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SYNOPSIS

This paper presents a method for calculating the velocity field in open channel flows for
which lateral shear is an important factor. It is based on the assumption of a scalar eddy viscosity
that is proportional to the shear velocity on the actual flow boundary at the base of any isovel-
normal-ray and the area up to the isovel of interest between two adjacent rays divided by their
separation distance at the boundary. The momentum equation produced by this turbulence
closure is solved numerically. In a channel with a rectangular cross section, the flow structure
depends on both the width-depth ratio and the wall-bed roughness ratio. For such channels
figures to evaluate the boundary shear stress distribution on the bed are provided. The validity
of the model is tested using the experimental data obtained by Imamoto and Ishigaki(1988).
The utility of the model, when applied to sediment transporting flows, is demonstrated using
William’s (1970) experimental data, which cover a wide range of width-depth ratios and wall-bed
roughmness ratios.

INTRODUCTION

Quantitative information concerning lateral variations in mean velocity and turbulence
properties is necessary for understanding the boundary shear stress and sediment transport fields
in natural and artificial flow systems, because all such systems have lateral boundaries (e.g.
banks or side walls) on which some of the fluid work is dissipated. For problems related to bank
erosion and channel migration, an accurate knowledge of the boundary shear stress distribution is
required in order to permit precise computation of the divergence of the sediment transport rate.
Reliable estimates of velocities and boundary shear stresses in near bank regions are essential for
designing bank protection works and other hydraulic structures. Moreover, in flume studies, the
effects of side walls must be calculated and removed especially in relatively narrow channels with
a low ratio of bed to side wall roughness.

Most of the previous research on boundary shear stress distributions in natural-and artificial
channels has focused on the bed shear stress because this provides a good approximation to that
in the central region of channels of relatively large width-depth ratio. Einstein (1942) proposed a
method for taking into account the wall effect in rectangular channels, assuming that the mean
velocities in the areas affected by the walls and those affected by the bed were equal to the
cross sectionally averaged velocity; this is not physically correct. Consequently, Williams (1970),
as part of a comprehensive bed load transport investigation, developed an empirical equation
to evaluate the effective bed shear stress in flumes with vertical side walls. William’s equation
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includes the depth-width ratio, but does not explicitly account for the wall-bed roughness ratio,
and therefore, it can not be applied to situations other than flumes with smooth walls in which
sediment is being transported as bed load and the bedforms are in equilibrium with the hydraulic
regime. Also it gives only the cross sectional averaged value of the boundary shear stress, and
thas it is impossible to estimate the boundary shear stress distributions along the bed or over the
walls. Work on boundary shear stress distribution in straight channels was also carried out by
Lundgren and Jonsson (1964). Their pioneering analytical study has served as a foundation for
recent work on this topic and on bank erosion. Their theory, however, is only valid for systems
with relatively small lateral slopes. The aim of the present paper is to extend their methods to
channels with vertical walls. ‘

In this paper, which is concerned with flumes, lined channels and irrigation ditches rather
than natural rivers, streamwise variations in velocity will be neglected so that the two-dimensional
(depth and width) momentum equation can be solved to determine the complete velocity and
shear stress structure in a cross section. The scalar eddy viscosity is calculated along rays, which
are everywhere perpendicular to the isovels. Calculations are performed for a wide range of width-
depth ratios as well as for a number of wall-bed roughness ratios. In each case, the calculated
boundary shear stresses are compared with those obtained from the depth-slope product. Graphs
that permit evaluation of the ratio of actual boundary shear stress to that computed using the
depth-slope product are presented as a function of the width-depth and wall-bed roughness ratios.
The calculation is verified using the experimental data obtained by Imamoto and Ishigaki(1988),
and the utility of the model is provided using William’s(1970) experimental data on sediment
transport in channels of various width-depth ratios. In the calculation for William’s(1970) exper-
iment, the pressure drag associated with bedforms is removed so that bed load transport rates
are computed properly. This is done using the method of Smith and McLean (1977) as modified
by Wiberg and Smith (1989).

FLOW IN A STRAIGHT CHANNEL WITH INFINITE WIDTH
In order to lay a strong quantitative foundation for the lateral stress problem, the flow
field without lateral friction is described in this section; this is, in essence, the flow in a channel

of infinite width. The momentum equation for steady and horizontally uniform flow in a straight
channel is

01, 0 Ou
—P9S = 9z 0z (pl& 8z) 1)

where g is the acceleration due to gravity, S is the downstream surface slope of stream, p is the
density of the fluid, 7,, is the component of deviatoric stress in the downstream direction on a
surface parallel to the channel bed, u is the velocity component in the downstream direction, K
is a kinematic eddy viscosity, z is the down-stream coordinate and z is the coordinate normal to
bed. Integrating Eq. 1 with respect to 2, and using the boundary condition that dufdz = 0 and
7,2 = 0 at the water surface, gives,

du z
— — e 2
e = pK 5" = pgSD (1 D) @)

As 7, = 79 at z = 0, the bed shear stress is 75 = pgSD, and

Tow = To (l - %) (3)

Using the shear velocity u. = {/7y/p this becomes

- Ou z :
Tox = 'OKB; == JOU*Z (l b b‘) . (4)
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where D is water depth. As can be seen, the boundary shear stress here is proportional to
the depth-slope product. Eq. 3 yields a linear shear stress profile. The eddy viscosity can be
described for an infinitely wide channel flow using the approximation of Rattray and Mitsuda
(1974);

K——:ku*z(l——i) Z <02
D D
K= ku2 2 >02 ©)
= ku,— — .
8 D~

where k is Von Karman’s constant and /3 is 6.24. Eq. 5 reproduces the best fit velocity profile to
the Finstein and Chien’s (1950) experimental data. Combining Eqs. 4 and 5, then integrating
with respect to z with the boundary condition that u = 0 at z = zq, yields
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where ¢ = z/D, & = Zop/D and Zyp = roughness height at the channel bed. The vertically
averaged velocity < u > is obtained by integrating Eq. 6 from z=0to z = D, then dividing by
D. This gives

<uv>_1 (m? - 0.745) W)

Uy k 0

The discharge per unit width is ¢ =< u > D, and the net discharge for a very wide flow
in a rectangular channel is approximated by @ =< u > DW where W is the channel width, the
error being of order D/W. ~

Tn an unaccelerated flow, bed plus wall friction must balance the downstream component
of the gravitational force. So the shear stress averaged over the wetted perimeter of the channel
must equal

, ,
(r0)av = ﬂgS‘}‘; (8)

where A is the cross sectional area of the flow, p is the wetted perimeter and A/p is hydraulic
radius. Sometimes (75) 4y is used as an estimate of the stress on the channel bottom, especially in
sediment transport studies. Typically it yields an underestimation of the boundary shear stress in
those parts of the channel where the sediment transport rates are highest. In contrast, 7 = pgSD
usually overestimates the boundary shear stress in these regions. As W — oo, Afp — D and
these estimates merge.

FLOW WITH LATERAL BOUNDARIES
The lefthand side of Eq. 1 arises from the divergence of the deviatoric stress tensor, and
a second term is required to express this force per unit volume in a fully two-dimensional flow.

For an unaccelerated flow in which a scalar eddy viscosity closure is appropriate, the proper
momentum equation is

' a du J Ou
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where n is the transverse coordinate. For an infinitely wide flow, the Rattray and Mitsuda eddy
viscosity of Eq. 5 depends only on the z coordinate, but in the fully two dimensional case, it is
also a function of n. In fact, the mixing processes act across surfaces of constant velocity in the
direction of the shear, and the appropriate length scale for these eddies must be calculated along
lines (rays) which are perpendicular to the isovels (velocity contour lines) as shown in Fig. 1(a).

= b

Ray \

Isovel\

Py !

n

Fig. 1 Description sketch of isovels (contours of the downstream velocity) and their
orthogonals, which are denoted rays in this paper. (b)Notations for Eq. 11.

The eddy viscosity, therefore, can be a function only of the shapes of the rays and the shear
stress at their intersections with the boundary. The profile of eddy viscosity must collapse to
that of Eq. 5, when the rays become parallel to each other, but in general the length scale of
the turbulence depends on the geometry of the rays and is not simply the distance along the ray
from the boundary. Rather it is an area weighted function of the distance from the boundary.
Therefore, we write;

K = ku,ly (10)

where £ is the distance from the boundary along the ray and v is an area weighted function of £,
In an infinitely wide flow y must collapse to (1— z/D) = (D — z)/D as required by Eq. 5. The
form of v is thus chosen to be;
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where £, is the length of the ray, P, is the perimeter along the isovel and Py is the perimeter
along the boundary [see Fig.1(b)]. When the rays become parallel the numerator of Eq. 11
reduces to (D — z) and the denominator reduces to D. In the calculations, the constant value is
employed when two-tenths of area between rays in achieved, so

£ Ly
K = ku,ly / dA <02 / dA

° % (12)
K=K, /dA20.2 dA

0 0
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£ £
where Ky is the value of K at f dA =02 / dA.
0

0

For a given surface slope, Eq. 9 can be coupled with Eq. 12 and solved using the boundary
condition that 8u/8z = 0 at z = D and u = 0 at £ = £, in which 4, is the roughness length
(usually denoted 2, in the infinitely wide case). Eq. 9 is solved using a finite difference method
in an orthogonal (n, z) grid, while Eq. 12 is calculated in a ray-isovel grid. Shear velocity u, in
Eq. 12 is calculated from,

-,
pul =715 = ng% at  L=14 (13)

The locus of the rays are calculated from,

ou

tand = -—-g—5~—~ ~ (14)

an

in which, 8 is the angle of the rays from a horizontal line. Eqs. 9 and 12 are solved alternately
until a constant solution is obtained.

Depth averaged velocities and discharges are calculated numerically from the solutions of
Eq. 9. Owing to the complexity of the system, the velocity and eddy viscosity fields and the
discharge of the flow can not be calculated with sufficient accuracy using an analytical approach,
as for the situation when Eq. 12 collapses to Eq. 5.

‘Table 1: Conditions for the calculation of rectangular channels and calculated value of R.

Fig. No. | D(cm) | W{cm) | W/D | Zop(em) | Zow(cm) | Zop/Zow | R
2 10.0 20.0 2.0 | 0.001 0.001 1.0 | 0.50
3 5.0 40.0 8.0 | 0.001 0.001 1.0 | 0.84
4 15.0 15.0 1.0 | 0.001 0.001 1.0 { 0.27
5 10.0 20.0 2.0 | 0.01 0.001 10.0 | 0.62
6 10.0 200 |. 2.00.001 0.01 0.1 |0.36

CALCULATED RESULTS IN RECTANGULAR CHANNEL

Fig. 2 shows results calculated from Eq. 9 for a channel with a rectangular cross section.
The four panels of Fig. 2, from the bottom up, show (a)rays, (b)isovels, (c)velocities, with the
solid line being the depth-averaged velocity and the dashed line being the surface velocity, and
(d)the cross sectional distribution of the ratio of bottom shear stress to that obtained from the
depth-slope product. The conditions for the calculation are summarized in Table 1 together with
the conditions for Figs. 3, 4, 5 and 6, which will be described in this section. Here zw and 25
are the values of 4; at the side walls and on the channel bed respectively, and R, is the the cross
sectionally averaged value of the ratio of bed shear stress to the shear stress obtained from the
depth-slope product, that is;

. 1 7B
R== [ Zdn (15)
~W/2
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Fig. 2 Calculated results for a channel of rectan- Fig. 3 Calculated results for a channel of rectan-
gular cross section: (a)rays, (b)isovels, (c)depth- gular cross section: (a)rays, (b)isovels, (c)depth-
averaged velocity (solid line) and surface ve- averaged velocity (solid line) and surface ve-
locity {dashed line), and (d)ratio of calculated locity (dashed line), and (d)ratio of calculated
boundary shear stress to that obtained from the boundary shear stress to that obtained from the
depth-slope product. depth-slope product.

In this case, since the roughnesses of walls and bed are the same and the channel shape is half of
a square (W/D = 2), the velocity profile is symmetrical in the 2 and n directions. The maximum
velocity is in the channel center at the water surface and all of the rays converge at this point.
The boundary shear stress at each submerged corner is zero, and there is a large reduction in
maximum boundary shear stress compared to that given by the depth-slope product. The average
bed shear stress is nearly half (R, = 0.5) of that of depth-slope product.

Fig. 3 shows results of computations for a relatively wide channel (W/D = 8), with the
roughness of walls and bed again held the same. The order and the description of each of the
panels in the figure are the same as those for Fig. 2. In this case, the effects of the walls are
limited to the neighborhood of the walls and the rays near the channel center are nearly parallel
to each other, which means the velocity profile in this region is almost the same as that given by
Eq. 6 for the infinite width case. Depth averaged velocity, surface velocity and boundary shear
stress are almost constant except near the walls; moreover, R, = 0.841 which indicates that the
wall effect is relatively small in this case.
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Fig. 4 Calculated results for a channel of rectan- Fig. 5 Calculated results for a channel of rectan-

gular cross section: (a)rays, (b)isovels, (c}depth-
averaged velocity (solid line) and surface ve-
locity (dashed line), and (d)ratio of calculated
boundary shear stress to that obtained from the
depth-slope product.

gular cross section: (a)rays, (b)isovels, (c)depth-
averaged velocity (solid line) and surface ve-
locity (dashed line), and (d)ratio of calculated
boundary shear stress to that obtained from the
depth-slope product.

In contrast, Fig. 4 shows results of a calculation for a relatively narrow channel W/D =1).
The locus of the rays displays large wall effects and the frictional effect of the channel bed is not
able to penetrate beyond mid depth. The shear stress on the bed is much smealler than that given
by the depth-slope product and the average value of R, is about 0.30.

Figs. 5 and 6 show the effects of roughness ratio differences. The width-depth ratio for
these two cases is the same as that for Fig. 2 (W/D = 2), however, the bed is ten times rougher
than the walls in Fig. 5 and the walls are ten times rougher than the bed in Fig. 6. The same
phenomena are seen here in Figs. 3 and 4, namely, when the bed is rough (Fig. 5), the effect
of the bed is large making the wall effect weaker, and when the walls are rough (Fig. 6), the
effect of walls are large making the bed effect weaker. Consequently, the averaged boundary shear
stress at the bed is much smaller than that of depth-slope product when the walls are rougher,
and the wall effect is smaller when the walls are smoother. These results are intuitively obvious
because, when the wall is infinitely smooth or the channel is infinitely wide, the effect of walls is
eliminated and the flow can be treated neglecting lateral boundary shear stresses. In this cases
the boundary shear stress will be identical to that obtained from the depth-slope product.

* The boundary shear stress distribution on the bed is often of considerable importance, for
example, high near bank boundary shear stresses are of concern in bank erosion problems. Also it
is necessary to know the actual shear stress on the channel bed in most flume experiments, espe-
cially those conducted for sediment-transport purposes. The theory and computational method
described in this paper provide a powerful tool for evaluating boundary shear stress distributions
in channels of various roughness distributions and geometries; however, it is not practical to have
to carry out calculations using the model for each situation of interest. Also, after doing a series
of calculations such as those described above, it was found that the ratio of evaluated bound-
ary shear stress to that given by the depth-slope product depends primarily on (1) the width-
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depth ratio and (2) the wall-bed roughness ratio. Consequently calculations using a wide range
of width-depth ratios and wall-bed roughness ratios were performed. .
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Fig. 6 Calculated results for a channel of rectan-
gular cross section: (a)rays, (b)isovels, (c)depth-
averaged velocity (solid line) and surface ve-
locity (dashed line), and (d)ratio of calculated
boundary shear stress to that obtained from the
depth-slope product.
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Fig. 7 Distribution of the ratio of calculated bound-
ary shear stress to that obtained from depth-slope
product (R) as a function of the width-depth ratio
(W/D) and bed-wall roughness ratio Zogp/Zow, at
(2) a near wall region (n/W = 0.1), (b) the cen-
ter of the channel (n/W = 0.5), and (c) the cross

stream averaged value.

In Fig. 7(a), the vertical axis (R = 75/7), is the ratio of boundary shear stress to that
obtained from the depth-slope product at the channel center (n/W = 0), while the horizontal axis
is the width-depth ratio (I{/‘V/D) and the different symbols indicate different bed-wall roughness
ratios (Zop/Zow). When W/D becomes large, R goes to 1, which indicates that the boundary
shear stress approaches that given by the depth-slope product and that wall effects are negligible.
With a decrease of W/D, R approaches zero, which indicates that the boundary shear stress is
reduced relative to that given by the depth-slope product as a consequence of friction on the
channel walls. The larger the value of Zy5/Zow (the rougher the bed), the larger the value of
R, which means the smaller the wall effect. Fig. 7(b), for which the description is the same as
that for Fig. 7(a), shows the boundary shear stress near the wall (n/W = +0.4). The general
characteristics of R are essentially the same as those displayed in Fig. 7(a), however, of each
value of R tends to be larger because of the reduced effects of the wall. Fig. 7(c) shows the
cross- sectional averaged value of R, which is equal to R, defined by Eq. 13. According to
Fig. 7(c), in relatively wide channels as (W/D > 10) as is common in natural rivers, the values
of R, are usually greater than 0.9, which means that the bank effects are of little significance
except locally, and thus calculations neglecting lateral stresses are sufficiently accurate for most
engineering purposes except near cut banks. In situations with W/D less than 10, which is
common in experimental and artificial channels, however, the effect of lateral stress is important
and the analysis described in this section needs to be employed.
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VERIFICATION OF THE THEORY AND THE MODEL

In order to test the theory that is described in the previous section of this paper, it has
been applied to the data obtained from the experiment with a straight rectangular glass flume
conducted by Imamoto and Ishigaki(1988). The flow data of the experiment Case~1is summarized
in Table 2. A calculation was carried out with the same condition with the experiment. [, was
calculated using Nikurase’s(1933) formula for hydraulically smooth flow, namely,

14

b= (16)

gu*b

where v = viscosity of water, u,;, = shear velocity at the boundary. Fig. 8 shows the comparison
between the observed and calculated velocity and boundary shear stress distribution. The five
panels of Fig. 8 show (a)observed u, (b)calculated u, (c)surface velocity u, and depth-averaged,
velocity < u >, (d)boundary shear stress along the channel bed and (e) boundary shear stress
along the side wall. In Fig. 8(c), filled circles and unfilled circles are the observed < u > and
u,, respectively, and solid line and dashed line are the calculated u, and < u >, respectively.
In Figs. 8(d) and 8(e), circles and line denote the observed and calculated boundary shear
stress, respectively. All the calculated results are favorably compared with the experimental
results. A slight disagreement between calculated and observed values in the boundary shear
stress distribution along the wall is recognized, and it seems to be because of the effect of the
secondary flow, which has not been taken into account for in the present model.

Table 2: Hydraulic conditions of the experiment Case-1 by Imamoto and Ishigaki(lSSS).

Discharge Q({/s) 2.055
Depth D(cm) 4.01
Slope S 1/1442
Width W(cm) 39.0

In order to demonstrate the utility of the model in the analysis of laboratory experiments
on flow and sediment transport, it has been applied to the comprehensive data set procured by
Williams (1970). In this carefully exececuted study, a large number of sediment transport runs
were made in a straight flume with many different width-depth ratios (0.28 < W/D < 20.5).
Although the side walls of the flume were plexiglas and, consequently, had a nearly constant
Zow, the bed of the experimental facility was covered with sand and varied from flat to rippled
or duned. As a result, the wall-bed roughness ratio varied from 20 to 10000. In each experiment,
water discharge, slope, depth, sediment discharge , and bed form geometry were measured. The
bed material used for the experiments was a fairly uniform sand (d = 1.35mm). Fig. 9 shows
the range of W/D and Zop/Zow for those experiments, where Zyy was calculated using Eq. 16,
replacing 45 with Zow.
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Fig. 8 Comparison of calculated and observed downstream velocity and boundary shear stress
distribution: (a)observed u, (b)calculated u, (c)surface velocity u, and depth-averaged velocity
< 4 >, in which filled circles and unfilled circles are the observed < u > and u,, respectively, and
solid line and dashed line are the calculated u, and observed < u >, respectively, (d)boundary
shear stress along the channel bed and (e)boundary shear stress along the side wall. In the panel
(d) and (e), circles are observed values and lines are the calculated values. Observed values are

obtained by Imamoto and Ishigaki(1988).

It is well known that, in the flow over bed forms, the total shear stress (given from the
depth-slope product) can be divided into two components (form drag and skin friction) and
that sediment transport is associated only with the skin friction. Therefore, a correction must
be made to reduce the total stress to skin friction if the sediment transport rates are to be
calculated properly. Following Wiberg and Smith (1989), relationship between total stress and
the skin friction can be written as

-1 ‘
_ CpHp Hp ’ )
TSP = To {1 + S5 [ln Zoror 1} } (17)

where 7gr is the skin friction, A is the bed form wavelength, Hp is the bed form height, Cp is
the form drag coefficient and (Zp)sr is the roughness length for the internal boundary layer.
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Velocity measurements over large dunes by Smith and McLean (1977;) indicate that when
separation occurs the drag coefficient Cp is about 0.21. Deitrich (1982) found that (Zo)sr is
proportional to the height of the saltation layer 5.

(Zo)sr = 0.086p k ; (18)

Wiberg and Smith (1989) calculated 65 and for grain size of the William’s (1970) experiments,
their method yields

0.68 5% .
e ren , (19)
D 1040112E
TCR

where.7og is the critical shear stress for the initiation of sediment motion. The effective roughness
of the channel bed Zyp can be determined by matching the velocity profiles from the internal
and outer boundary layers (Nelson and Smith 1989), which yields
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Fig. 9 Range of W/ D and Zop/Zow in William’s (1970) experiments.
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Fig. 10 Williams (1970) data on nondimensional bed load transport, ¢, as function of nondi-
mensional shear stress compared with Meyer-Peter Muller (1948) equation. In (a) the boundary
shear stress is calculated using only the depth-slope product, in (b) a form drag correction has
been applied to the depth-slope product based value, in (c) a wall friction correction has been
applied to the depth-slope product based value and in (d) both form drag and wall friction
correction have been applied.

The nondimensional sediment transport rates calculated using ¢ = g¢,/[(p,/p — 1)gd®]'/?,
(where ¢, is the sediment discharge per unit width and p, is the density of the bed material)
for all of William’s(1970) experiments are plotted as a function of nondimensional total stress
7. = 70/[(ps— p)gd] in Fig. 10(a). Also shown in this figure is the curve obtained from the Meyer—
Peter and Muller formula(1948), ¢ = 8(7. — 0.047)>/2. Most of the measured values fall well to
the right of the curve, especially the values associated with small width-depth ratios. Fig. 10(b)
shows the same data after the pressure drag associated with the bedforms has been removed from
7 using Eq.17. This correction shifts the data toward the left because it reduces the effective
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value of 7,. This form drag correction brings the data with large W/D into good agreement with
the curves, however, the data with small W/ D still fall well to the right of the line because of the
wall effect. When a wall correction is made to each of the points of Fig. 10(a) by multiplying the
total shear stress by R,, the results shown in Fig. 10(c) are obtained. This correction matches
the points because, as described in the previous section, the narrower the channel, the smaller
the effective boundary shear stress due to the wall effect, but the set of points now falls to the
right of the line. Only when both corrections are made simultaneous, as in Fig. 10(d), do the
data points scatter around the line given by the Meyer—Peter and Muller(1943) formula. Fig. 11
shows the same data as Fig. 10(d), but in this case they are compared with some other common
sediment transport formulae. This figure, which is analogues to Fig. 7 of Wiberg and Smith
(1989), shows good agreement between the experimental data and common sediment transport
expressions. ; .

Sediment transport measurements are often compared with the boundary shear stress ob-
tained using the depth-slope product as shown in Fig. 10(a), and the scattered data tends to be
treated as inaccuracy in the sediment transport formula or measurement error. In fact, when 7, is
calculated using the skin friction on the actual sediment bed, good agreement is obtained even in
cases for W/D < 1, situations which would not ordinarily be considered acceptable for sediment
transport studies. The boundary shear stress correction makes the data converge and lead to
a favorable comparison with the common sediment transport formulae. From these results, it
can be said that neither the experiments nor the formulae were inaccurate, but rather than the
most important thing in a sediment transport investigation is how to determine the appropriate
boundary shear stress.

The discharge per unit width measured in William’s (1970) experiments is compared with
calculated values using Eq. 7 in Fig. 12(a) and using the two-dimensional calculation with the
lateral stress (Eq. 9) in Fig. 12(b). Calculated values in Fig. 12(a) tend to be over estimates
especially for the data with small W/D, which again is because of the wall effect. Better agreement
is obtained in Fig. 12(b) because the effects of lateral stress are included in the calculation.

An experimentally determined equation to remove the effect of side wall friction was pro-
posed by Williams (1970). It is; ,

Ro=—t (21)

D
1+ S‘S-W-j?—

where 5.5 is a constant with dimensions of length measured in centimeters (0.055 in SI units).
Fig. 13 shows a comparison between Eq. 21 and calculated values of R, using the method

described above. As the parameter (W/D)v/D (horizontal axis of Fig. 13) doesn’t include the
relative roughness factor of the walls (Zo5/Zow ), the calculated values can not be plotted as a
single line, and the scatter of the values in Fig. 13 indicates the effect of relative wall roughness.
In general, the calculated values are in good agreement with Eq. 21, but suggest an expression
that includes relative wall roughness would yield more accurate results.
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CONCLUSION

A method to take into account the effects of lateral stress is proposed. It permits compu-
tation of velocity and stress fields affected by both the channel bed and channel walls. A two-
dimensional momentum equation was solved, coupled with an eddy viscosity calculated along rays
perpendicular to the isovels. Characteristics of the flow structure depend only on the width-depth
ratio and wall- bed roughness ratio for the case of a uniform flow in a channel of rectangular cross
section. Graphs designed to permit the boundary shear stress distribution along the channel bed
to be evaluated are proposed. The model was verified using the experimental data obtained by
Imamoto and Ishigaki(1988). The utility of the model was demonstrated using William’s (1970)
experimental data on sediment and water discharge over a wide range of width-depth ratios and
wall-bed roughness ratios. The importance of accurate estimation of the boundary shear stress in
sediment transport studies is also emphasized by this analysis. Calculated side wall effects agree
reasonably well with the empirical formula of William’s (1970).
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to that obtained from the depth-slope product (R.), as function of (W/D)D%5. The line is from
Eq. 21 and symbols are calculated values.
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APPENDIX II. - NOTATION

The following symbols are used in this paper

A = cross sectional area;
Cp = form drag coefficient;
D = flow depth;
d = grain sizes;
g = acceleration due to gravity;
Hp = bed form height;
K = kinematic eddy viscosity;
Ky = value of K at g dA = 0.2 ;fndA;
%k = Von Karman’s constant;
£ = distance from boundary along the ray;
¢, = roughness height at boundary;
ly = length of ray;

cross-stream coordinate;
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perimeter along the boundary;
perimeter along the isovel;

wetted perimeter;

net discharge of flow;

discharge per unit width;
sediment discharge per unit width;

ratio of boundary shear stress to that obtained from depth-slope product;
cross sectional averaged value of the ratio of bed shear stress

to the shear stress obtained from the depth slope product;
surface slope of the stream;

velocity component in the downstream dlrectlon;
surface velocity;

vertically averaged value of u;

shear velocity;

shear velocity at the wall;

channel width;

downstream coordinate;

roughness height of bed;

roughness height of side walls;

roughness length for internal boundary;
vertical coordinate;

constant, 6.24;

area weighted function of £ along the rays;
[(rsr + 7o)/ 75r]''%;

height of saltation layer;

angle of ray to horizontal line;

bed form wave length;

viscosity of water;

Z[D;

Zos/ D;

density of fluid;

density of bed material;

boundary shear stress obtained from depthi-slope product;

the shear stress averaged over the wetted perimeter;
skin friction;

boundary shear stress;

critical shear stress;

nondimensional boundary shear stress;
nondimensional sediment transport rate;
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