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SYNOPSIS

The instability of an inviscid two-layer flow with a hyperbolic-tangent velocity
profile is investigated using the linear stability theory to clarify the influence of the
density and velocity profiles on calculated instability characteristics. The numerical
results show that there is a region of stationary unstable modes at low Richardson
number B and only one neutral curve at low wavenumber « in the (a,#) plane, so that
the flow is always unstable for a larger than about A/2. Moreover, it was found that
the appearance of a neutral curve at high « obtained in the models of Holmboe and
Hazel is due to the discontinuity of vorticity profile and the continuity of density
profile, respectively.

INTRODUCTION

Many studies have been made on the instabilities of stratified shear flows to make
clear critical conditions for generation of turbulence or internal waves. One of the
important results is that inviscid shear flows with a sharp density interface are always
unstable for some wavenumbers, while flows with an unbounded layer, ie. the
continuity of density profile, are unstable only in the region of low Richardson number,
J<1/4 (see Drazin & Howard “®).

Hazel“® analyzed the shear-induced instability numerically under the different
sized vertical scales for the density and velocity profiles, and explained the difference
in instability characteristics between stratified flows of smooth and abrupt density
profile by using a chart of local Richardson number profile. According to this results,
there are many similar points, e.g. shape of neutral curves, between Hazel’s numerical
results and Holmboe’s results ® for the flow with a sharp interface. However, a close
examination shows clear differences between their results, e.g. stationary unstable
mode.

In this paper we numerically investigate the instability of a density two-layer flow
with a hyperbolic-tangent velocity profile, as a combination of Hazel’'s and Holmboe's
models, with the intention of clarifying the influence of flow modeling on the instability
analysis.

FORMULATION OF THE PROBLEM

We consider a two-dimensional incompressible inviscid parallel flow with a velocity
profile U*=V-tanh(3*/1) which is a statically stable two-layer system with densities of
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fluids p: and p= (p:1<p=), in the upper and lower layers, respectively. Assuming the
fluids are fresh water and saline water, we can ignore the surface tension at the
interface. If we take a dimensionless stream function of disturbance #(Vexplia(x-Ct},
the well-known Rayleigh equation for each layer is deduced after linearization:
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& '—{—‘-‘“"“—(U__C)“f-afz}‘ﬁz:o
where U is the dimensionless velocity profile given by t o
U=tanh(y), C(=C.+iC) the dimensionless complex phase a /4
velocity, a the dimensionless wavenumber and primes 4
denote differentiation with respect to the dimensionless -
height y. v
According to the continuity of displacement and 8/,
pressure across the interface, boundary conditions can be e
obtained as 1
qu:O (y:+oo)
$:=0 (y=—o0)
$=d (y=0) @
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where v =p./p= is the density ratio, B=(1- v g/ V2 the Richardson number, and gthe
gravitational acceleration. Since Egs.(2) show that effects of density difference on the
stability can be disregarded, except the term containing g, we let y be a constant
value of 0.99 ( Boussinesq approximation ). = Then we obtain the eigenvalue equation
from the boundary conditions,

det{d(a, C: R)]=0 (3)
ANALYSIS AND NUMERICAL SCHEME
Substituting the dimensionless velocity profile (=tanh(y) into the Rayleigh

equation, and transforming using {=tanh(y), we can get the following equation
(Tominaga '),

a*¢ 20 dp 2¢ a’ _
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Furthermore, transforming Eq.(4) using

== (t~C)p , £=(1+£)/2 5)
we obtain the equation as follows:

A’ (vi, & , eit+tBi—ri—6+1 d¢ a i€ —qy) f e
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where
o=, h=a+3, n=a+l, Si=a+l, a;=(C+1)/2, a.=(@ia+a1+1)/(a,+3) (7)

This equation is called Heun’s equation (Bateman‘!’), which has four singular points at
£=0, a1, 1, and . Two independent solutions in the vicinity of £=0 are obtained as
follows:

h=Fla; a, B, n, 81 @1 z?):n%/lné"
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ml?’x . (8)
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One of the independent solutions in the vicinity of £=a, incorporates a log term as
follows:
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and independent solutions in the vicinity of £=1 are obtained by parameter conversion
as follows:

ds=F(l1—ai; @, B, 6y, n; 1—qn; 1= &)

Ge=(1=E)""F(l—a1; a,—8:+1, Bi—6:1+1,2=8, n; (10)
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Then, the solution of Eq.(6) near each singular point is represented as follows:
¢:(1_é)ﬂlz(f—dl)[P1¢l+Pz¢z} for £é=0
$=(1—8)"*(¢&~a1)[Psps+ Pidhi] for é=a ' (11)
95:(1“5)"’2(5“01)[P5¢’5+Pa¢a] for &=1

By using a: and £, the boundary conditions (2) are represented as follows:

$:1=0 (=1
¢.=0 (€=0)
$r=¢; (£=05) (12)
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Furthermore, denoting an upper solution and lower one at the inner boundary by @.
and ¢, respectively, additional conditions of adjoining solutions in the domain of
convergence are represented as follows:

S @ dé ‘
bu=0, 3 (13)

From these conditions, we can obtain the simultaneous equations,

an Y/ AT SRR TITEn . Pl P!
=4- i | =[0] (14)
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and the eigenvalue equation (3) can be found.

Because adjoining solutions were made to coalesce at the middle pomt of each
overlap region to maintain the convergency of solutions, we obtained a matrix and an
eigenvalue equation with different rank in each of the six regions of Howard’s
semicircle transformed into the a&: plane. The matching points of solutions were
determined as follows by considering the wvalue of ( for each of the six cases
corresponding to regions of 1 to 6 in Fig.2.

(1) &, & (51<:€e‘)
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(2) &, & (&<é&)
(3) &, &, &3 (£2<E:<Ey)
(4) &, &, & (£i<E:<Es)
(5) &, & (&>&1)
(6) &i, &s (E5>&:)

where £; is the interface level, £:=0.5 in the
present case, and £, to €& are the levels defined

as ‘ i/ 2 3 4 5
E=(al+1-11-a])/2
&£=02R(a)—1+a:])/2

&E=02-|1-a: |}/ 2 (]_5) 0 05 10 ai+
&=lail/2 Fig.2 Howard’s semicircle transformed
&=QR(a)+1-11—-a:il)/2 into a, plane

The actual calculation was carried out by the following procedure. First, we
calculate values of the real part D. and the imaginary part i of the determinant of
Eq.(3) for given R, a and the expected value of ¢ using ¥. to Ye and their
derivatives at the boundary. Next, iterating this calculation for ¢ varied with a step
size AC: and A G, we draw D.=0 and D=0 curves in the (C.,G) plane. If the curves
intersect, the value of Cat the cross point is the eigenvalue. Furthermore, calculating
with the above procedure taking AC. and A smaller near the C obtained, we can get
the eigenvalue with higher accuracy.

RESULTS AND DISCUSSION
Stability Characteristics

Figures 3 and 4 show the phase velocity C. and growth rate a ¢ for £=0.05 and 1.0
respectively. By the calculations of C. and a(; for various a and A, we obtained the
stability characteristics as shown in Fig.5 . We drew the a( curve in the shaded
region matching the growth rate for R=0, although two different C’s were obtained in
this region due to a bifurcation of the a (i curve (see Fig.3). The growth rate on the
max. @ G line in Fig.5 increases gradually with a decrease of A and reaches a local
maximum at approximately #=0.4, and attains its maximum at &=0. The results at &=0
agree with Michalke’s results‘® for homogeneous free shear flow. On the other hand,
the phase velocity decreases gradually with the decrease of B and approaches about
zero rapidly in the shaded region; the reason why C. does not become exactly zero is
that we took the ¥ to be not 1.0 but 0.99. However, the difference is O(&), where &
=1- 7 ; thus we will refer to this mode as the stationary mode hereafter.

As shown in Fig.5, the neutral curve at low «, expressed as £=2 «, was obtained,
but the neutral curve was not found at high « within calculations ranging 0< a <4.
This means that the flow is always unstable for a larger than &/2.

o015}
010 o0 b
aci aci
005} 005}
0 00
Fig.3 Phase velocity and growth rate Fig.4 Phase velocity and growth rate

for R=0.05 for B=1.0
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Comparison with Classical Kelvin-Helmholtz
Instability

max, a. Cy

—aci
- Cr

The stability of two-layer flow with
constant densities p:, p=, and velocities 125
Uy, U= in the upper and lower layer re-
spectively is well-known as the classical
Kelvin-Helmholtz problem, and the disper- R
sion relation for the K-H problem is obtained 08
as follows by Turner<''’:

0.02

C= oUi+pUs +{_& 0201
o1+p:  “la pator
1 (16) 04

o002
(o1 +p2)?

In order to compare this relation with our
results, we replace U,, U=z with V, -V, and 0 A
use the assumption (p=-p:)/p=<1l. We 0 1 z 3
can obtain the relation in the dimensionless
form;

(U= U

Fig.5 Stability characteristics of density

7. cal two-layer flow with tanh velocity profile
C=_t,/—2»a#—1, R,r=-V;

(17

We therefore obtain the condition of generation of unstable waves and their phase
velocity as

Ri<2a, Cr=0 (18)

Now, considering the case of /- 0, Le. B —> 0, in our model, the flow field
approaches Kelvin-Helmholtz flow. Our results near A=0 show that the instability
condition is represented by R<2a and that the phase velocity of unstable waves is
nearly zero. These are therefore in agreement with the results of the Kelvin-Helmholtz
problem. Note that flows with £=0 in our model represent not only homogeneous free
shear flow (ie. & =0), but also Kelvin-Helmholtz flow (ie. E0).

Such agreement of stability characteristics near E=0 have also been found for the
continuously stratified flows investigated by Miles & Howard ¢, Thope ‘® and others.
Representing their results in terms of Richardson number A defined in the present
study, we can obtain a neutral curve with B=2a and the phase velocity of unstable
waves as zero. Drazin & Howard“® have interpreted such general characteristics of
instability by an « series expansion of the neutral stability solution.

Comparison with Other Studies

Holmboe ® investigated the stability of a two-layer flow with the velocity profile

={y/lyl (lyl>D

vy Uyl<D (19)

and obtained the neutral curve shown in Fig.6. On the other hand, Hazel“” numerically

U 1.0 U o6

neutral cur{/e al neutral curve
AN
> Jo J
2 i 0.5¢
P2 2l
locus of bifurcation points
stationary unstable
stationary unstable stationary neutral curve
0 . . 0 . < .
) 1 2 0o VvV 1 2
a a
Fig.6 Flow model and resulting neutral Fig.7 Flow model and resulting neutral

curve by Holmboe curve by Hazel
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investigated flows with velocity and density profile

U=tanhy 20
po:ﬁexp{%tanh(ﬁ'y)} (20)
and obtained the results for the case of =5 as
shown’in Fig.7, where R is the ratio of the scale of
velocity shear layer thickness to density thickness.

Holmboe’s results show the existence of the
region of C.=0 and the neutral curve at low «, as
our results do. In Fig.6 J, is the Richardson
number defined using the thickness of the tran-
sition layer of velocity profile as the characteristic
scale and has the relation J.=#/2.

On the other hand, Hazel defined the
Richardson number J using the thickness of tran-
sition layer of density profile as the characteristic
scale; therefore, we can not directly compare our
results with his results. Then, we try to deduce a
relation between Jand & from the relations

oxge R (yo+0),  pxge”" (y—ow)
R R (21)
1-—7=1-E-1 e 2R, o=—7%log 725(1—-7}
Finally we obtain the relation as follows;
J=%h Regh _Rp, (22)

VET IV

and hence the neutral curve at low «, represented
approximately by JRa, becomes R=2q in the (
«a,R) plane. This agrees with the results of our
model corresponding to the case of R~ in Hazel’s
model (note that the agreement of this with the
results for Kelvin-Helmholtz flow is only at B — 0).
However, Hazel’s numerical results for stationary
unstable modes, namely the modes of (.=0, are
different not only from Holmboe’s results but also
from our results. If the stationary neutral curve
remains within the range of K1/4, ie. R<l/2R in
the ( a,R) plane, the region under the curve is
reduced as R increases, and finally disappears at R
-0 in the ( @, &) plane. Moreover, if the maximum
value of J for stationary unstable modes increases
as Rincreases, and indicates a constant value not in
the ( «,J) plane but in the ( a,/) plane at limit of B
—> 00, that is, if the maximum value of Jincreases in
proportion to the wvalue of R, Hazel’s result is
consistent with other results. Now calculating the
largest value of R for stationary unstable modes
from Hazel’s results, J approximately equals 0.37,
and we get A=0.15. This value agrees well with
ours. We therefore conclude that the region of
stationary unstable modes in Holmboe's or our
results corresponds to the region bounded by the
locus of bifurcation points (line cin Fig.8 of Hazel’s
paper) and the stationary neutral curve (line &) in
Hazel’s results.
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Fig.8 Phase velocity and growth rate
for Jo=0.05
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Fig.9 Phase velocity and growth rat,e
for Jo=0.5

Jo

[44
Fig.10 Sketch of change of a neutral

curve as the number of layers of
velocity profile increases

LU

Fig.11 Sketch of change of a neutral
curve as the thickness of transition
layer of density profue decreases

The above discussions concern neutral curves at low « and for stationary
unstable modes. As shown in Figs.6 and 7, Holmboe and Hazel also obtained neutral
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curves at high a in their models, but in our model, no neutral curve at high «a has
been obtained. In order to discuss the appearance of this instability boundary, we
have investigated the instability of a six-layer model with linear velocity profile in each
layer and with a density gap at y=0, which has more layers than Holmboe’s and is a
better approximation of hyperbolic~tangent velocity profile. Figures.8 and 9 show a &
and C. for these two models. The results show that the unstable region has a tendency
to expand to the high « domain, though the neutral point at low « and the region C.=0
coincides with Holmboe’s model. If the number of layers is increased further, ie. the
velocity profile approaches a smooth curve, the unstable region will expand further to
high «, as shown in Fig.10. Accordingly, for a tanh~type profile corresponding to the
case of infinite division, the unstable region does not seem to promise to disappear at
any high value of a. We therefore conclude that the appearance of the neutral curve
at high « obtained by Holmboe is due to the fact that the velocity profile is linear, I.e.
the vorticity profile is discontinuous. Such a stabilization in high a due to linear
modeling of velocity profile is also found by Miles & Howard ™ for stratified flow and by
Esch®® for homogeneous flow.

On the other hand, Hazel’s results for the flow without an abrupt change in density
profile show that the neutral curve appears in high @ when Rexceeds 2, although the
velocity profile is a smooth curve. From the continuity of stability characteristics, we
can expect the unstable region to expand to high a as Rincreases, as shown in Fig.11,
and for the case of R—>00 the unstable region does not promise to close at any high «.
We can therefore conclude that the appearance of the neutral curve in high « obtained
by Hazel is due to the existence of a density transition layer, namely the continuity of
density profile.

Though the neutral curves in high « obtained by Hazel and Holmboe strongly
resemble each other as Hazel points out, the internal details are quite different. If we
increase the number of layers in Holmboe’s model or reduce the thickness of density
transition layer in Hazel’s model, we will obtain the same stability characteristics as our
model in either case.

In this paper, our calculations were based on an assumption of inviscid flow; for
the viscid flow case, we can expect to obtain neutral curves closed in the ( «,R) plane
due to the stabilizing effect of viscosity. In fact, such neutral curves have been
obtained for several Reynolds numbers by numerical analysis (see Nishida &
Yoshida ®).

CONCLUSIONS

The linear stability analysis of inviscid two-layer flow with a hyperbolic tangent
velocity profile leads to the following conclusions:
(1) The neutral curve is represented by approximately R=2 ¢ in the ( a,R) plane and
the unstable region spreads to high values of «.
(2) There is a region of stationary unstable modes at low &.
(3) The stationary neutral curve shown by Hazel is not found.
(4) The appearance of the neutral curve at high a obtained by Holmboe is due to linear
modeling of velocity profile, i.e. discontinuity of vorticity profile.
(5) The appearance of the neutral curve at high « obtained by Hazel is due to the
existence of a density transition layer, i.e. continuity of density profile.
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APPENDIX -~ NOTATION

The following symbols are used in this paper:

C = dimensionless complex phase velocity;

¢ = imaginary part of dimensionless complex phase velocity;
C: = real part of dimensionless complex phase velocity;

& = gravitational acceleration;

LN
i

imaginary unit;

= Richardson number defined by Hazel;

= Richardson number defined by Holmboe;
= characteristic length;

= ratio of velocity and density scales;

= Richardson number defined in the present study;
= dimensionless velocity profile;

= velocity profile;

characteristic velocity;

= dimensionless horizontal coordinate;

= dimensionless vertical coordinate;

= vertical coordinate;

= dimensionless wavenumber;

= density ratio;

mRR NN N g RIS
]

= relative density difference;

density of upper layer fluid;

©
il

density of lower layer fluid;

AN o]
- N
now

dimensionless stream function of disturbance in upper layer; and

dimensionless stream function of disturbance in lower layer.
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