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SYNOPSIS

~ An analytical solution to the problem of the two-dimensional steady state buoyancy-driven flow
in a sidearm of a cooling lake is obtained. The solution procedure involves integrating the governing
equations over the depth of the sidearm using similarity profiles for the vertical temperature, velocity,
and shear-stress distributions. The governing partial differential equations are reduced to a system of
ordinary differential equations and solved analytically. The solution incorporates the laminar, quasi-
laminar and turbulent regimes of flow. The closed-form solution yields the distribution of discharge
and surface temperature along the sidearm. Good agreement between the model results and available
laboratory and field data is obtained.

INTRODUCTION

Cooling lakes formed by impounding natural rivers are an attractive option for management of
waste heat from steam-electric power plants. These lakes offer the advantages of high thermal inertia,
low intake temperature, minimal maintenance and possible recreational value. Cooling lakes often
have dead-end sidearms or cul-de-sacs because of the topography of the lake site. In many cooling
lakes, sidearms represent a significant portion of the pond surface area. Although there is no net flow
through these sidearms, they are effective heat transfer agents because of the longitudinal density
gradients which produce density (buoyancy) currents that advect heat into them. Therefore, proper
cooling lake design and analysis require that these buoyancy currents in sidearms be taken into
account.

Physical Description

A detailed description of the physical processes at work in sidearms of cooling lakes is given
by Sturm (1976), and a brief description is given here. Consider an idealized cooling-lake sidearm
with variable depth D, horizontal bottom, and large length-to-depth ratio, as shown in figure 1. At the
entrance to the sidearm, the water is density stratified as a result of thermal loading of the flow through
the lake. Under the assumption that the vertical force balance is hydrostatic everywhere,
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Figure 1. Definition Sketch.
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P -gp(xy) 6]
y ;
in which p is the pressure, p is the local water density and g is the acceleration due to gravity.
Integration of Eq. 1 from an arbitrary y to D and differentiation of the result yields

dp_ Y dp dD
—=g 1 -—d s 2
x ggax y+ps®) g 3; @

in which py (x) is the surface density. The temperature decreases in the x-direction due to surface heat
loss, and consequently the first term on the right-hand side of Eq. 2 is positive for all 0 S y < D.
Clearly, then, if flow continuity is to be maintained for steady state conditions, dD/dx must be negative

so that the negative pressure gradient drives an inflow current in the top layers of the sidearm. At the
lower levels where the density-gradient contribution dominates, the pressure gradient is positive and
hence an outflow current is generated. If the arm is very long, the surface water temperature will
decrease eventually to its equilibrium value T, the temperature at which there is no heat transfer across
the water surface. The length of the sidearm at which the surface water temperature Tg(x) decreases to
Te is defined as the equilibrium length, Le. Sidearms of length L > L and L < L are referred to as
long and short sidearms respectively. For long sidearms the active length for heat dissipation is the
equilibrium length; the portion of the sidearm beyond the equilibrium length section does not contribute
to cooling. ‘

T%ree flow regions along a sidearm are distinguished; sequentially from the open end these are
the reach of flow establishment, the main reach, and the closed-end reach. In the region of flow
establishment, rapid changes in depth of the interface between the inflow and outflow currents may
occur depending on the ratio of the depth of warm layer in the main pond to that of the depth of the
sidearm. The governing forces in this region are those of inertia and buoyancy. The reach of flow
establishment is normally quite short and hence for considerations of heat loss is not very significant.
In the main reach the flow becomes nearly one dimensional. The dominant forces here are those of
viscosity and buoyancy. As surface cooling reduces the temperature of the water in the x direction, the
rate of surface cooling decreases which reduces the density gradients and hence also the inflow and
outflow velocities. Consequently, along this reach there is flow exchange between the inflow and
outflow currents. However, because of the strong density gradients that exist at the interface between
the inflow and outflow currents, the flow exchange between the two layers per unit distance along the
sidearm tends to be small. Therefore, for short sidearms, the flow exchange between the layers is
relatively small and hence the temperatures along the outflow are practically constant. For long
sidearms, the entire flow in the upper layer of the main reach is eventually converted into downflow
and consequently there is significant temperature change along the outflow. The elevation of the
interface along this reach of the sidearm remains practically constant. Application of the
approximations of the boundary-layer type to the governing equations is valid in this region because
the vertical velocities are small in comparison to a representative horizontal velocity and the diffusive
momentum and heat fluxes are much stronger vertically than horizontally. Most of the surface heat
loss from the sidearm usually occurs in this region of flow. In the closed-end reach of long sidearms
the horizontal and vertical velocities are nearly zero and the temperature everywhere is close to Te. For

short sidearms, the inflow discharge at the beginning of the closed-end reach is abruptly deflected and
reversed to initiate the outflow current in the lower layer and hence the temperature of the lower layer is
nearly the same as that of the upper layer in this reach. Surface heat loss from this region is usually
negligible.

Furthermore, experimental evidence indicates the existence of three regimes of sidearm flow: 1)
a laminar regime with laminar flow conditions in both the upper and lower layers; 2) a quasi-laminar
regime in which flow in the upper layer is turbulent due to surface cooling instability while flow in the
lower layer is laminar; and 3) a turbulent regime in which flow in both layers is turbulent. Convective
turbulence is present to some extent in all buoyancy flows sustained by surface cooling; quasi-laminar
flow occurs only when the convective cells generated by surface cooling are strong enough to penetrate
the entire upper layer and thereby alter the temperature and velocity distribution in the upper layer from
the corresponding laminar profiles. '

The distinction between the upper and lower layer, and hence the definition of the interface, is
based, in this study, on the temperature/density distribution. The interface is defined as that
layer/plane at which a distinct discontinuity in density takes place.
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PREVIOUS RESEARCH

The earliest work on buoyancy-driven currents in lakes was carried out by Phillips (1966),
who utilized similarity arguments and assumed a constant surface buoyancy flux to derive the
functional dependence of the mean velocity and buoyancy on streamwise distance for turbulent
convective flows in the Red Sea. Edinger (1971) presented a model based on the assumption of
diffusion of heat into sidearms in order to evaluate the cooling performance of sidearms. Dresner
(1973) applied the two-layer stratified flow equations to sidearms and developed a model in which
friction was neglected and the thermal energy equation was uncoupled from the equations of motion.
More recently, solutions to the depth-integrated governing equations have been presented.

Sturm (1976) obtained a closed-form solution for the case of laminar flow by neglecting the
inertia term and the water-surface slope. Sturm (1981) improved on his earlier solution by including
_ the slope term in his analysis. Sturm and Kennedy (1980) obtained a numerical solution without
neglecting any terms and presented the results in graphical form. Jain (1982) neglected the water-
surface slope in his analytical analysis. Brocard et al. (1977) used a two-layer approach to the sidearm
circulation problem. The governing partial differential equations were integrated vertically for each
side of the interface to obtain a system of equations for each flow layer. The integrated equations then
were expressed in terms of flow rates and vertically-averaged densities in each layer. An order of
magnitude analysis indicated that the water-surface slope was much smaller than the interfacial slope,
and hence was neglected in comparison to the interfacial slope. Although the general formulation
included a number of variable input parameters, the closed-form solution of interest neglected the
bottom slope and interfacial heat transfer and assumed zero flux of water across the interface. The ne-
glect of flow exchange between the two layers is a limitation of this model; clearly, downflow is
significant in long sidearms and cannot be neglected. .

The following conclusions can be drawn from an examination of the numerical and analytical
studies summarized above. For models in which the governing equations are integrated over the entire
depth of flow, the water-surface slope is a major contributor to the balance of forces in the integrated
momentum equation and cannot be neglected. In such models, the inertia term in the integrated
momentum equation is negligible for laminar flow under laboratory conditions. For models in which
the governing equations are integrated over the layer depths, the water-surface slope is small in com-
parison to the interfacial slope, and can be neglected. Integral momentum analysis then shows that the
inertia term plays a vital role in the integrated momentum equation. Flow exchange between the upper
and lower layers cannot be neglected.

Experimental investigations also were carried out by Sturm (1976) and Brocard et al. (1977).
The temperature and velocity profiles obtained by Sturm displayed laminar characteristics. The
Reynolds number, R, in his experiments was about 200; R = g/v in which q is the discharge per unit
width of the sidearm and ' is the kinematic viscosity of water. In the experiments of Brocard et al,,
the temperature profiles exhibited a vertically well-mixed upper layer, and a photograph of dye trace in
the lower layer showed a parabolic velocity distribution similar to that for a laminar flow between
parabolic velocity distribution similar to that for a laminar flow between parallel plates; the Reynolds
number varied between 250 and 1000; and the flow regime was quasi-laminar. The experimental
results of Sturm and Brocard et al. also indicated that the sidearm circulation can be represented by a
two-layer flow structure, and that the vertical profiles of temperature and velocity are similar.

A general model, capable of accurately predicting the cooling performance of a sidearm for all
possible flow regimes, is lacking. The investigation in this paper was concentrated on developing
such a model. The approach adopted in formulating the problem is the same as that of Sturm (1976);
ie., the governing equations are integrated over the entire depth of flow to yield the relevant one-
dimensional equations. The disadvantage with the method proposed by Brocard et al. (1977) is that
the flow exchange between the layers must be prescribed a priori; it cannot be obtained as a solution.
An analytical solution is then obtained to the one-dimensional equations by making certain, well-jus-
tified, order of magnitude approximations. Use is made of the observations and results of past
investigations to arrive at the closed-form solution.

REMARKS ON SOLUTION APPROACH

The integrated governing equations presented later contain three unknows; namely, longitudinal
velocity component u; temperature T; and flow depth D. Because the integration of the differential
form of the continuity equation over the flow depth becomes zero, the integrated continuity equation
does not provide a relation among the unknowns. The closure problem is resolved by using the
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mechanical-energy equation. The solution method of using the mechanical-energy equation in addition
to the momentum equation is similar to the "integral dissipation method" employed by many
researchers to analyze boundary-layer flows. One often cited drawback of using both the momentum
and mechanical-energy equations is that the two equations are not independent. Though the two
equations in the differential form do not offer independent information, these two equations in the
integral form do provide independent information because the information lost in the integration differs
for the two equations (Reynolds 1968). The performance of the integral dissipation methods based on
the mechanical-energy equation was judged to be "good" by the Evaluation Committee of the AFOSR-
IFP-Standard Conference on "Computation of turbulent boundary layers: (Kline et al. 1968)); one
entire session of the conference, which included seven papers, was devoted to the integral dissipation
methods. Sturm and Kennedy (1980) successfully used this approach to obtain a numerical solution
of density currents in sidearms. The satisfactory agreement between the analytical results and
expte}:lxgénental data included in the present study further corroborate the validity of the adopted solution
method.

ANALYTICAL FORMULATION

Governing Equations
The governing equations for steady-state motion in the fully-established flow region of the
sidearm are formulated using the boundary-layer approximations and Boussinesq's approximation.

QE -+ QY_ =0 (continuity) 3)
ox dy

ot
u QB +v EB* = - -LQE + 1 Ty (x-momentum) @
ox ay Ppox p, 9y

- pg (y-momentum) 5

<

i

'
&

oT aT 3 dT
u&_); + v 5; = 5; Dy »é—}:) (thermal energy) (©)

p=-PBp, T+ o (state) ¢

in which u and v are the components of the velocity vector in the x- and y- directions, respectively; p is
the pressure; T is the temperature; Pp is a reference density of water, which is taken as the density of
water corresponding to the temperature at the end of the sidearm; B is the coefficient of thermal
expansion of water; o is a constant; T xy is the shear stress; and Dy, is the thermal diffusivity.
Turbulence, though not considered explicitly, is accounted for by treating the velocity and temperature
variables in Eqgs. 3 to 7 as time-averaged variables, by including the Reynolds shear stress in the stress

term T .., and by including both the molecular and turbulent diffusion coefficients in Dy.
*he boundary conditions for Egs. 3 to 7 are

x=0; T = g(y) )]
D

x=0; fudy = 0 )
O

Y=0;QI=0,u=0,V=0 10)
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y=DiDy —=—— —=0p=0 an

in which g(y) is the vertical temperature distribution at x =0; ¢ , is the rate of heat transfer across the
water surface; p is the specific heat of water; and D is the sidearm flow depth.

Integrated Governing Equations :

Elimination of the pressure term between Eqgs. 4 and 5, integration of the continuity,
momentum and energy equations over the flow depth D and application of the appropriate boundary
conditions produce

D

({ u dy = constant = 0 (12)
4D 4,4 DD T
& | uldy =5g~d—; L[ | ¢ BeaT+0) dy dy] -2 (13)
n y n
D
4 iuTay = 2o 14
0 PnCp

in which 1, is the shear stress at the channel bottom. Eq. 12 is a generalized form of the boundary

condition, Eq. 9.

In the following treatment, D is considered as a function of x, D(x). Consequently, the
principal integrated governing equations, 13 and 14, now contain an additional unknown D(x). To
resolve the problem of closure an additional equation, the mechanical energy equation, is generated by
multiplying the x and y equations of motion, Eqs. 4 and 5 by u and v, respectively and adding the
results (see earlier section for justification). The integrated mechanical energy equation is written as

D) D(x)
f (u2§g+ uv 9 )dy=-—1— | (u a—B+ v a—-—E+ vpng]dy
0 ox dy Pn ¢ ox dy
Dx) 91t )
L L Ty (15)
P J ay
n
Eq. 15 can be further simplified to
D(x) D(x) D) a1
147 gy L Ry L 0 gy (16)
Pn ox Pn dy
0 0 0
The additional boundary condition is
x=0; D =Dy an

where Dy, is the sidearm flow depth atx = 0.

Reduction of the Integrated Equations

The first step in the solution of the governing equations involves reduction of the integrated
equations 13, 14 and 16 to a system of ordinary differential equations. Utilizing the experimental
evidence that the vertical profiles for velocity and temperature are similar and hence assuming that the
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vertical profiles for shear stress are also similar, the following definitions for these profiles are
adopted.

f(m) = ;}‘;
T-T,
h(n) = ‘T’;_“_n v (18)
— T
M=
Il
n =y/MD

in which f(n), h(n) and T(n) are the normalized similarity profiles for velocity, temperature, and shear
stress, respectively; ug is the flow velocity at the water surface; T is the water-surface temperature;
and Ty, is the temperature at the end of the sidearm which is assumed uniform in the vertical direction.
Note that Ty, is, as yet, an unknown quantity. It is obtained, later, from the solution to the governing
equations by imposing the condition that at

x=L T=T, | (19)

Certain conditions on the similarity profiles for velocity and temperature can now be obtained. Eq. 12
yields

0{1 fm) dn =0 ’ (20)
Boundary condition, Eq. 10, demands

fO=0 @2n
Eq. 11 yields

offom| n=1=0 (22)
From Eq. 18

f(l)y=1 23)

Conditions, Eqgs. 20, 21, and 23, imply that at some 7 = Ay,
fAy) =0 24)
where Ay, = hy/D, in which hy is the elevation of the point of zero velocity. Note that, in general,
f(Ar) 2 0 (25)

where A is the normalized interface elevation given by h/D and hr is the elevation of the interface

measured from the channel bottom. Egs. 20 to 24 are the conditions on the normalized vertical profile.
From experimental observation

h(©) = 0 (26)
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Eq. 10 yields

oh
—=0atn=0 27
P @7

Shear stress is zero at the free surface, and the interfacial shear stress (evaluated later) is 1;;

ie.,

T(D)=0

- T3

T(AT) = (28)
Il

T0)=1

If the adopted similarity profiles satisfy conditions, Egs. 20 to 28, the problem reduces to one of
solving the integrated equations subject to the boundary conditions, Eqs. 8 and 17. The third
boundary condition (for the velocity) is obtained as an internal condition as is shown later. The forms

of the similarity profiles, h(ﬂ), f(n), and T(n) are also given in a later section.
On substitution of Eq. 18 in the momentum, mechanical-energy and thermal-energy equations,
the following are obtained:

in which

d d dp?
Codx (uSZD) =ciBg = {DZ(TS-Tn)] - % I ";i 29)

u
%co' adx— (uzD) = gD p_s—[czﬁpn c;i—x [D(TS.'TII)] + (02 4 CB)ﬁpn(TS_Tn) dd_li]:]
n

Luglnls; (30)
Pn
d 0,
¢4 g (05(Tg-Tp)D) +—-=0 ¢31)
np
L, 1 4 11 11
Co=| fdn;co'=f f2dn, ¢y = | !hdn,c2= jf}hdndn,

—léf-lhdd —1fhd 1f ai:_d'-S
C3—jﬂanj mdn, cq = | n,;(n)é—n— m=-5;
(8] n (o] (8]

in which S; is a constant (j representing the flow regime as defined below) depending on the profiles
for velocity and shear stress. Explicit expressions for Sj are given in a later section. The bottom shear
stress, is modeled using
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T

0

O_ .
o

Pn )

in which v = kinematic viscosity of water; j = 1 when the flow in the lower layer is laminar; j = 2 when
the flow in the lower layer is turbulent; and F1 and Fy are positive constants which depend only on

parameters of the non-dimensional similarity profiles for velocity and temperature. Explicit
expressions for F1 and Fyp are given later. The notation j=1 represents both the laminar and quasi-
laminar regimes. Surface heat loss is determined from the linearized relation

(%) 2y (32)

¢n = K(Ts'Te) (33)

where K is the surface heat-exchange coéfficient and T is the equilibrium temperature. The following
normalized variables are introduced.

ug TeTp . TyTe =
o 0= Ty O =TT D =DIDGE =3 o0

VB(TQ‘ e)gDo o-e

in which T, is the water-surface temperature at x=0.

An order of magnitude analysis based on results of past numerical and analytical studies (Sturm

1976; Sturm 1981) indicates that the inertia term in the momentum equation is negligible compared to

the other terms in most situations in the field and in the laboratory. On elimination of the inertia

ggntribution in Eqgs. 29 and 30 and substitution of Eqgs. 32, 33, and 34, the governing equations
come

Momentum:
..__2 _ F . - .
[cle-—-i—-——}@——+c11>299+~——91¢—_=0 (35)
Zﬁ(TQ' e) d& dé (]_) \/_G")Z'J
Mechanical Energy:
=2 : .S-4
3\, dD —2d0  FuiS:0
(02+ %)OE+C2D255-TQLJ?=O (36)
® VG~
Thermal Energy:
= d dD (8 +6p)
D—(8)+ 06 — - — = 37
dt @) +¢ d¢ 4P VG @7
where
3
B(To*Te) gDo v K
G=——s5—— P, =77, k=—
v2 m kD, pcp

Egs. 35, 36 and 37 contain three dimensionless governing parameters: the Grashof number G, the
modified Prandtl number Ppy,, and B(To - Te).
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=2
An expression for D may now be found by suitably manipulating the momentum and
mechanical energy equations:
1+ s |F
dﬁz + Cy j Oj ¢ 3
T 2-j (38)
d cac —
: BB (To-To) + 35, e] ®VG)
dﬁz
Eliminating ——dz from Egs. 35 and 36 gives
c1 = c — SiF; j
03—%D29§g+~—‘2-"~—D29~@-— 1 9j ¢] -
A& 2B(TyTe)  dE 2B(TyTe) D \{G)}]
. 03
9¢JFOJ' {02 + 6:—2'-*- CISj}
+ , - =0 (3%
® Vo
Substituting Eq. 38 into the normalized thermal energy equation, Eq. 37, yields
=2 .d 09i*1 Foj e ) il
D@9 T c3010 2
D -]
B(TeTo) + 551 @ VO
D (0 +89
____E___Q.)_. = (40)
C4Pm\l—6

The simplified governing equations for the problem are Egs. 38 to 40 which constitute three
non-linear ordinary differential equations in the three unknowns, ¢, 6 and D.The magnitude of D is
very nearly 1 as indicated by the numerical and analytical results of Sturm (1976, 1981); therefore,
Egs. 38 to 40 are further simplified by setting D = 1 in Egs. 39 and 40. Egs. 39 and 40 then become
uncoupled from Eq. 38 and can be handled separately to yield the solutions for ¢ and © The problem
then reduces to finding a solution to the following system of two differential equations:

7166 + 7178 + 739@ - 74q>i =0 k 41)
v oo 5 i+1 N =
0¢'+6'¢ + -0 +y5(0+6,) =0 , (42)
£1(6) ‘

where
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1+Lg
[+5£ 31

Eoi——57
REGORS

BN =

Y5 =

1 C3019

f =
and £1(0) Zﬁ(To- c)+ 20,

1
—— 43
Y6 C4PHQR§ 43)

and the primes denote differentiation with respect to £. Since the coefficients Y | through g and f1(¢)
do not contain the independent variable & explicitly, Eqgs. 41 and 42 can be reduced to a single non-
linear equation in ¢ and 6 which is solved (see following section) using an internal condition for the
flow to be well behaved in the sidearm. Therefore, only one boundary condition is required for the
solution of Egs. 41 and 42 and this is obtained from the condition that Ty =T, at x = 0. This
boundary condition reduces in the normalized form to

0=(1-0)att=0 (44)
Solution
Egs. 41 and 42 can be suitably manipulated to obtain
6 + 6+0 0 :

gg+{_ s (10+7 +1_}¢___{'YG( ) (11 +72}¢_J (45)

de £1(9) Y30 - v4 ] 6 Y30 - v4 ;
which is of the form

)6 = 5© o™ 46)

Eq. 46 is the Bernoulli equation (Ames 1968). An exact solution to Eq. 45 can therefore be found;
however the complicated forms of the functions r(6) and s(6) make it impossible to arrive at explicit
expressions for ¢(€) and 6(€). Order of magnitude simplifications can be readily made in the parent

overning equations 41 and 42 (Cherian 1985); these simplifications result from the fact that the factor
ﬁ('ro- ¢) is at least two or three orders of magnitude smaller than unity. The simplified governing
equations are

120" - Y400 = 0 7

89" + 0'0 + y5(06 + 6,) = 0 (48)
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Egs. 47 and 48 can also be reduced to the Bernoulli form with

x(8) = é (49)
s@) = - 1612 [9—19!‘-} (50)
4 0

m=-j 6D
Eq. 46 can be solved using the transformation

¢ =t V(1-m) | (52)
The solution is given by

t=exp [(@-1) ]/ (8) 0] (A-(m-1) [ s(8)exp [(I-m) [ r (B) d6] d6) (53)
Substituting Egs. 49, 50 and 51 in Eq. 53 yields

t = 9"@+1){A - (+1) %eiﬂ (J‘%z‘ + %’})} (54

The constant A must equal zero, because the velocity must remain finite when 0 goes to 0; this is the
internal condition (referred to earlier) for the flow to be well behaved in the sidearm. Thus the solution
from Eqs. 52 and 54 is

oi+1 = [e + jﬁ—%en]/sl | (55)
in which
5, = -G Y4 (56)
1 G+1) T

From Egs. 47 and 48,
¢'=- (1/e>{¢0+1>%+76<e+9n>} 7)

Substitution for ¢ from Eq. 55 into Eq. 57 gives

o Y6
¥ =72 8
which on integration yields

0=(35E+B (59)
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in which B is a constant of integration. The value of B is obtained using the boundary condition in Eg.
44 which yields after use of Eq. 55,

5+ o]
B=|{1+57/3 (60)

Hence the solution of the governing equations, Eq. 47 and 48, is given by

6, ) JVG+D
0] ={(1 + g 31 - (Ye/it2) § (61)
6, | 1G+D) i+l

The unknown 6, is determined from Eq. 19 which can be written as,
8=0atf=L (63)

in which L =L/D. Egs. 62 and 63 yield

384

9 ) » i+l
0=8; [[1 +ﬁ}51}1/1+1~<75/j+2> L] Lo, 64

Note that when L = ie’ 8;, = 0, which when substituted in Eq. 64 yields an expression for ie

= j+2)

be =18, /6D ©5)
Using Eq. 65, Eq. 64 can be expressed as
- O, " .
= 141 de o 14+ :
A=(1 +5D) /i - G379 /i (66)
in which A = i/f,e =L/L,. Using Eq. 66, 6, can be expressed as
Bp=¢jA),j=12 67

in which e and e are functions of .. When j =1 (laminar and quasi-laminar sidearm flows),
eM)=1+A[24- V322 + 6] (68)
and when j = 2 (turbulent sidearm flow)

M =3U+s-33 (69)

in which
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1/3
u-(3)" -2 +Voadaad (70)

and

1/3
s=(3)"7 16-319-Voadaady an

The expression in Eq. 68 is the same as that obtained by Sturm (1981) and Jain (1982). Note that the
boundary condition 8 = 0 at £ = L implies that the maximum value of L is Le; hence A < 1, a condition

that was used in deriving Eq. 69. ~
A summary of the analytical solution is given below:

0.\ 1/j+1 oy | |
0= [(1 + FHT) - x/Le] Liren (72)
o \1/+1 .
) =H1 + ﬁgf) - x/Le] /8, 1/G+D) 73)
where
L = 4Py VG (+2)/8; /D (74)

8 = (04/02)(Q‘+2)/(j+1))SjF03-PmGG'1)/2
The rate of surface heat loss, Hj , from a unit width of a channel of length L is

L
Hp = | K(TgTe)dx s
0

which on substitution for Tg from Eq. 72 and integration becomes

. . : )
(140,/5+1) Oh [(1+8,/5+1) 1i+lag i+
Hy, =KL(Ty-Te) [ 2 T 72 ] (76)
The rate of heat loss, Hy ¢, from a unit width of long channel [sidearm with a length L 2 Le] is
obtained by setting A =1 and 6, = 0in Eq. 76

Hy o =Ky o(To-T/((G+2) an
The ratio
Ny = ‘H{I; = (1+0,/j+1) - %}21—; Bk - [(1 + 0+ DIIFLAN+2 = 500 (78)

The surface velocity is determined from Eq. 73 as

- 1 By 1/j+1
WMo =G (U RD L) (79)
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The flow rate, g, per unit width in the upper layer is

D
q= J'udy=csusD0 80)
hy,

1
in which cg5 = | f(n) dn and D is set equal to Dy, Substituting for ug from Eq. 79 leads to
Ay '
R A g“—)1/(i‘f1)-->c/1,} G2y
kLe = (+2)cy j+1 ©
The rate of continuous downflow, V, from the upper layer to the lower layer, obtaihed from Eq. 81 is

05 '
V = m (82)

The unit flow rate, qo, at x = 0 given by Eq.811is

9 .
Cg n . 1/(G+1)
Qo/kle = c4G+2) 1+ e , (83)

The unit discharge, qoe, at x = 0 for a long channel is obtained by setting 8, = 0inEq. 83:

CS .
Yockle = Gizye, (84)

The ratio
6. M/G+1
n)(] ) 35)

Ngo = qo"loca:{l Y

The variation of 6, Ny and Ngo with A is shown in figure 2 for the laminar/quasi-laminar and
turbulent cases.

T T H ¥ 1 1 1 1 T . ¥ T T H T H T 1 T
14 LAMINAR/QUASI-LAMINAR REGIME - 14 = TURBULENT REGIME -1
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Figure 2. Variation of Gn, nH, nqo‘
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COMPARISON WITH EXPERIMENTAL DATA

The analytical model involves certain constants which need to be evaluated in order to compare
the model results with the experimental data.

Evaluation of Constants
Fo;jin Eq. 32 is related to the friction factor at the channel bottom by the relation
TO k] - fo‘
;)—- == Oj(—ﬁ) 2 Jusj = wg‘lULl ULi (86)
n

in which fy; is the friction factor of the channel bottom and Uy, is the average velocity of the lower
layer. For Taminar/quasi-laminar conditions, use of f51 = 48/R,, in which Rg is thc Reynolds number
of the lower layer, gives '

C
Fo = 6|-A—§§4 87

in which

At
cg = [ f(m) dn
(o]

For turbulent conditions, Eq. 86 gives

f 2
C
Foo = % 5 (88)
At

where f is a bottom friction factor for turbulent flow and depends primarily on the roughness of the
channel bottom. ‘

The evaluation of Sj in Eq. 30 requires an expression for the interfacial shear stress, T;, which
is defined as

T f::
LI _él Uy - UL)Z (89
Pn
in which fj; is the interfacial friction factor and Uy is the average velocity in the upper layer. Introduce
oy = fiiffo; G0
Then
2

A )
T, 1)
1-A

1l 1ol = 051 +

There is some uncertainty with regard to the value of o,. Interfacial friction in two-layer flows
has been the subject of numerous investigations; however, pas’t surveys of the literature (Vreugdenhil
1971; Karelse 1974; Maxwell et al. 1975) have failed to determine well-established universal
relationships yielding f;; as a function of the pertinent independent variables. There are a number of
reasons why consistent correlations were not found in the data: 1) the variability among various
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investigators in defining the velocity and length scales, and the associated lack of information required
to bring all the data to a common base; 2) the sensitivity of the data analysis to quantities that cannot be
measured accurately (like the water-surface and interfacial slopes); and 3) the lack of systematic
variation of the Reynolds and densimetric Froude numbers over a wide range of values. Another
major reason for the inconsistency in the experimental data is that it pertains to a variety of two-layer
flows (temperature wedges, saline wedges, lock-exchange flows, gravity underflows, etc.). In the
different types of two-layer flows, different processes contributing to interfacial friction might dom-
inate, thereby leading to different relationships for fjj. In general, the processes affecting interfacial
friction are: 1) laminar viscous friction; 2) internal wave form drag; 3) drag caused by interfacial wave
breaking and entrainment; and 4) Reynolds stress of turbulent motion. In the case of sidearm flow in
which surface cooling plays a major role, a fifth process may be important: convective turbulence. In
the quasi-laminar and turbulent range of sidearm flow, convective turbulence is a dominant physical
process in the upper layer and may influence the value of f;;.

The data in the laminar range obtained by Barr (1367) was analyzed by Abraham and Eysink
(1971), the results of which showed that o, varied between 0.5 and 1.0, with an average value of
about 0.7. A theoretical model developed blerocard et al. (1978) for equal counterflow indicates that
oy = 0.2. One reason for this discrepancy between laboratory data and the analytical result may be
the significant contributor to interfacial friction at low Reynolds number. Macagno and Rouse (1962)
have observed the existence of interfacial waves in the laminar range. An average value of ot; = 0.5
is best representative for the laminar range. In the turbulent range, an interpretation by Abraham et al.
(1979) of the results of stability analysis for three-layer flow by Dingemans (1972) indicated that
interfacial friction is a function only of the Reynolds number and the type of flow. Analysis of the data
of Abraham and Eysink (1971) showed that o, varied from 0.27 to 0.39 with an average value of
0.35. The value of o, in sidearm flow should be higher because convective turbulence (which plays a
dominant role in the quasi-laminar and turbulent regimes) contributes to increased momenturm transfer
across the interface. Therefore, o, is increased arbitrarily to 0.5. Similarly, for the quasi-laminar
regime the value ofo; should be greater than 0.5 (the value for laminar flow); increasing al by about
the same percentage as o, results in oy = 0.75 for quasi-laminar flow.

" There is some empiricism in the selection of the average values of o; determined above; they
are, however, based on the best available information and conform to the ranée of aj (between 0.5 and
1.0) encountered in both laboratory and field studies.

Determination of the profile parameters A and A, ,and the constants ¢1 through cg, and §;
requires knowledge of the similarity profiles for vgiocity, temperature, and shear stress. No satisfac-
tory theoretical model is as yet available to predict the vertical distributions of velocity, temperature,
and shear stress. Consequently, recourse is taken to examining the available experimental data to
determine the appropriate similarity profiles. The examination of the results of Iaboratory
investigations on sidearm flow indicates that A is not significantly different from Ay in the well-
established flow region. It is therefore assumed that Ar = A, = A

Similarity profiles for velocity and temperature for each regime are identified using available
experimental data and physical reasoning, and are shown in figure 3. It should be noted that the
profiles are chosen to satisfy boundary conditions, Eqgs. 20 to 27. Algebraic expressions for these
profiles and profile constants are given in a report by Cherian and Jain (19835). The similarity profiles
for the laminar regime are based on the experimentally obtained distributions of velocity and
temperature given by Sturm. On the basis of the experimental results of Brocard et al. (1977) a
similarity profile for velocity for the quasi-laminar regime is chosen such that the velocity is uniform in
the upper layer and has a parabolic shape (representative of laminar flow) in the lower layer. The
similarity profile for temperature is developed using a uniform distribution in the upper layer and a
second-order temperature decay in the lower layer. No experimental data on the velocity and
temperature distributions are available for the turbulent regime in sidearm flows; however, these
distributions can be expected to have turbulent, well-mixed characteristics and are therefore best
represented by a uniform profile in both layers.

No experimental data are available for the vertical distribution of shear stress. In view of the
uncertainty in estimating the value of o;, which is judged to be more important than the shape of the
shear-stress profile, a linear profile for shear stress shown in figure 4, which satisfies the boundary
conditions given by Eq. 28, is assumed. The constant Sj in Eq. 30, for the assumed shear-stress
profile, can be written as

o (AD + a;/(1-Ap)?
TR AMAD

(92)
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and Temperature.

It is emphasized that the general behavior of density currents predicted by the present analysis
does not depend on the assumed profiles for velocity temperature, and shear stress. The
reasonableness of the assumed profiles is confirmed by the satisfactory agreement between the
analytical results and experimental data as presented below. ;

“The laminar model developed herein is applied to the experimental data for Run B of Sturm
(1976). The experimental and computed values of 6, and q are 0.54 and 0.52, and 1.84 and
2.27, respectively. The agreement is satisfactory, even though the model overpredicts the sidearm
discharge by about 25%. The experimental results of Brocard et al. (1977) are used to verify the
quasi-laminar model. The data were screened to exclude results from runs in which A was greater than
0.65 or less than 0.55 (indicative of flow that was not well-established). The results of the data
comparison are shown in figures 5 and 6., Field data is available from the Boundary Dam Reservoir,
Saskatchewan, Canada (Brocard et al. 1977). Seventy-seven percent of the reservoir surface area
consists of a long and narrow sidearm. The length of the sidearm is 37,000 ft and its depth at the
entrance is 60 ft. Surface temperatures were measured at the sidearm entrance and at a longitudinal
distance of 21,000 ft from the sidearm entrance. Model predictions for (Tx - Te)/(Tq - Te), in which
Ty is the surface temperature measured at x = 21,000 ft from the sidearm entrance, are generated using
the equations for the turbulent case. The results are shown in figure 7.- Overall, the models developed
herein perform fairly well, as is demonstrated by the above comparisons.

A graphical comparison for qu/kL in the laminar regime using various models is shown in
figure 8. Figure 9 depicts the comparison for 8, in the laminar regime. The temperature profile used
in generating Sturm's result is h(n) = M4 which best resembled the similarity profile for temperature
in the laminar regime. The wide discrepancy between the results of the present model and that of Jain
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(1982) is primarily due to the neglect, in his model, of the water-surface slope term in the momentum
equation. The water-surface slope term (the first term in Eq. 35) is more important than the bottom-
friction term (the third term in Eq. 35). Taking the ratio of these terms, substituting for dD?/d§ from
Eq. 38, and using the order of magnitude approximations 1/[B (T, - T¢)] >>c1, 6 and IB (Ty - Tl
>> ¢3¢16/2c9, the following is obtained:
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Figure 5. Comparison of Predicted q,/kL with Data
of Brocard et al. (1977).

12 T !Ii!li!! T !ll!llli T T T T Ty

02 -

0 1 i |§I|l|1 1 [ II‘III i i ll‘llli i 1 o bbby
— - - - B
16 10° 10° 10° 16°

2,2 3
Pl /81T -1 gD]]

Figure 6. Comparison of Predicted 0n with Data
of Brocard et al. (1977).
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93)

contribution of water-surface slope term _ 1- 1 S.
contribution of bottom-friction term ¢y 7l

Based on the assumed profiles for velocity, temperature and shear-stress, the ratio of the two terms in
Eq. 93 is more than 20. Comparison for 8,, in the turbulent regime is shown in figure 10. A
comparison for q/kL in the turbulent regime Showed that the solution of Brocard et al. overpredicts
qo/KL in comparison to the present solution by 13% to 25% (Cherian, 1985).
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CONCLUSIONS

The analytical solution indicates that the surface discharge in the sidearm decreases linearly

along the length of the sidearm for both the laminar and turbulent cases, while the surface temperature
decay is quadratic along the sidearm for the laminar case, and cubic along the sidearm for the turbulent
case. The solution indicates that the water-surface slope is a significant factor in the depth-integrated
momentum equation, and that the bottom friction plays a minor role in fully-established sidearm flow.
The agreement between the analytical model and the experimental data is satisfactory.
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