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SYNOPSIS

A three-dimensional mathematical model, based on finite volume method and £ — € tur-
bulence model, for predicting steady state confluence flow without recirculation is presented.
The model covers the confluence region by a curvilinear grid which is generated numerically
using a quasiconformal mapping method. The water body in the confluence region is thus
transformed to a parallelepiped and the computation is done in the transformed domain. The
model performance is first verified by applying it to compute flow in a parallel flow confluence
where comparison of the results with experimental results is shown to be satisfactory. Then, the
model is employed to predict the flow in a confluence of 60 degrees with a training levee. The
prediction agrees well with the experimental results. The performance of a levee which facili-
tates two streams to mix gradually and thereby to reduce the superelevation and the secondary
flow in the main stream, is demonstrated.

INTRODUCTION

The confluences, where the tributaries join with the main streams are common in river
systems and therefore the understanding of the mechanism governing the flow and the flow
field itself in a confluence is important in both flood control and water utilization. However,
flow situation in a natural river confluence is very complex in three dimensions not only due
to the coexistance of mixing, secondary flow and flow separation but also due to the irregular
topography subjected to continuous change by erosion, silting and sediment transport processes.
Despite these barriers caused the confluences not to be well tackled yet by the researchers,
enormous experience of hydraulic engineers has permited to adopt some measures such as
construction of training levees to control the flow in river confluences.

Among the limited literature available, Taylor(23), Webber and Greated(25) and Rama-
murthy et. al(18) have reported relations between the depth of flow at the confluence region
and the discharge ratio on the basis of conservations of momentum and energy. Webber and
Greated(25), Modi et al.(14) and Fujita and Komura(6) have reported theoritical solutions
for confluence flow by method of conformal mapping and predicted the recirculation zone and
streamline pattern. However, the theoritical procegures needed oversimplifications including
the assumption of inviscid two-dimensional flow despite the strongly three-dimensional nature
of the flow. As for experimental studies, Best and Reid(3) observed the increase in size of the
recirculation zone with the increase of confluence angle and with the increase of discharge ratio
by visualization method. Koike(9) studied a parallel flow confluence and reported detail mea-
surements of velocity profiles, turbulence quantities and large eddies in the developing mixing
layer. Tada(21) carried out series of experiments to study the role of a levee in a confluence
and his measurements shows the shift of maximum velocity below the water surface due to
the secondary flow. Fujita and Komura,qgmobserved the recirculation zone and bed-shear stress
direction for a confluence of 90 degrees. They also reported the measurements of secondary flow
in selected sections. Mosely(15) , Ashmore and Parker(1) studied the scour hole in confluences
with erodible bed. They found two secondary flow cells rotate in opposite directions and their
role in local scour. Best(2) observed the sediment transport process and its effect on the local
scour. From above three separate studies on erodible bed it can be learnt that confluence angle,



52

discharge ratio, Froude number and bed material are the main parameters to govern the flow
in a confluence.

As the theoritical and experimental approaches have their limitations, numerical sinula-
tion becomes an important tool. Tamai and Ueda(22) developed a three-dimensional numerical
model based on the k — ¢ turbulence model and partially parabolic solution procedure for the
confluence of 30 degrees with no recirculation. The model predicts the mixing of two flows
and the two counter rotating secondary flow cells. However the model is applicable only for
the small confluence angles gue to the restraints in the grid system adopted. Present paper
describes a three-dimensional mathematical model which employs a numerical grid generation
technique and hence capable of tackling an arbitrary confluence geometry. Similar to the pre-
vious model, some idealizations are made for a natural confluence to arrive computationally
tactable configuration. The channel bed and banks are assumed to be nominally smooth and
stable, and the flow is assumed to be symmetric about the top surface. The model is based on
the finite difference solution of the time-averaged Navier-Stokes equations, continuity equation
and the standard & — ¢ model. The streamwise diffusion is neglected in the model as partially
parabolic flow computation procedure is adopted. The model is therefore restricted to conflu-
ence flows with no recirculation. This paper presents details of the model and its predictions
for two different confluence flows.

GRID GENERATION

Boundary-fitted curvilinear coordinates are used in the present work since it has some
advantages over the Cartesian coordinates in the confluence flow computations. For example,
application of boundary conditions is simple, numerically accurate as the deviation of grid lines
from streamlines is small and the grids can be distributed so as to have fine grids at the regions
of high gradients while maintaining the uniform square meshes in the computational domain.

A quasiconformal mapping method which enables to distribute coordinate lines at the
required spacings is employed to generate a smooth and nearly-orthogonal curvilinear grid.
The present method is simpler than the methods given in Thompson and Warsi(24), Mastin
and Thompson(12), Chen et al.(4) for river flow computations. The grid generation in three-
dimensional domain comprises of first the generation in two-dimensional flat surface and then
the extension to the third dimension.

If y',y* and 2',z* are the Cartesian and curvilinear coordinates respectively, then

aym
- - 1
gr = Az7 tm . ( )
Gr-Ge = Gre (2)

where 1, = the unit vector in Cartesian coordinates; §; = base vector in curvilinear coordinates;
and g,, = metric tensor. From eqn. 2, following orthogonal mapping relation can be derived.
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where D = {/g11/g2, = the grid aspect ratio. Combining eqns. 3 and 4 following elliptic system
of equations in the transformed domain can be obtained.
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The generation procedure is as follows. First, the desired grid distribution is specified at
the boundaries and those resulting grid points at the boundaries will be kept fixed. Initial e

and y2 values are now guessed, usually by interpolating between boundary values. D for each
mesh is computed and is smoothed using a five point smoother. The system of eqns. 5 and 6

is now solved to obtain new y' and y* by a solver,eg. Tridaigonal Matrix Algorithm(TDMA).
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Several sweeps of TDMA is made with updated D each time and the number of sweeps is
decided after viewing the grid on graphics. The above procedure transforms uniform square
meshes in the transformed plane to smooth and nearly orthogonal curvilinear meshes in the
physical plane. Part of two-dimensional grid generated following this method, for Tonegawa-
Watarasegawa river confluence, is shown in Fig. 1. The extension to the third dimension is now
done by t%le interpolation upon the condition that bed level variation is smooth and not large.

The transformation relations such as metric tensor, the Christoffel symbols are com-
puted numerically in order to transfer the three-dimensional confluence region with curvilinear
meshes, the physical domain shown in Fig.2(a), to a parallelepiped with square meshes, the
computational domain shown in Fig.2(b).

MATHEMATICAL MODEL
Governing equations and turbulence model

The equations governing the motion of steady, incompressible, three-dimensional turbu-
lent flows are continuity equation and time-averaged Navier Stokes equations, and they can be
written in the following tensor form using contravariant velocity components.

U'y=0 (7)
U7y =F==p'+ WU — ww), : (8)

where U* = contravariant component of mean velocity; u* = contravariant component of tur-
bulent velocity; p = piezometric pressure; ¥ = kinematic viscosity; a semicolon = covariant
differentiation; comma = differentiation; and overbar = time averaging process.

Eddy viscosity concept and the standard & — ¢ turbulence model are used to compute
the turbulent stresses. The related equations can be written in the following generalized form.

Eddy viscosity concept,
2

—utw =y, (U + Uj;i) - gg’jk (9)
k — ¢ turbulence model,
. 1 . . . .
(kU?); = (;ik’J)sj +u(Ug? + U )U 5 — € (10)
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(V%) = (g't-f,j);j + Cl'z"/t(Ue;" + U - 2 (11
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Vg = Cp,—g' . (12)
where k = turbulent kinetic energy; ¢ = the rate of energy dissipation; v, = eddy viscosity;
and u; = covariant component of mean velocity. The constants appear in the k — ¢ turbulence
model have the standard values as given by Rodi(19).

Boundary conditions

Boundary conditions must be specified on the all surfaces of the computational domain.
The fully developed flow conditions, computed by another model, are input as inflow in both
channels. At the outflow plane, zero gradients in the streamwise direction are imposed to all
variables except pressure. The wall function approach given by Launder and Spalding(10) is
used to treat the bottom and side walls. Accordingly, the resultant velocity component parallel
to the wall ¥}, at the first grid point at a distance y, from the wall is related to resultant friction

velocity u, as

Vo 1
22 = Zin(Ey*) ; (13)
Us K
where x = the von Karman constant(=0.42); y* = non dimensional wall distance w,y,/v and

(30 < y* < 100) ; and F = roughness parameter. And, £ = 9 is taken here considering the
surfaces are smooth. In the wall region, local equilibrium prevails and turbulent kinetic energy
and energy dissipation rate at the first grid point are specified as '

Uy

k= 14
N (14)

€ = ui (15)
K:yp

Also the resultant shear stress parallel to the boundary surface over the region is consid-
ered to be the same as the wall shear stess 7, given by
Ty = Puf (16)
The shear stresses at the boundaries of the computational domain are derived as follows.
If the covariant components of the unit normal vector on the surface F where coordinate z° is
constant are given by

= %/[VF;
=..}__51 ; , (17)

where 8! = the Kronecker delta and no summation in gi . Then, the shear stress vector 7' on
the surface is given by

P i,
T= 17,9,
o
f“"”g}igj

. -
where 7 is the contravariant stress tensor. The shear stress vector 7' on the surface can also
be written as a combination of covariant and contravariant physical components as

(18)

) .
T s K 2
+ )

T=——g+ 2, j#i (19)
\/911_'3 Vg’
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Eqns. 18 and 19 are equated and 7% necessary as boundary condition are obtained in
terms of physical components. 7(¥) are computed from eqns. 13 and 14 and ;) is specified as
consistent with the & — ¢ model. ‘

The free surface is treated as a frictionless rigid-lid symmetry plane (see e.g. Leschziner
and Rodi(11)) where the vertical velocity component and the normal gradients of other variables
are set to zero. This does take into account the surface elevation changes through the pressure
gradients along lateral and transverse directions.

Solution pfocedu're

The partial differantial eqns. 7 to 12 are written in the conservative form using tensor
identities (Gal-chen(8), Sokolonikoff(20)) and can be arranged to following common form.

9 i i 09 '
55 VIV — pessg™52) = Sy , (20)

where g = det[g;;] ; ¢ takes u, v, w, k, € and the continuity equation comes as a special case when
#=1and S, = 0. Eqn. 20 is integrated over the respective control volumes on staggered grid
system (Patankar(16)) in the computational domain following the partially parabolic procedure
of Pratap and Spalding(17). This procedure enables downstream marching solution and but
downstream effect is allowed to transfer upstream through the pressure. However, on the other
hand it limits the model applicability to confluences with no recirculation.

The pressure correction equation is derived from continuity equation, considering the
effect of all three pressure gradients, which appear due to the nonorthogonality of the grids,
on the velocity correction terms. The hybrid scheme is employed to evaluate the coefficients
in the cross-stream. ‘A procedure similar to the SIMPLE algorithm is then used to obtain the
converge solution by making sweeps from upstream to downstream.

MODEL PREDICTIONS AND DISCUSSION

The mathematical model introduced above was first applied to simple problems to ver-
ify its performances. That includes the experimentally studied cases of developing duct flow
(Melling and Whitelaw(13)) and parallel flow confluence flow (Koike(9)). The comparisons in
the latter case is summerized here. The layout of their experiment carried out in a flume of
15m long with a partition wall of 1mm thick and 7.7m long(Fig. 3). The water depth d was
10cm and the measurements were done by hot-film anemometer at h/d = 0.8 , where h is the
distance measured from the bottom of the flume.
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Fig. 3 Layout diagram (Koike(9)) Fig. 4 Development of mean flow

in the mixing layer

Computation was done for the case of discharge ratio of 0.8 shown in Fig.3, using a
50x40x9 grid over the length of -100cm < z < 700cm. X and Y are measured as indicated in
Fig.3. Grid lines were concentrated at the mixing region and near wall region and the thickness
of the partition wall was neglected. Fig.4 depicts the development of the mean flow in the mixing
layer and Fig. 5 shows the comparison of longitudinal velocity profiles at different sections in
the mixing region. Although this turbulent mixing layer is dominated by the periodic eddies,
the above depictions clarify that the model predicts the mean flow quantities to a reasonable
accuracy.
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Fig. 5 Longitudinal mean velocity profiles in the mixing layer at hfd=0.8

At the next step, the model was employed to predict the three-dimensional flow in the
confluence of 60 degrees, having rectangular cross sections and a training levee studied exper-
imentally by Tada(21). The configuration of the confluence is illustrated in Fig.6. The side
walls of the channels were nominally smooth. The discharge in the main channel was 1.646 1/s
and that of the branch was 1.366 1/s. The downstream controll and the upstream feeders of
the channels were located at 6m and 3m from the confluence respectively, and thus their effect
on the confluence was neglegible.
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A total length of 450cm while 300cm being after the confluence was considered in the flow
computation. Part of curvilinear grid of 66x36x8 generated is shown in Fig.7. The computation
required 35min. in M680 system of Univ. of Tokyo.

The comparison of the longitudinal components of the velocity vector drawn in streamwise
vertical sections is shown in Fig.8, where h is the depthwise coordinate measured from the
bottom and X,Y are measured as indicated in Fig.6. Tﬁe velocity scales are the same for each
curve and the 9 curves given in each figure corresponding to the different values of X progressing
downstream as given in the figure caption. As can be seen from Fig.8, the prediction agrees
quite well with the measurements, except in a narrow region where very low velocities appear
near the downstream corner of the geometric junction %e.g. Fig.Sga,)). However, this is the
location where the pressure and velocity gradients are high, streamlines are much curved and
deviate more from the grid lines; thus such descrepancy could be possible as the model employs
hybrid scheme and the standard k — ¢ model. Also, a small overestimation of the velocities
is shown in general throughout this developing flow region. This discrepancy rises to ensure
the continuity of the flow, because the actual water depths in this region are greater than
the imposed constant water depth corresponding to the actual downstream water depth by a
maximum of about 10symmetry plane boundary condition imposed at the top surface, but the
water depths are computed from the pressure gradients (see e.g. Demuren and Rodi(fb, Tamai
and Ueda(22)). The comparison of water depth variation with experimentally obtained values
shows satisfactory agreement as depicted in Fig. 9 . Fig.10 shows the piezometric pressure
contours which correspond to the variation of water surface level in the region.
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Fig. 9 Flow depth variation
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A

Fig. 10 Piezometric pressure contours { contour interval of 1mm )

 According to Figs. 9 and 10, the superelevation of the both flow channels towards the
levee is prominent. I% the levee is absent, strong mixing will occur between two flows and
thus the superelevation in the branch channel which is substantial at the present case can be
expected to be smaller, but on the other hand the superelevation towards the right bank at
the main channel can be expected to be larger(see e.g. Tamai and Ueda(22)). The levee also
prevents the jet-like intrusion of the flow of branch channel which causes considerable backwater

effect in the main channel, specially at large discharge ratios. Thus, the training levee reduces
the flood risk.
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In the absence of the training levee, a recirculation zone would appear and its dimensions
can be estimated according to discharge ratio, confluence angle, Froude numbers and momen-
tum ratio (see e.g. Best and Reid(3)). However, as the experimental results in Fi .(8) depict
the training levee has eliminated the recirculation zone and which in turn has enable the model
to predict the associated flow pattern (Figs. 11,12,13). Fig. 11 shows the velocity vectors
in plane sections at near bottom and near surface. Accordingly, the whole channel width is
effectively utilized by the flow and the velocity of the flow is reduced.
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Fig. 12 shows the secondary flow vectors in lateral sections: the sections are as shown in
Fig.6 and Fig.7. The spiral motions which counter rotate appear in two channels at the bothside
of the levee. These two vortexes appear for the reason of continuity as the fluid particles follow
a curved path. The vortex in the branch channel which is comparatively large is shown not to
have decayed completely before two flows join at the end of the levee. The secondary flow in the
branch channel has the maximum value of about 30% of the average branch channel velocity
at sections closer to the left bank corner of the confluence. The presence of training levee has
blocked strong mixing of the flows at the junction and thus reduced the secondary flow in the
main channel that would appear otherwise (see e.g. Tamai and Ueda(22)). On the other hand
it has blocked momentum transfer thus resulting a slow decaying strong vortex in the branch
channel. The levee has made mixing of two flows gradual as flows depart the levee and thus
it has reduced the superelevation in the mixing region which appears in confluence without a
training levee (see e.g. Tamai and Ueda(22)). Fig. 13 shows the velocity isovels of the sections.
The strong secondary motion has caused isovels to skew towards the concave bank and the
maximum velocity to appear below the water surface. Fig. 14 shows the computed bed-shear
stress contours. The shear stress distribution which follows that of bottom velocity, shows the
maximum stress in the branch channel closer to the downstream corner of the confluence and
the maximum in the main channel closer to the levee. The maximum values are about 4 times
the maximums at the upstreams of the respective channels.
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CONCLUDING REMARKS

a) A three-dimensional mathematical model based on the standard k — ¢ turbulence model

has been presented for the confluences with no recirculation zone. The agreement of the com-
uted results with experimental results is generally good. However, three-dimensional elliptic

ﬁow model is necessary to predict the flow in a general confuence in detail.

b) The grid generation method adopted is simple and can be used to tackle an arbitrary
confluence and is flexible in spacing of grids. :

¢) The performance of a levee has been demonstrated. The levee prevents strong mixing
and facilitates two streams to mix gradually. Thereby superelevation in the junction and the
strong secondary flow in the main stream are considerably reduced. The levee prevents large
back water effect in the main stream at large discharge ratio. It also increases the effective
channel width by eliminating the recirculation zone.

AKNOWLEDGEMENTS

The authors are grateful to Mr.H.Tada, Osaka College of Technology and Dr.I.Nezu,
Kyoto University for providing experimental data and also to r.Y.Kawahara at the department
and to Dr.Evegini Sullinen, Riga Polytechnic Institute, USSR for their useful comments. The
study was partly supported by the Grant in Aid of the Ministry of Education, Science and
Culture of Japan in the category of Effective Counter Measures for Natural Disasters (Principal
investigator, Prof. Kishi, Hokkaido University).

REFERENCES

. Ashmore, P. and G. Parker : Confluence scour in coarse braided streams, J. of Water
Resources Research, Vol.19, No.2, pp.392-402, 1983.
Best, J.L. : Sediment transport and bed morphology at river channel confluences, J. of
Sedimentalogy, Vol.35, pp.487-498, 1988. .
Best, J.L. and I. Reid : Separation zone at open-channel flow junctions, J. of Hydr.
Engrg., ASCE, Vol.110, No.11, pp.1588- 1594, 1984.
. Chen,C.J., K.M. Obasih and ,ng Wang : Numerical generation of nearly orthogonal
boundary-fitted coordinate system, Numerical Grid Generation in Computational Fluid
Mechanics, First ed., Pineridge Press, Swansea, U.K., 1988. .
. Demuren, A.O. and W. Rodi : Calculation of flow and pollutant dispersion in meandering
channels, J. of Fluid Mech., Vol.172, pp.63-92, 1986.
. Fujita, I. and S. Komura :Application of the free stream line theory to the flow in a river
confluence, 5th congress, APD-IAHR, pp.103-120, 1986.
7. Fujita, I. and S. Komura : Visualization of the flow at a river confluence, Proc. of the 3rd
Int. Symp. on Refined flow Modelling and Turbulence Measurements (Tokyo, Japan),
8).611—618 July 1988. .
al-chen, T. and C.J.S. Richards : On the use of a coordinate transformation for the
solution of the Navier-Stokes equation, J. of Comp. Phys,, Vol.17, pp.209-228, 1975.
9. Koike, A. : Organized vortex in a river confluence, N[YE,thesis, ﬁ{oto univ., 1986, (in
Japanese).

10. Lall)mder,)B.E. and D.B. Spalding : The numerical computations of turbulent flows, Comp.
Methods in ﬁpk Mech. and Engrg.. Vol.3, pp.269-289, 1974.

11. Leschziner, M.A. and W. Rodi : (%aiculation of strongly curved open channel flow, J. of
1f\/IIyd.‘Div., ASCE, Vol.104, Hy10, pp.1297- 1314,1979. . .

12. Mastin, C.W. and J.F. Thompson : &uasiconformal mappings and grid generation, SIAM
J. of Sci. Stat. Comput., Vol.5, No.2, pp.305-310, 1984.

13. Melling, a. and J.H. Whitelaw : Turbulent flow in a rectangular duct, J. of Fluid Mech.,
Vol.78, pp.289-315, 1976.

14. Modi, lyﬁ, P.D. Ariel and M.M. Dandekar : Conformal mapping for channel junction
flow, J. of Hi{)dr. Div., ASCE, Vol.107, HY12, pp.1713-1733, 1981.

15. MOE%IS ,Sé\g . 7 An experimental study of channel confluences, J. of Geology, Vol.94,

.535- 1976.

16. Patankar, S. V. ; Numerical Heat Transfer and Fluid Flow, Hemisphere, N.Y., 1980.

17. Pratap, V.S. and D.B. Spalding : Fluid flow and heat transfe r in tEree—c’ﬁmensional duct
flow, Int. J. of Heat Transfer, Vol.109, pp.1183-1188, 1976.

18. Ramamurthy, A.S., L.B. Carballada ancF D.M. Tran : Combining open channel flow at
right a\%ﬁled junctions, J. of Hydr. Engrg., ASCE, Vol.114, No.12, pp,1449-1459, 1988.

19. Rodi, W. : Turbulence Models and their Applications in Hydraulics, Monograph, IAHR,
Delft, The Netherlands, 1980. ‘

20. Sokolonikoff, I.S : Tensor Analysis, John Willy Inc., N.Y., 1964. ,

21. Tada, H. : Experimental report, Osaka College of Technology, 1987, (in Japanese).

W D

Ut



62

22.

23.
24.

25.

Tamai, N. and S. Ueda : Prediction of flow behaviour at river confluences by the £ — ¢
model, Proc. of the 31st Japanese Conf. on Hydraulics, pp.437-442, 1987, (in Japanese).
Taylor, E.H. : Flow characteristics at rectangular open channel junctions, Trans., ASCE,

Paper No.2223, 893-912, 1944. . ) )
Thompson, J. F. and Z. V. A. Warsi : Boundary-fitted coordinate systems for numerical

solution of partial-differential equations- A review, J. fo Comp. Physics, 47, pp. 1-108,

1982.
Webber N.B. and C.A. Greated : An investigation of flow behaviour at junction of rect-
angular channels, Proc. of Inst. Civil Engrs., Vol.34, pp.321-334, 1966.

APPENDIX-NOTATION

The following symbols are used in this paper:

B = channel width;

Cpy €1, C2 = constants in the £ — ¢ model;

D = grid aspect ratio;

E = roughness parameter;

gr = base vectors in curvilinear coordinate system;

Grs = metric tensor;

g = reciprocal metric tensor;

g = determinant of the metric tensor;

d = water depth;

h = elevation measured from the channel bottom;

7 = unit vectors in Cartesian coordinate system;

k = kinetic energy of the fluctuation motion of the flow;

n; = covariant components of a unit normal to a surface;

p = piezometric pressure;

Sy = source term in descretized equation;

T = shear stress vector on a surface;

U, U; = contravariant and covariant velocity components of mean velocity;

ut = contravariant and covariant velocity components of fluctuating velocity;

U = local shear velocity;

Ve = velocity component tangential to the surface;

z* = coordinate axes in a general curvilinear coordinates system: i=1,2,3
are in the directions of streamwise, lateral and vertical respectively;

y* = coordinate axes in Cartesian coordinate system
(correspondence is similar to y above);

Yp = local distance from the wall;

y+ = nondimensional wall distance;

comma = differentiation;

overbar = time averaging process;

semicolon = covariant differentiation;

8 = the Kronecker delta;

€ = rate of energy dissipation;

5 = Von Karmann constant;

Phetf = effective viscosity;

v = eddy viscosity;

P = density of water;

Ok, O = constants in the k£ — ¢ model;

v = magnitude of the wall shear stress;

T = contravariant components of the stress tenso;r and

AR PP = physical components of corresponding contravariant and covariant

components.



