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ABSTRACT

When the seepage flow in a highly permeable porous medium is accompanied by a turbulent free surface flow
above it, an appreciable interaction between seepage flow and surface flow takes place. This interaction means
mass and momentum exchanges between the surface flow and the seepage flow. The induced velocity fluctuation
inside the porous medium contributes the momentum exchange and it plays an important role on determining the
structure of the seepage flow. :

In this study, experiments are conducted to measure the velocity profile and the vertical mass transport in the
porous medium beneath the free surface flow, and subsequently a macroscopic model is proposed to describe a
seepage-flow velocity profile based on an eddy-viscosity assumption.

INTRODUCTION

For the accurate estimation of the flow discharge from a relatively small mountain drainage basin,
or the evaluation of the sediment discharge in a debris region, the physical mechanism of the interaction
between the seepage flow and the free surface flow is of great importance. Because the stream bed or
the drainage basin in mountain region is often covered by highly permeable debris materials, the
interaction between the free surface flow and the seepage flow in the porous layer affects not only the
flow discharge but also the sediment discharge. :

The effects of the interaction between the seepage flow and the surface flow can be summarized as
the following two: The first is the presence of a non-zero velocity at the permeable boundary ("slip
velocity"); and the other is the existence of a fluctuating transpiration (injection and suction) velocity at
the boundary between the surface-flow region and the porous medium. The latter is just an elementary
events of the interaction between the two regions; while the former is rather a result of the momentum
exchange between the seepage flow and the surface flow. The fluctuating transpiration causes the
somehow organized fluctuation on the seepage-flow and it behaves just like an appearance of the
"Reynolds stress”. The reason why such an organized fluctuation appears is a non-linear effect due to
non-Darcy law as a resistance law for the flow in a highly permeable porous medium, This mechanism
was skillfully described by Chu & Gelhar (1), and their analysis was applied to open channel flows by
Nakagawa et al. (4, 5). As a result of the presence of the slip velocity and the apparent "Reynolds
stress”, the so-called turbulent Couette flow takes place inside the porous medium. On the other hand,
the seepage flow also affects the free surface flow as an increase of the friction factor (Lovera &
Kennedy (2); Chu & Gelhar (1); Nakagawa & Nezu (4); Yamada & Kawabata (8); Nakagawa et al.

(5,7)-
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In this study, the influence of a free surface flow on the structure of the seepage flow in a highly
permeable medium is focussed. A model porous layer was made of glass beads in a laboratory flume.
The time-averaged velocity profile was measured by a tracer method. In order to estimate the magnitude
of the vertical momentum exchange based on the Reynolds analogy, the vertical mass dispersion test is

conducted. Furthermore, a macroscopic physical model to describe the seepage-velocity profile is
developed based on an assumption of eddy viscosity.

EXPERIMENTAL APPROACH
Model Porous Medium

Several types of model porous layer composed of glass beads were prepared in a laboratory flume
(8m long and 0.21m wide) with adjustable slope. Two kinds of glass beads were used, of which
diameters (d) were 2.97cm and 1.75cm, and they were arrayed in constant thickness along the bed. The
number of the arrayed layers of glass beads was changed from 1 through 3. The glass beads were
arrayed as the most packed tetragonal-spheroidal pattern. Table 1 provides a summary of the
experimental conditions, in which I.=energy gradient; h=depth of free surface flow; Up=depth-averaged
velocity of free surface flow; Hy=thickness of porous medium; Re=Uph/v; and v=kinematic viscosity.
Figure 1 is a definition sketch.

Table I Experimental conditions

Run | I, h Un Re H
(cm) (cm/s) (cm)
1 0002 5.67 435 23510 891
2 0.002 8.61 487 38690 891
3 0.001 603 319 18080 8.91
4 0.001 9.10 349 30590 891 -
5 0.002 591 4L7 23390 11.90
6 0.002 7.59 332 23130 11.90
7 0.001 572 219 11880 11.90
8 0.001 795 203 14750 11.90
9 0.010 174 445 7750 5.45
10 | 0.010 213 476 10130 5.45 bed slope
11 ] 0.010 3.09 607 18680 5.45

Fig.1 Definition sketch
In order to clarify the properties of the porous medium (without free surface flow), a permeability
test was conducted. Figure 2 shows the experimental setup for the permeability test. Measurements of
the specific discharge V (V=flow discharge per unit area of the porous medium projected to the the flow

direction and simply termed the seepage velocity) and the pressure gradient along the closed conduit I,
were used to determine the resistance relation of Forchheimer's law as follows:

I,=aV +bV2 (0

in which a, b=resistance coefficients. According to the investigations of permeability of several porous
media by Ward (9), these coefficients can be expressed as follows:

— 30cm —3{ k— 30cm

porous medium ﬂ» Oﬁ

0000 e )

Fig2 Setup of the permeability test
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in which g=gravitational acceleration; K=intrinsic
permeability; and c=dimensionless parameter. When b=0,
Eq.1 represents the Darcy law, while Eq. 1 with non-zero b
is often called non-Darcy law. Figure 3 shows the
experimental relation between I, and V, and the
applicability of Eq.1 was confirmed. Table 2 lists the
obtained data to represents the structural conditions of the
porous layers, in which n=porosity of porous medium.

@

Table 2 Structure of porous media

Run D n K c
(cm) (cm?)

1~8 297 038 0.0028 0.055
9-11 | 1.70 035 0.00069  0.290

Velocity Measurements

The measurement of velocity distribution for free surface flow was made by a Pitot tube with a
2mm diameter. On the other hand, the seepage flow velocity was attained by the following method:
Three probes of density-meters for salt water, A, B and C, were positioned at the same height, at
streamwise intervals of 10cm in the porous medium (see Fig.4). The tracer (salt water) was
instantaneously injected at the same height just upstream of the probe A (see Fig.4). The mean velocity
at each height was estimated from the time difference of the peaks of the concentration recorded at the
different probes. The examples of the recorded signals for the tracer concentration at the different

probes are shown in Fig.5.

I salt water

probe A probe B probe C

Fig.4 Measurement of seepage velocity
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Fig.5 Example of recorded signal
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Fig.6 Velocity profile measured in porous medium
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- Several examples of the measured velocity profiles in the porous media are shown in Fig.6. The
measured velocity is here represented by Us. This can be converted to the discharge per unit area of the
porous medium projected to the longitudinal direction, U as nU, (n=porosity of porous medium).

The seepage flow velocity is not constant but is appreciably dragged by the faster free surface
fiow. From the appreciable velocity gradient in the porous medium, one can expect the appearance of
the Reynolds stress apparently. In other words, apparent turbulence brings about even in the porous
medium not so far from the interface with the free-surface flow, and it contributes the additional
momentum exchange. Because of a methodological reason, the Reynolds stress could not be directly
measured and thus we could not discuss the eddy viscosity in this region (which will be guessed from
the mass-dispersion test in the next section). The region far from the boundary with the surface-flow
region, the seepage flow velocity is constant and is equal to that estimated by Eq. 1.

Mass Dispersion Test

The results of the velocity measurements in the porous media suggest an active momentum
exchange there. According to the Reynolds' analogy, the mass-diffusion must be promoted in the same
manner as the momentum exchange in this region. The salt-water tracer was also used for estimating the
dispersion coefficient inside a porous medium. As shown in Fig.7, the salt water was continuously
injected just at the level of the interface between the free-surface flow region and the porous medium
(y=0). Three probes of density-meter were set at y=0, y=-0.5cm, and y=-2.5cm, respectively. The
longitudinal distance from the inlets to the probes was Scm. It would be favorable if this distance were
as long as possible in order to approximate the phenomenon to a vertically one dimensional dispersion
process, but the longer distance would make the concentration low at y=0. "Another possibility would be
a lot of inlets longitudinally distributed, but it would disturb the flow. With these probes, the time
variations of density concentrations were measured.

inlet

Fig.7 Setup of mass-dispersion test

The above-mentioned process (experiment) as recorded at the probe with time was here
approximated as one-dimensional unsteady dispersion process, for simplicity. Then, the governing
equation is written as follows:

0C(y,t 02C(y,t
_%l =Dy _53%'”) 3)

in which t=time; C=tracer concentration; and Dy=vertical dispersion coefficient. This equation is solved
with the following initial and boundary conditions:

Cy,00=0 , ( O<y<-Hy) C))
C(0,t) = Co (=const.) (t20) )
C(Hyt) =0 (t>0) )



73

The third condition corresponds to the case Hy—oo. In general the porous layer is thicker than the
turbulence-affected region. The resulting concentration profile, C(y.t), is as follows:

C. = Cof 1+ - +2y L-Dl exp(- __%Plt Yesi [Jn(y+Hs)]} -
T =1

The steady solution at y is written as

Because a perfect line source was not accomplished in the experiment, the convection term could not be

neglected against the approximated theory. Thus, C(y,>0) was not necessarily independent of x.
However, one can guess that the temporal assymptotic behaviour of the concentration would be similar
along x, and thus the following argument would be still available.

When the time scale at which the concentration reaches 1/e of the equilibrium concentration

(C(y,?)) is represented by T, the following relation is valid:

Cy, Ty = 21+ ) ©)
By equating Eq.9 with Eq.7,
ot ] 22D, . pin(y+H
S ) =aof - %Eﬁl rep(-LE 2 T )sin T} (10)

Coms o

From this relation, Dy can be estimated for the experimentally measured T, (see Fig.8).

The value of the dispersion coefficients (Dy) obtained at y=-2.5cm is about 1~10cm?/s and it looks
larger than the ordinary value of the diffusion coefficient usually we use. Comparisons of the present
data with Nagaoka & Ohgaki's data (3) obtained by the similar method in the manner of Fig.9, however,
suggest the possibility of such large values for the present hydraulic conditions. In Fig.9, Up=mean
velocity of the free-surface flow.
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Fig.8 Relation between 3 /Dy and T Fig.9 Relation between dispersion coefficient and mean

velocity of surface flow
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MACROSCOPIC MODELLING OF FLOW IN POROUS MEDIUM
A steady uniform two-dimensional flow over and in a porous layer with constant thickness is

supposed here. The balance of forces acting on a control volume in the porous medium (see Fig.10) in
the streamwise direction is expressed as ‘

[(re+ % By) -7, )0x + (pgsin® - f)Sxﬁy =0 (11)

impervious
boundary

6
pg bed slope T X

Fig.10 Force balance in porous medium

in which p=mass density of fluid; 7y=shear stress induced by the presence of the free surface flow;

B=bed slope; and f=drag force per unit volume of the porous matrix. Since the flow in the porous
medium near the interface with the free surface flow is expected to be turbulent, the resistance law
expressed by Eqgs. 1 and 2 is applied. Then,

= QU + (e Jus (12)

in which Ug=seepage flow velocity in the porous medium. Substituting Eq.12 into Eq.11, we obtain the
following equation.

dr 1 pc
ay *eele- (1+ g ) (e U2 =0 (13)

in which ResEUs\/—IE/vf'seepage flow Reynolds number.” When c*Re is very large, Eq.13 is
approximated as follows:

drg LA
dy+nge‘VrK‘Us =0 (14)

As suggested by the velocity measurements of flow in the porous medium with free surface flow,
the flow inside the porous medium can be divided into two parts, Uy and Uy, where Uy is
independent of the free surface flow while Uy, is the induced velocity, such that

U = Uy + Ugp : (15)
Us; is obtained as a solution of Eq.14 with dropping the first term, and it is written as follows:

Uy =\/51-%/K ' ‘ (16)
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When an eddy-viscosity assumption is applied to the momentum flux 7, ("turbulent” shear stress in
the porous medium as an effect of the free surface flow),

du
T, = PEp dysz 17

in which g;=eddy kinematic viscosity in the porous medium. The eddy kinematic viscosity is in general
expected to be proportional to a product of a characteristic length scale representing the momentum
exchange and a scale of velocity characterizing the velocity fluctuation. The characteristic length scale is
assumed to be proportional to the square root of the permeability (K) because the motion of fluid lump
must be constrained by the geometrical scale of the porosity; while it is assumed that the scale of velocity
of eddy momentum exchange is proportional to the induced seepage velocity (Usz). Thus,

gp = aVK Uy, (18)

The coefficient of proportionality, o, will be determined by experiments.

€, might have the same order to the mass dispersion coefficient, Dy, discussed in the mass
dispersion tests. Fig.11 shows the relation between Dy obtained by means of the mass-dispersion tests
and Uy, and it suggests a linear relation. Nagaoka & Ohgaki's data (3) shown in Fig.12 also supports
the above conjecture because the proportionality coefficient in the relation between Dy and Uy, decreases
against the distance from the interfacial boundary.
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03 1o 20 40 60 8910 ygo(cm/s) mean velocity of surface flow Um(cm/s)

Fig.11 Relation between Dy and iI:g

Fig.12 Relation between dispersion coefficient
and surface flow velocity -

Substituting Eqgs.15, 17, 18 into Eq.14, we obtain the following equation with respect to Ug:

The boundary conditions are as follows:
Ugp=Ugpip-Ust at y=0 (20)
Uyp=0 at y=-H, — -0 ' @1

in which Ugip=slip velocity=velocity at the interface between the free surface flow and the porous
- medium. Under the assumption that Uyy>>Usy;, the solution of Eq.19 is obtained as follows:
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Ug = (Uslip“Usl)‘eXp(ﬁ)’) ‘ (22)
in which Uy is given by Eq.16; and

i
05

In Fig.13, the measured distribution of seepage velocity (Uy) are compared with Eq.22. The values of §
and Uy, were determined by fitting Eq.22 to the measured profiles, and the calculated U, was
converted to Us as Ug/n. Eq.22 was deduced under the assumption that ¢*Reg<<1 and Up>>Ugq, In
the region -2.0cm<y<0 (turbulence-affected region in the porous medium), the experiments reveals that

Ug/Uq1210 and c°Re=3~8. Hence, Eq.22 is available in the significant region in the porous medium.
Fig.13 suggests that the present model is applicable if p and Ugy, are reasonably evaluated.

From the values of B used in Fig.3, the values of the eddy kinematic viscosity €, were reversely
calculated by using Eqs.18 and 23, as follows:

Ep = (XO'\[K-(Uslip'Usl) *exp(By) : (24)

The averaged values of &, through the range -3<By<0 are plotted against the dispersion coefficient Dy
for the respective experimental runs in Fig.14. This figure suggests that the momentum diffusion
coefficient could be reasonably estimated from the mass dispersion coefficient. This implies that the
alternation of transpiration (injection and suction) through the interfacial boundary between the flow in
the porous medium and the free surface flow, that is the mass exchange, brings about the momentum
exchange. Thus an induced Reynolds stress appears in the porous medium. The induced Reynolds-
stress distribution in the porous medium is reversely obtained from Eqs.17, 18 and 22, as follows:

5O _ exp2py) 25)
O

Tg

in which tsp=the induced Reynolds stress at the interfacial boundary. Ty is given as

,, /a c
Ts0 = ‘% P(Ustip-Us1)? (26)

Free surface flow semBim..
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Fig.13 Comparison between measured and calculated ~ Fig.14 Comparison betw@en 'meas_ured dispersion coefficient
velocity distribution in porous medium and eddy kinematic viscosity
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Though the quantitative reliability on the obtained Reynolds-stress distribution is difficult to argue
because it has not been measured by methodological reasons, the profiles of the induced Reynolds stress
expressed by Bq.25 is consistent to the theoretical result by Gelhar-Chu's model (1,4,5).

CONCLUSIONS

The results obtained in this study are summarized as follows:

(1) In the case of a highly permeable porous medium, the resistance law for seepage flow cannot
be expressed by the ordinary Darcy law. Then, the characteristics of the flow in the porous medium
with the free surface flow above it is appreciably modified due to the drag effect of the higher velocity of
the free surface flow.

(2) The velocity measurements using the tracer method clarified that the velocity profile in the
porous medium modified by the higher velocity of the free surface flow. The relatively large velocity
gradient appears in the porous medium near the interface with the free surface flow, but far from the
interfacial boundary the seepage velocity becomes uniform. The velocity gradient suggests an apparent
turbulent momentum flux like the Reynolds stress.

(3) The vertical dispersion process of salt water in the porous medium from the interfacial
boundary with the free-surface flow was investigated in the laboratory flume. As a result, the vertical
dispersion coefficient was estimated.

(4) A macroscopic modelling based on the momentum equation for the flow in the porous medium
with the induced shear distribution was proposed, and the velocity profile was deduced from it. The
approximate profile is expressed as an exponential function. One of the two parameters which determine
the velocity profile is related to the eddy kinematic viscosity, and it might be possible to estimate its
order from the mass dispersion coefficient easily obtained by the tracer tests. The other parameter is the
slip velocity, which must be determined based on the argument including the degeneration of the free
surface flow due to the alternation of transpiration through the permeable boundary. That remains
unresolved.
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APPENDIX - NOTATION
The following symbols are used in this paper:

a, b = resistance coefficients involved in Forchheimer's law;
C = tracer concentration
c = dimensionless parameter;



Dy = vertical dispersion coefficient;
f = drag force per unit volume of porous matrix;
d = diameter of glass beads; '
g = gravitational acceleration;
Hi = thickness of porous medium;
h = depth of free surface flow;
L = energy gradient;
K = intrinsic permeability;
n = porosity;
p = pressure;
Re; = seepage flow Reynolds number;
Un . = depth-averaged velocity of free surface flow;
Us = velocity in porous medium;
Ust = seepage velocity without effect of free surface flow;
Usa = induced seepage velocity due to the presence of free surface flow;
Ustip = slip velocity (velocity at y=0);
v - =seepage velocity (flow discharge per unit area projected to the flow direction);
y = height measured from the boundary between porous medium and free surface
flow region; ,
g = proportional constant;
B = dimensional parameter;
€p = eddy kinematic viscosity in the porous medium;
v = kinematic viscosity;
= mass density of fluid;
8 = bed slope; and
Tg = shear stress in the porous medium induced by free surface flow.
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