in Fig. 1 a storm cluster is defined as a sequence of rainy Il-hr
periods bounded by two dry periods, where there is no rain or no local maximum
rainfall intensity exceeding a threshold value of x , at the beginning and at the
end. The duration D of the storm cluster is assumed to be longer than a threshold
value d , as well as the local maximum(peak) rainfall dintensity vy, (i=1,2,¢°¢)
larger %han x . Otherwise, it is considered to be a drizzle, and thesSe drizzles
are not modeled because the aim of this paper is to formulate heavy storm patterns
with multi~local peaks for design floods.
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Fig. 1 Schematic depiction of a storm cluster and a storm part

A storm cluster often has multiple local maximum intensities. If a storm
cluster has n(z2) local peaks, then we subdivide the storm cluster into n parts
that are refferred to as storm parts.

In practise, selection of storm clusters and subdivision of them into storm
parts are based on the smoothed series obtained by a 3rd-order simple moving
average scheme. The reason is that mesoscale precipitation areas are observed to
have average life spans of 2 - 4 hours in Japan.

PROBABILITY MODEL FOR A STORM CLUSTER WITH MULTI-LOCAL PEAKS
Probability Distributions of Numbers of Clusters and Parts
Consider a certain period of time, such as the rainy season and the  typhoon
season. The occurrence number Nc of storm clusters in the period is assumed to
follow a Poisson process:
P[N_ = n] = A"eexp(-A)/n! (n = 0,1,2,%2%) (1)
where A = occurrence rate of storm clusters in the given period.
We assume that the number N_ of storm parts given a storm cluster follows a
logarithmic series probability digtribution with the parameter © (0<8<1):
PN, = n|N = 1] = y-6"/n (n = 0,1,2,%2) , (2)
where

v = ~{log(1-6) 371 3)

A negative binomial distribution for the total number of storm parts in a
certain period can arise as the distribution of the sum of Nc independent
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variables each having the same logarithmic series distribution, when NC has a
Poisson distribution.

Joint Probability Distribution Function for a Storm Part
A single storm part is considered to consist mainly of three components of

the duration d, the depth r, and the local peak intensity y as shown in Fig. 1.
The trivariate joint probability distribution function H(d,r,y) is defined by

" H(d,r,y) P[Dp<d,Rp<r,Yp<y]

P[D <d,R <r]-P[Y <y|{D <d,R < 4
[ b b r]-P| P v b . r] (4)

If the crosscorrelation coefficient p between r and y is larger than Pq between
d and y, the following approximation &in be permitted. v

P[Y <y|D <d,R <r] = P[Y <y|R <r] = P[R <r,Y <y]/P[R <r 5
[py!p <71 Ipy!pr] [R <r,¥ <y]/P[R <r] (5)

Therefore, the trivariate joint probability for a storm part can be approximately
represented by a couple of bivariate joint probability distribution functions;
that is,

H(d,l‘,}’) = H(dal‘)'H(r,y)/H(l’) ) (6)

In essentials we make use of Freund's exponential distribution as the
bivariate distribution. If a combination of two or three Freund's distributions
yields a better fit to observations, then the combined Freund's distribution may
be employed. A combined density function £(n,&) composed of two Freund's
distributions is defined as

albzexp{—bzn—(al+bl—b2)i] (0<£<n,€<ul) (7a)

) - b asexp[-a,t-(a;+b;-a,)n] (0<n<g,ﬂ<ul> (7b)
alﬁzexp[“82(n~vl)~(al+81—52)(g-vl)] (0<E<n) (7¢)

Blazexp[-aZ(E-vl)-(al+81—uz)(n—vl)} (0<n<g) 74

where al, bl’ 32’ b,=parameters for the lower class density functions of n and £&:
Egqs. 7a and 7b; ul,% ,0.,,B,=parameters for the upper class density functions: Egs.
7c and 7d; v.,=Constafnit;” and u,=critical(connective) value of n and & that
classifies the combined Freund's distribution into the two regions shown in Egs.
7a; 7b and 7c; 7d. In the case of =, Egs. 7a and 7b become the original
Freund's equations(Freund(1)). :

From continuity conditions of the marginal density function £,(n), the
conditional distribution function F(Ein), and the marginal distribution functions
Fd(n) and Fr(E) for n=£=ul, the following equations are derived.

by = B3 8y =9, (8

<
i

L= [={(a ) /(e +8 )} u, )

Under the continuity conditions shown in Eqs. 8 and 9, independent variables
of the combined Freund density function in Eq. 7 are the parameters: a., b,, a,,
b, I and 82. These six parameters can be estimated by the maximum ~1likeélihood
method as
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3 >
l/a1 = { j§1 gj + j§1 ”j + Nyuy }/N11
l/bl = Nll/(leal)
N (10)
2 <12> <12>
Ve, = 3 CE- 5 m,
1/b. = N%l ( <11> <ll> y/N
27 g2 UMy Ty 11
N N
_ 21 <21> 22 <22>
oy =144 jE1 Ny 7 Npup 3Ny,
N (1)
21 <21> <21>
1/82 = ng ( nyo- Ej )/N21

11 12 21 22
where N, =N, +N,,; (<%%>,<E.>), (<%?>,<£.>), (<%%> <E.>), and (<%?> €7 =samples

3 3 3 g )
of the bivérigge (n? £) gatisfyiﬁg thd regians: J(0<£<n,£<u1°}, (6<n<£,n<u )
(ul<£<n), and (u,<n<g), respectively; and N, , N.., NZI’ N,,=sample sizes for
these four regions. If N,.=0, then the continuity conditions of f,(n) and F(E!n)
should be replaced by fr(%} and F(n]g). Consequently, when N21=0, the parameters
a., B,, o,, and B, of the upper class distribution are FTe-estimated by the

following equations.

@y = a3 By =Dy (12)
N N
B 2 <22> 2 <22>
178 = 1 jil 8 F jil ny - Npup My,
(13)
N
22 <22> <29>
a, = jgl( & - M )Ny,

This parameter estimation method can be easily extended for a combined
density function composed of three Freund's distributions. The details are
omitted from here on.

The crosscorrelation coefficient p of n and & for the upper class density
function shown in Egqs. 7c¢ and 7d can bengxpressed in terms of the corresponding
parameters as

= - 2 2 2 2
poe = (@y8,=0,8,)// (a2+20, 8 +62) (B3+2a, 8, +o?) (14)

It is easily found from Eq. 14 that p_, varies within the domain: -1/3<p__<I1.
In practise, the original bivarigée, say (d, r), should be transforﬁéd to the

following dimensionless bivariate (n, &):
n = (d—udc)/{edod}; g = (d-urc)/{ercr} (15)

where o,, 0_=standard deviations of exceedances (d-u, ) and (r-u c), respective-
ly; u, , u__=specified base levels; €,, ¢ =coefficients of modifi€ation. For a

given value sSet of ul, udc’ urc’ ed, and Er the maximum likelihood method provides
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the parameters of the combined Freund distribution. We have to search for a set
of u u, , u_, €,, and &_ that leads to a satisfactory fitting of combined
Freuné marginal distributions F.,(n) and F_(£) to the corresponding empirical
distributions plotted by Gringorten's formula.

Formulation of the Storm Pattern Given the Peak Intensity

Consider a single storm part with a
peak intensity y as shown in Fig. 2. Let X
‘x, be the rainfall intensity at discrete L
t%me i before or after the peak, measured
to the 1left or right of the peak, respec—
tively, and x,_ be the rainfall inten-
sity at the timé (i-1) with time interval
At(see Fig. 2). By the definition of a
single storm part with a peak, the rainfall
intensity decreases monotonously away from
the peak; that is, x.<x, .. Therefore, we
can obtain the condl%lonal probability

distribution function G(x, f ) from a 9

Freund distribution with identical marginal th ' ta
distributions  where wu,=», a,=b,=a, and Fig. 2 A single storm part
a =b2=8 in Egs. 7a and 7b. Tﬁe rainfall with a peak

intensity X is transformed into a reduced
variate z, as

= (x5 - ) / o, (0<u_<x,) (16)

where u_=base dintensity level and o _=standard deviation of the exceedance

;e ). Uz We can obtain the same conditional probability distribution function
G(z |z, 1 as that of G(x |x, l . Considering that the variance of the reduced
variate z, equals to unlty, a%d rewriting the equation of G(z ]z ) with respect
to z,, we have the following equation(Hashino, (3)).

exp(—kzi) = 2G'(l—k)exp(-kzi_l)+(l—G) (k=1/2, 0<k=1)

an
z; = Gez, +H(2/T/7)G (k=1/2)
where
k = af/B (18)
A = (2k-1)Y3k2+1 /2k (19
with G denoting a given value of G(z }z The ratio kZoa/B governs the
autocorrelation coefflclent of zl :
= (1-k2)/(1+3k?) (20)

It is clear from Eq. 20 that p_=0 for k=Il, P, +1 for k>0, and p_+-1/3 for k>w, In
practise, an appropriate value of p_ in the” range of O<p <1 will be adopted, so
that the ratio k may be in the rangezof 0<ksl1.

For the purpose of stochastic formulation of design storm patterns, the
conditional probability G may be assumed to be time-invariant before and after the
peak. Hence, the values of G before and after the peak are denoted as Gb and G s
respectively.

In summary if k, G, and y are given, Eqs. 16 and 17 provide a sequence of x,
or a discrete hyetograph in time interval At. Therefore, a design one-side
hyetograph before or after the peak with the sub-duration d , the sub-depth T and
the peak dintensity vy can be obtained by searching for the optimal couple of
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parameters: k and G which minimize the following sum—of-squares function.

= _ 5° 2 -
Sk, Gld_, r, ) = (x =% )%+ (xp = %

)2 (21)

where xi=hourly rainfall intensity calculated by Eqs. 16 and 17; x, =calculated
intensity at the last hour of the sub-storm part after the local peak; and
xba=dummy parameter defined as

0 for the beginning and the last sub~storm parts
XoT ) % for sub-storm parts after the local peaks (22)
¥
XL otherwise

with XL'=calculated intensity at the last hour of the preceding storm part.

Joint Distributions of Depths, Durations, and Multi-Local Peaks for a Storm
Cluster

Let a single storm cluster consist of two storm parts with d,, r,, and vy,
(i=1,2). Assuming that dl’ Tys and y. of the first part are indepéndeﬁt of d }
Tys and y, of the second part, the joint probability distribution given two par%s
can be represented as )

H(dl’ Tis Yy3 dz, Ty yZ]Np = 2, NC = 1)

= PIDL <d R <ry Y <y 3D 5o R ) <rys Y )<Yyl
= P[Dp1<dl,Rpl<rl,Ypl<yl]~P[Dp2<d2,Rp2<r2,YP2<y2] (23)

Using Eqs. 5 and 6 to Eq. 23 gives

H(dl,rl,yl;dz,rz,ylep =2,N, = 1) = iﬁlﬂ(di,ri)~H(ri,yi)/ﬂ(ri)

2
= igler(ni’gi)‘Fry(gi’gi)/Fr(gi) (24)

where Fd (n,,8,), F (E.,Ci)=combined Freund bivariate distributions for
dimensiofilesd variates nl and &, of d, and r, of the i~-th storm part and
dimensionless wvariates £, and ¢, of r, and y,, réspectively. Thus, Eq. 24 leads
to the conditinal joint p¥obability distributIon for a storm cluster with n storm

parts as

H(dl,rl,yl;dz,rz,y2;°--;dn,rn,yn|Np = n,N_ = 1)

= 1=1 Fdr(ni’gi)'Fry(gi’gi}/Fr(gi) (n=1,2,°°°°) (25)

The n-fold convolution of the marginal distribution F_ (n) of d per storm part
gives the probability distribution of the total duration D_(=d +e+++d_ ) for a
X . n n
single storm cluster with n parts under the assumption that d,(i=1,2,°+<,n) are
mutually independent. Therefore, the distribution of the totdl duration D per
storm cluster is given as




87

HD(DINC = 1) n§1P[Dn<DINp = n,N_ = 1]-P[Np =nlN_ = 1]

o

B tyo"m) B () | (26)

% .
where Fn (n)=distribution of dimensionless variate n of D obtained from the n-fold
convolugion of the marginal distribution F,(n). Similarly, we can derive the
marginal distribution of the total depth R per storm cluster as

. ,
HR(RlNC =1) nglP{Rn<Rle = n,N, = 1]-P[N = n]Nc = 1]

£ etmy ) @n

*
where F_ (g)=distribution of dimensionless variate £ of R obtained from the n-fold
convolution of the marginal distribution F_(&).

If X o and ¥ o are the maxima of total durations D, and total dezg?s Rn with
n-peak storm clus%ers, the probability distributions H(n)(x ) and H (X, ) can
. D Dn R Rn

be derived as

Hén)(an) exp[—A{Yﬁn/n}{l—Fg*(n(n))}] (78)

n ¥ '
™M () = expl-A{y6"/n} (112" (£} | (29)
where n(n), E(n)=dimensionless variates of ¥ and X, s, respectively.

Similarly, if XD and ¥, are the maxima g? total durations D and total depths
R, respectively, of storm cﬁusters occurred within the season, the non-exceedance
distributions HD(XD) and HR(XR) are derived as

Hp(xp) = eXP[—A{l—HD(xD}NC = 1)}]

© %
= exp[-A{1-_¥ {y6"/n}F] (n)}] (30)
n=1 d
_ _ _® n n*
He (xg) = expl-Al1- & {y6"/n}FD (£)}] (31)
Thus, Fhe return pgriods TDn’ TRn’ TD’ and TR of an, XRn’ XD’ and XR’
respectively, are defined as
_ (n) i — oy @ )
Ty, = V0= B g ) s Ty = /11 = B "™ G ) 15
‘ (32)
T, = /01 - By Tp = /11 = B(x)]

Now, consider a design storm cluster which consists of n storm parts with d_,
; . : . i
Tis and vy (i=1,2,¢°,n). If we adopt a simple relation between di and di—l as

= ® = in { = e o
di - ¢d di-l ¢d dl (1 2’ an) (33)

with the coefficient ¢,(>0), then the total duration D_=d. +d +ec°<+d can be
d n 1 2 n
represented by
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n
D = d;(¢4-1)/(94-1) (34)
The joint probability distribution of Dn; LERRRAEE and YystoosYy is given
as
H(Dn;r1,~-',rn;y1,°--,yn[Np = n,N_ = 1)
_ g%, (n)y, B i i
= Fq () I {F, (g fn<n) F (e fE<E))] (35)
where Fr(gi]n<ni), F (C.|£<E.)=interval—conditional probability distribution
functions. = Let™ F_, and . denote the values of FT(EiI€<£.) and F (c.lgi),

respectively. If we adopt the following simple relations with respect to Fri and
F ., as
yi

F . = ¢ +F

ri r ri-1’ Fyi = ¢Y.Fyi—l (i=2,3,++,n) (36)

with the coefficients ¢r and ¢y(>0), then Eq. 35 is rewritten as

o eeeir sy e N ¢ N T
H(Dn,rl: ’rnxyl’ ’yn[NP n,Nc 1) Fd (T] ) iEl(Fri Fyi)

n(n-1)/2 (37)

_ n%  (n) n

=y ) T (000

Now, we propose a new procedure for making design storm patterns against a
design return period T#* and a design maximum total duration D* as follows.

1) Determine the value of the design total depth R* from Eqs. 31 and 32.

2) Determine the values of the number n of design storm parts and ;he(d sign total
duration D* satisfying the conditions: T, <T%* and O<P[D <D*]=Fn (n o )< (T%~-1)
/T%. A storm cluster with n peaks unsatisfying these conditions is excluged
from design storms.

3) Determine d, using Eq. 34 for D*¥ and a given value of ¢,, and calculate

. n d
d, (i=2,¢--,01) by Eq. 33.

4) Cilculate r.(i=1l,°++,n) for di using F_, and ¢_.

5) Calculate y%(i=1,"',n) for r, using F'' and ¢r.

6) Determine the sub-duration d and the sub—depgh r ., which are the duration
and depth before and after, fespectively, the peg% for each storm part, by
the following equations.

dog =¥q 45 5 dyy = dpyordyy (38)
Tog =V Ty s Toi = Tpi OF Tai (39)

where Y., § =coefficients(0<y.,¥ <1); and d,.,, d .; r,., ¥ ,=sub-durations and
sub-depths Before and after, respectively, Eﬁe pg%k of the®f-th storm part.

7) Search for a set of parameters: k and G which minimizes the sum-of-squares
function(Eq. 21) for given values of the sub-duration d ,, sub-depth r ., and
peak intensity y, for each one-side before and after thé peak of a storm part.
Calculate the teéporal rainfall intensities by Egqs. 16 and 17 for each one-side
of each storm part.

APPLICATION
Distributions of Numbers of Storm Clusters and Parts
Hourly rainfall observations for Kitoh in Tokushima prefecture, which belongs

to a high-rain area with an annual mean precipitation of 3500mm. Since this area
has the rainy and the typhoon seasons, observations for 30 years were divided into
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two seasons, the rainy season from May to July and the typhoon season from August
to October. Using threshold values of x =3mm/hr and d_=6hr and using 3rd-order
simple moving average series, we countéd the number N of storm clusters per
season and the number N_ of storm parts per storm cluster, whose relative
frequencies are shown in Figs. 3 and 4, respectively. The Kolmogorov-Smirnov test
shows that the hypotheses of a Poisson distribution for N and a logarithmic
, . . e c
series distribution for NP can be accepted at a significance level of 90%7.

>
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s — .

= 0.2 oisson o

2 . ~7£Tith A=7.2 -89
A

i <Log.series _Observed
a .7 0.7
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Fig. 3 Number N of storm Fig. 4 Number N_ of storm parts per
clusters per season storm cluster

Cross and Auto Correlations of Three Components of Storm Parts

For three couples(d and r; d and y; and r and y) of components for a storm
part, crosscorrelation coefficients p, , p. , and p__, were computed. Auto(part
. . . dr b r¥
to part) correlation coefficients p,., o, and p of d, r, and y, respectively,
were also computed, and shown 1in tabie 1. Y¥rom the inequality relatiomn:
Py Pap P seen in Table 1 we can accept the approximation of Eq. 4. Since
Y=o tﬂZ independence assumption of duration used in Eq. 26 can be accepted.
From the fact of o r>p - and p >pdy, 0 the interval conditional probability
distributions F (E.{n<n.5 and F fz.]£<£ )y%ore effective than F (C.ln<n.) are used
. . Toat i ¥s & i’ . vy i i
in modeling of desIgn storm parts a@s seen in Eq. 35.

Table 1 Correlation coefficients for components(d,r,y) of storm parts

Correlation | Rainy season | Typhoon season
coefficient (May-July) (Aug.~Oct.)
Pry 0.872 0.834
Par 0.433 0.587
Pdy 0.150 0.272
Pad -0.026 -0.031
Orr 0.148 0.133
Pyy 0.189 0.214

Results of data analyses for Tokushima and Osaka beside Kitoh in the rainy
and typhoon seasons showed that p_ (0.704~0.932) 1is the highest and pdr
(0.433-0.733) is higher than pdy(o.oa9-6¥557).
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Fitting of Combined Freund Distributions

Table 2 shows means of three components d, r, and y for three groups:
(i)single peak clusters, (ii) 2-5 peak clusters and (iii) 6 or more peak clusters
in the typhoon season. We can clearly find from Table 2 that means of duration of
storm parts are almost constant regardless of the number n of storm parts, while
means of depth and local peak intensity are larger with increasing n.

Table 2 Means of components(d,r,y) of storm parts in the typhoon season

No. of storm parts 1 2 -5 6 or more
dq (hr) 8.7 8.8 9.0
rqi (mm) 57.9 86.1 122.0
y4 (mm/hr) 16.1 21.5 31.1

Figures 5 and 7 show the fitting of marginal distributions of combined Freund

t (mm) d(hr)
Fig. 7 Marginal distributions of d and
r for 6 or more peak cluster

distributions of d and r to observations of storm parts for each group of storm
clusters((i), (ii), and (iii)) in the typhoon season. Using the didentified
1 = 1 3
B 1 K “
B 1
A IS \\
0.1k . 0.1k .
« 4 = = =
o Ay NS ¥
® A\ \ & LN
0.01 ( ‘\ 0.01E \\. r \
3 '\ = S N |
\ ;\ VY
\ AN X
i 0.001 AN
0.0016—700 400 0 10 20 0 200 400 ©0 10 20
t (mm) d(hr) t (mm) d (hr)
Fig. 5 Marginal distribution of d Fig. 6 Marginal distributions of d
and r for single peak clusters and r for 2-5 peak clusters
1 1_:2 I .
0.1F r 0.1E "
= — ) N
é \\ A\ = \\
@
0.01k -\\ Bl 0.01k Ml .
- \\ - = \;
N
0.001 0.001
0 200 400 0 10 20 0 20 40 60 80 100

D(hr)

Fig. 8 Marginal distribution of D
per storm cluster
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parameters for three groups of storm
clusters to Eqgs. 26 and 27, we have the 1
theoretical marginal distributions of ‘\
the total duration D and the total depth R

R per storm cluster, which are shown in \N
Figs. 8 and 9, respectively, where em- }
pirical -distributions are plotted by
Gringorten's formula.

Dotted lines in Figs. 8 and 9 rep~
resent the theoretical distributions for N
the case of no~grouping, while solid o1 N \\{
lines represent those for three groups '
of storm clusters. Figure 9 shows the N <
solid line to be much better fitted to < <
the empirical distribution than the ~
dotted line. Therefore storm clusters 0.001 .
should be divided into 2 or 3 groups 0 500 R( )1000 1500
based on the three properties of d, r, m
and y. Fig. 9 Marginal distribution of R

‘ per storm cluster

A

//L

Extremely Heavy Storms and Their Hyetographs

Historical extremely heavy storms for the period 1958-1987 at Kitoh are
listed in Table 3, where d s, and Y denote the maxima of d,, r., and
y,(i=1,2,°°+,1), respectiveTy, anﬁx the underlines show the maxima of all
o%servatlons for each item. The return periods T and T, of total durations Dn
and D calculated by Egs. 28, 30, and 32 are also sﬁown in Table 3. It was found

Table 3 Properties of extremely heavy storms and return periods of Dn and D

N. d. T y D R Tp Tp

P max max max 1
Date (hr)  (mm) (mm/hr) (hr) (mm) | (yr) (yr)
Aug.,1960 2 22 470 52 32 502 34 2
Aug.,1971 | 2 17 496 67 31 591 | 27 2
Sep.,1961 6 11 337 199 49 1113 16 5
Sep.,1976 _l 15 252 63 21 1650 298 62

from Table 3 that the maximum storm parts of N =11 occurred in September, 1976,
that the maxima of d and Ymax PeT stobm part were 22hr in August, 1960,
496mm in August, l@?f ané IOOmm/hra§n September, 1961, and that the maxima of
total durations D and total depths R per storm cluster were 97hr and 1650mm in
September, 1976.

The hyetographs of the 2-peak cluster in August, 1971 and the 6-peak cluster
in 1961 are shown in Fig. 10, where symbol * denotes observed intensities, while
solid lines denote fits obtained by using Eqs. 16 and 17 with parameters k and G

80 r
::60 -
i Observed-""9%
~ [
240 |
* Fitted
20
x ..'.-A'. k. N 2 "l 8. "l ATy i F A B
007 6 ™1 18 0 612 18 0

Aug.29,1971 Aug.30,1971
Fig. 10(a) Hyetograph of the 2-peak storm cluster in August, 1971
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Fig. 10(b) Hyetograph of the 6-peak storm cluster in September, 1961

to each one-side hyetograph before and after the peaks of storm parts given
observed hourly intensities. It is suggested from fairly good fit seen in Fig. 10
that if appropriate design values of d, r, and y of a design storm part are given
taking account of properties of historical heavy storms, the optimal set of
parameters k and G can provide a reasonable hourly hyetograph of the design storm
part. The unsatisfactory fit after the peak of the third storm part seen in Fig.
10b is not due to a failure in searching for the optimal set of k and G, but due
to that since the next of the third local peak has a duration less than d =6hr,
the peak embeds in the third storm part. ¢

Properties of Parameters for Design Storm

Regarding five parameters: ¢ Edi/di—l Table 4 Means and standard
(where i=rank of a value in a data list or- deviations of parameters
dered by descending magnitude of d), ¢rEFri

= = = Paramet
IF i 1> ?X ng/ng_%, vy dbﬁ/di’ and ¥ rBi meter m o
/r,y “whith are defined by Eqs, 33, 36, 38, 94 0.759 | 0.151
an% 39, means and standard deviations are . '
calculated for observations in the typhoon by 0.492 | 0.328
season, and shown in Table 4. Means of ¢ 0.714
and wr seemed to be almost constant regard- by . 0.243
less of the number n of storm parts, while [ Z] 0.705 0.163
means of ¢_, ¢ _, and Y, tended to be slight- 0.662 0.161
ly larger Tuith. incregsing n. Since there Vr . .

was no remarkable tendency in occurrence se-

quence of duration d,, as a design storm pattern we could adopt so called a last
peaked type which has the longest duration dl in the last storm part of the design
cluster.

Examples of 2-Peak Storm Clusters

According to the procedure for making design storm patterns mentioned before,
we can make storm patterns. Herein, let the design total depth R* with a design
return period T% and the total duration D* of n storm parts be given by steps 1)
and 2) in the procedure. Consider storm patterns with n=2 local peaks. With
reference to the heaviest 2-peak cluster in August, 1971 in Fig. 10a, let R* and
Dg be 600mm and 3lhr, respectively.

Figure 11 shows three examples of 2-peak patterns made according to steps 3)
to 7), for which we used values of parameters ¢,, F 1 ¢ , F 1 [ wd’ and ¢
shown in Table 5. 1In order of the procedure step the foiloang Xxplanation i§
added. In step 3) we used the mean of ¢.,=0.759 in Table 4.

In step 4) the conditional probabil%ty Frl of Ty for the longest duration d1
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Fig. 11 Examples of 2-peak storm clusters

Table 5 Parameters for examples of 2-peak storm cluster

Case ¢g Fri by Fy1 by va Uy
a 0.759 | 0.640 | 0.988 | 0.730 | 0.292 | 0.750 | 0.662
b 0.759 | 0.839 | 0.114 | 0.990 | 0.252 | 0.750 | 0.662
c 0.759 | 0.640 | 0.988 | 0.200 | 0.990 | 0.750 | 0.662

and the ratio ¢ -are important especially in deciding storm patterns. Giving a
large F__(<1), we have a large depth r,. Since the second conditional probability
Fr2 for'r, is given by the product of F_. and ¢_, the smaller ¢_ is, the more we
have différent values of r, as seen in Figs. 1fa and 11b. Sine the sum of ¥,
should be equal to R¥%, the allowable range of ¢_ is restricted by the wvalue of
Frl’ and the residual of the sum of r, to R* is modified by allotting it to T, in
proportion to the magnitudes of r.. )

In step 5) values of the conditional probability F_. of y, for d, and the
ratio ¢_ should give a value of y, less than (r,+t./2), ance the shape of a storm
part is’almost triangular. Giviné a large F. ., we have a-large peak y,. As seen
in Figs. 1la and llc, the smaller ¢_ is, th ‘more different the peak “intensities
y, become each other. In step 6)’combinations of ¥, and wr can give various
shapes of storm parts, although we used means of wd and wr in Table 4 for these
examples.

CONCLUDING REMARKS

It is clear from observations at Kitoh in Tokushima prefecture that the
number of storm clusters per season follows a Poisson process, and that the number
of storm parts per storm cluster follows a logarithmic series probability
distribution. By wusing combined Freund bivariate probability distribution
functions the trivariate joint distribution of duration, depth, and local peak for
a storm part d1s approximately defined. For a single storm cluster with
multi-storm parts the joint distribution function of total duration, local depths,
and local peak intensities is theoretically derived from those of storm parts.
With reference to the heaviest 2-peak cluster in August, 1971, three examples of
2-peak design storm clusters with R*=600mm and D§=31hr are demonstrated.
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APPENDIX - NOTATION

The following symbols are used in this paper:

b

aps by oay by

2’

d, r, y

fd(n), fr(E)

f(Tl, E)
F(A|B), G(A|B).

F (n), F_(8)

s )

parameters for the lower class density functions of the
combined Freund bivariate probability distributionj;

duration, depth and peak intensity, respectively, of a single
storm part;

threshold value of storm duration and time between storms;
duration, depth and peak intensity, respectively, of the i-th
storm parts;

sub-duration and sub-depth before or after a local peak,

respectively;

maxima of di’ ri, and yi, respectively;

sub-durations after and before, respectively, the peak of the
i-th storm part;

sub~duration equal to dai or dbi; ;
total duration and total depth, respectively, of a storm
cluster;

time between storms;

total duration and total depth of a storm cluster with n storm
parts;

probability variables of duration, depth, and local intensity,
respectively, for a single storm part;

marginal probability demsity functions of dimensionless
variates n and £, respectively;

joint probability density function of n and &;
conditional probability distribution functioms of argument A
given argument Bj

marginal probability distribution functions of dimensionless
variates n and &, respectivelys;

probability distribution functions of dimensionless variates
n and £ obtained from the n-fold convolution of the marginal

distributions Fd(n) and Fr(g), respectively;
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Fdr(n,i), Fry(g,c) = combined Freund probability distribution functions of
; (ns&) and (£,%);
Fr(gi[n<ni), Fy(ci[5<gi), Fy(ci]n<ni) = interval-conditional probability
distribution functions of gi, Ci’ and Ci given n<ni, £<Ei, and

n<ni, respectively;

i’ Fyi = given values of Fr(gi]n<ni) and Fy(gif£<£i), respectively;
= given value of the conditional probability distribution
function G(zi‘zi—l);
Ga, Gb = conditional no-exceedance probabilities for rainfall
intensities after and before the peak;
H(r) = univariate probability distribution function of r;

HD(D]NC=1), Hp (R|Nc=1) = probability distribution functions of total duration
D and total depth R, respectively, of a storm cluster;

H(d,r), H(r,y) = bivariate joint probability distribution function of (d,r)
and (r,y), respectively;

H{d,r,y) = trivariate joint probability distribution function of d, r
and y;

HD(XD), HR(Xé) = non-exceedance probability distribution functions of the

annual maxima X, and x,, respectively;
() D R

(n)
Hy (an) > Hp

(an) = non-exceedance probability distribution functioms of

the annual maxima Xp and Xg» respectively, of a n-peak storm

cluster;
i, j» n = counting variates;
k = a/B = parameter related to the autocorrelation coefficient o, of

rainfall intensity;
Nll’ le, N2l’ sz = sample sizes of bivarate (n,£) satisfying regions:
(0<g<n, &<u;), (0<n<g, n<u;), (v <€<n), and (u;<n<E),

respectively;

Nc = number of storm clusters in a season;

NP = number of storm parts per storm cluster;

P[-] = probability of argument;

P[A‘B] = conditional probability of argument A given argument B

Tosr Tpi = sub-depths after and before, respectively, the peak of the
i~-th storm part;

ros = sub-depth equal to T, or rbi;

S(k,Gldo,ro,y) = sum-of-squares function defined by Eq. 21;

t = time;

ta, tb = time after and before the peak;
TD, TDn = return periods of XD and an;
TR’ TRn = return periods of XR and an;
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u = critical value of n and & that classifies the combined Freund

distribution into the two regions shown in Eqs. 7a, 7b and

Tc, 7d;

Uger Uper U, = specified base levels of duration, depth, and rainfall
intensity, respectively;

vy = constant;

b = rainfall intensity;

X a = dummy parameter defined by Eq. 22;

X, = threshold value of rainfall intensity;

Xy = rainfall intensity at discrete time 1i;

X = calculated rainfall intensity at the last hour of the
sub-storm part after the local peak considered;

xL' = calculated rainfall intensity at the last hour of the
preceding storm part;

zy = reduced variate of X, as defined by Eq. 163

as B = parameters equal to a1=bl and a2=b2, respectively;

a,, B,s O,, B, = parameters for the upper class density functions of the
1 1> 727 72

combined Freund bivariate probability distribution;

Yy = --{ln(l—&))}_1 = parameter defined by '0;

6 = parameter of the logarithmic series probability distribution;
A = parameter defined by Eq. 19;

A = occurrence rate of storm clusters per season;

ns &5 ¢ = dimensionless variates of d, r, and y, respectively;

ngs Ei’ Ci = dimensionless variates for di’ ri, and v of the i-th storm

part, respectively;

<11> <11> <12> <12> <21> <21> <22> <22>
( ny s Ej ) ( ny o Ej ) ( ny s Ej ), ( ny o £j ) = satisfying the regions:

(0<g<n, €<ul), (0<n<g, n<ul), (u1<£<n), and (u1<n<5),

respectively;
ﬂ(n), E(n) = dimensionless variates of Xp and Xgs
, = gutocorrelation coefficient of rainfall intensity defined by

Eq. 20;
Par? pdy’ pry; Pad’ Prr’ gyy = cross and auto correlation coefficients for
components (d,r,y) of storm parts;

an = crosscorrelation coefficient between n and &;

Oq> 0,0 O, = gtandard deviations of variables: (d-udc), (r—urc), and
(xi—uz), respectively;

¢d = di/di—l = parameters representing the ratio of the i-th duration for

the (i-1)-th duration;

=F ./F
y

/¥ i’ Tyi~1

r Fri ri-1’ ¢y

-
it

= parameters representing ratios of non-exceed-
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ance probabilities for depth and local peak intensity,
respectively;

annual maxima of total durations D and total depths R of
storm clusters occurred within the season;

= annual maxima of total durations Dn and total depths Rn of
storm clusters with n storm parts occurred within the
season; and

Oi/ri = parameters representing the ratios of sub-durations
and sub-depths for durations and depths of the i-th storm
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