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SYNOPSIS

Stochastic approach to sediment transport problem sometimes brings us fruitful results in
describing or predicting alluvial phenomena. Bed load transport process can be well described by a
stochastic model constituted by two parameters: rest period and step length, which are both random
variables. The stochastic model of bed load motion makes it possible to describe reasonably sand wave
formation and armoring process where non-equilibrium properties inherent to bed load transport
appreciably dominate. Furthermore, a recent development of a stochastic model for bed material load
transport, where suspended sediment exists with bed load, is perspectively reviewed.

INTRODUCTORY REMARKS

Alluvial phenomena are generally caused by unbalance of sediment transport, and then non-
equilibrium sediment transport process should be reasonably described. Particularly, in bed load
motion, the probabilistic and discrete properties of individual sediment motion easily bring about a non-
equilibrium situation. Then, a sediment transport model based on stochastic consideration will be
promising to describe reasonably and consistently various alluvial phenomena.

From the view point of the above-mentioned, a stochastic model for bed load transport of which
constituent elements are sediment pick-up rate and step length is explained, and the essential
characteristics of bed load motion are described. Next, in order to improve the applicability of the
stochastic model to actual alluvial phenomena, an Eulerian stochastic model is presented and, making the
most of the stochastic properties of bed load motion preserved in this model, incipient process of bed
surface irregularity, processes of sand wave formation and armor coat propagation are explained as the
typical examples which can be reasonably described by applying the Eulerian stochastic model.

Finally, in order to obtain an unified understanding for bed load and suspended load, the Eulerian
stochastic model for bed load transport is to be extended to the non-equilibrium sediment transport
process including the suspended load. As the first part of its development, saltation as bed load, random
motion as suspended load, and transition between them are described by combining a stochastic
approach with a deterministic approach.

STOCHASTIC MODEL FOR BED LOAD MOTION

Bed load transport is characterized as an ensemble set of probabilistic and intermittent motion of
sand particles based on their incessant contacts with the loose boundary and the fluctuation of
hydrodynamic forces acting on particles along the bed. By this reason, a stochastic model, in which bed
load transport is considered as a stochastic process, is both visual and faithful to the actual phenomenon
involving its essential characteristics.

Einstein (4) described a behavior of an individual bed load particle by a zigzag model as shown in
Fig.1, which consists of two random variables, rest period {T} and step length {X}. When {T} is
independent of {X}, a generating process of a random phenomenon can be described so that the
occurrences of a particle dislodgement and stop are projected on the time axis and the distance axis,
respectively. When ps and pqg represent the probability density per unit time for a particle to be dislodged
and that per unit distance to stop, respectively, the mean values of {T} and {X} are given by
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in which A=mean step length; and the pick-up rate p; is the
reciprocal of the mean rest period. The step length is
defined as a distance for a particle to travel from its incipient
motion to the next definite stop.

The distribution of the rest period expressed by its
probability of exceedence is shown in Fig.2, which has
been obtained by tracer tests (16). It is recognized from
this figure that the rest period follows approximately an
exponential distribution and the process of particle
dislodgement can be regarded as a Poisson process. The

E[T]= 1/ps
A=E[X]= I/pq
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probability density function of rest period is approximated stochastic model
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Fig.2 Distribution of rest period

Meanwhile, the distribution of step length obtained by tracer tests is shown in Fig.3, where they
are expressed by its probability of exceedence. According to this figure, it is recognized that the step

length follows an exponential distribution, and
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Fig.3 Distribution of step length

As for the sediment pick-up rate ps and the mean step length A, a physically based analytical model

to evaluate the relationships between these parameters and the bed shear stress was proposed by
Nakagawa & Tsujimoto (15). According to this study on incipient motion of bed materials,
dimensionless sediment pick-up rate is given by the following equation and shown in Fig.4.
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in which A,, A3=2- and 3-dimensional shape coefficients of sand; qg.=bed load transport rate under

equilibrium flat bed condition; and qB*=-fo\j(0/p- 1)gd3=dimensionless expression of bed load transport
rate gp. Since qgex is generally connected to T« by transport formula, the relationship between A and T+
can be obtained from Eq.7. Four curves shown in Fig.5 have been obtained by the following transport
formula: (A) Meyer-Peter & Miiller's (14); (B) and (C) Bagnold’s (2) for T#c=0.04 and 0.045,
respectively; and (D) Ashida & Michiue’s (1).
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Fig.5 Mean step length of bed load

The above equations are valid only when the conditions surrounding sand movements are nearly
same at any position and at any time as recognized under flat bed condition or conditions slightly shifted
from flat bed. In this case, pick-up rate and step length are correlated with the scales of sediment
particles (diameter and fall velocity;), while these are affected by the scales of bed geometry when bed
deformation becomes appreciable.

Since a succession of rest period and step length constitutes bed load transport process, a
dispersion process can be described by using their probability density functions. Thus, study of the
stochastic model has been put emphasis on description of sediment dispersion process and on
investigation on distributions of step length and rest period not only in statistically homogeneous field
but also in non-homogeneous field (Hubbell & Sayre (10), Yang & Sayre (31), Shen & Todorovic (23),
Hung & Shen (11)).

These previous studies on stochastic model for bed load transport have been based on a Lagrangian
consideration referred to a Brownian motion. In spite of a number of fine description of the bed load
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dispersion, the stochastic model still seemed to be deficient to describe various alluvial phenomena which
are inherently to be analyzed by Eulerian consideration.

In order to improve the applicability of the stochastic model which can express the essential
characteristics of bed load motion to the subsequent phenomena of bed load transport, Eulerian stochastic
model was developed by Nakagawa & Tsujimoto (17).

FUNDAMENTAL EQUATIONS FOR NON-EQUILIBRIUM BED LOAD TRANSPORT

Although most of bed load transport formulae were derived under equilibrium conditions, even a
slight change of the situation would generate non-equilibrium state of sediment transport. Sand wave
initiation and early stage of its development must depend upon non-equilibrium as seen in many other
alluvial processes such as armor coat formation, scouring and so on. Hence, it is necessary to establish
non-equilibrium bed load transport formula.

In case of bed load motion, the phenomenon is quite probabilistic and discrete, and the moving
period of one step is negligibly short compared with the rest period. Although the sediment pick-up rate
at any point is uniquely determined by local shear stress, the local bed load transport rate is appreciably
influenced by the sediment transport states in upstream reach by action of step length, particularly its
distribution.

By making use of the stochastic model based on its
Eulerian interpretation, the behavior of bed load motion and
subsequent bed deformation process can be described as the
following. Referring Fig.6, sediment deposit rate pg(x),
which is defined in the same manner as pick-up rate, bed

y

P

load transport rate qp(x), and the rate of bed deformation '
Oy(x)/0t can be expressed by b £= ezt
I Fig.6 Definition sketch
pa(x) = Jps(x.’g’)fx(g)dg ) ig.6 Definition ske
ap(x) = I PCIAIP L !fx(’é)d'é ©
"3"‘) = [pa(x)-ps(x)]A1d (10)

in which xg=origin of sediment flow; and A;=1-dimensional shape coefficient of sand.
For simplicity, the situation that xo=0 and the bed shear stress or the pick-up rate is constant along
the bed in the region x>0 is considered. In this case, Eqs.8, 9 and 10 become

pd(x) = psFx(x) (1n
aB(%) =%£I[1-Fx(x-x’)]dx’ (12)
28 o 1-Fx(x)] (13)

in which Fx(x)=distribution function of step length. When ps is constant and the step length follows an
exponential distribution, the bed load transport rate at any section becomes

(=250 [1-exp(- 3] (9

and, where x— oo, that for the equilibrium flat bed, qgg, can be obtained as
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figures by using the aforementioned equations is about
50~250 times sediment diameter and this result is identical o
to those obtained under equilibrium flat bed conditions. s = 0 o
Bﬁ

Thus, it can be concluded that the essential properties of
individual sediment motion are almost preserved even in
such non-equilibrium conditions as a slight shift from
equilibrium.

INCIPIENT PROCESS OF SAND BED IRREGULARITY

For a long time hydraulic researchers or geologists have been interested in sedimentary wave
formation and its mechanism has been rigorously investigated. Among these studies, the work of

Fig.8 Relation between qp+ and pg«

Kennedy (12) which introduced the linear instability analysis into alluvial problems is the most
suggestive one. However, any answer has not been found to the question how the bed surface
disturbance initially assumed in instability analysis is generated. Based on the properties of bed load

motion preserved in the stochastic model, incipient process of bed surface irregularity,
of sand waves can be explained by stochastic techniques (24).

namely initiation
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When {Ns(x,t)} represents the number of particles dislodged from the bed surface occupied by one
sand aprticle at x during the time interval (0,t), the following equation can be obtained by the similar
consideration to Egs.8 and 10.

y(x,0) = [JNs(x-z,t)f)«E)de-Ns(x,t)]Ald (18)

And, the spectrum of sand bed can be given by
S(x,t) = Fly(x,t)lF*[y(x,] (19)

in which S(x)=wave number spectral density function of sand bed; x=angular wave number. F*)
denotes the Fourier transformation from x-space to k-space; F*(¢) represents the complex conjugate; and
) indicates the ensemble mean of Q.. Hence, the Fourier transformation of Eq.18 yields

S(x,t) = (A1d)2{ Flfx]-1}+{ F*[fx]-1}-Sn(x,t) (20)
in which Sp(x,t)=wave number spectrum corresponding to the spatial fluctuation of {Ng(x,t)}. As for

the spatial correlation of {Ns(x,t)}, an exponential correlation model is adopted here for convenience’
sake. Namely,

RNN(E,9) = VarNy(x,9]-exp(-008) (21)

in which RyN(E,t)=autocorrelation of the spatial fluctuation of {Ns(x,t)}; ag=reciprocal of relaxation
distance; and Var[Ng(x,t)}=variance of {Ns(x,t)}. Var[Ns(x,t)] is given by

VarNy(x,1)] = E[{Ns(x,t)} 2]-{E[Ns(x,)]}2 (22)
t o0

E[{Ns(x,0)}k] = | F-1[(1-¢1) §on"¢1“ldf (23)

¢r = Flfr(1)] (24)

in which F(s) represents here a Fourier transformation with
respect to T, and F-! represents its inverse transformation. .
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with an experimental result of bed-elevation change at initial tle
stage. It is also clarified from Eq.26 that the variance of
bed elevation, oyz, increases in proportion to the elapsed Fig.9 Wave number spectrum
time from initially flattened bed.

of sand bed irregularity
at earlier stage
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As a result of this analysis, it is concluded that random repetitions of sand dislodgement and
deposition bring about an initial bed disturbance as a germ or a trigger of sand waves, and it is
considerably irregular.

SAND BED INSTABILITY DUE TO BED LOAD MOTION
Instability Analysis of Erodible Sand Bed

The preceding analysis has been indicated that initial bed disturbance appears due to random
motion of bed materials, and it must depend upon bed instability mechanism whether this disturbance
would grow up to sand waves or not.

Since Kennedy’s instability analysis (12), it has
become an established view that sand wave formation is
due to instability on the interaction between the bed 7 Eles DAL Ine(x-Uyt)
surface and the flow field. Kennedy introduced the lag x
distance between bed load transport rate and bed shear v '
stress. But, it was not a physically definite but T he
ambiguous quality. v ru-"- Le2n/x

The lag distance can be evaluated reasonably based ~
on the stochastic model which is applicable to such non-
equilibrium situation as when sand waves are initially
formed (17). . finition sketch

Now, the bed surface is assumed to be expressed Fig.10 Definition sketc

y

n(x, t)=-hgta(t)sinc(x-Upt)

by
y(x) = assink(x-Upt) (27

in which a=amplitude of the perturbation of bed surface; k=angular wave number; and Up=propagation

celerity (Fig.10). When we use a linear stability theory, ax is so small that its higher-order quantities
will be neglected.

Then, the properties of the flow over a wavy bed, the sediment movement and the bed surface can
be expressed as the following sinusoidal waves, of which only amplitude and phase shift are different
respectively.

yr(x,t) = rra-sin{x(x-Upt)-¢r] (28)

in which y=perturbation non-dimensionalized by the undisturbed quantity. Then, the local rate of bed
load transport can be written as

qB(x) = qpo{ 1+rga(t)-sin[x(x-Upt)-dpl} (29)

in which qgo=undisturbed bed load transport rate; rgaggo=amplitude of the perturbation of bed load
transport rate; and ¢g=phase lag of bed load transport rate for y(x). Substituting Eqs.27 and 29 into the
following continuity equation of sediment transport,

Oy, 1 dgn(x) _

ot =0 (30)
we can obtain

10, S%0singp;  «Uy =B conty @1)

in which pg=porosity of sand. From Eq.31, the stability and the direction of wave propagation can be
determined by the phase lag ¢g as shown in Table 1.

¢p is obtained as the sum of the phase lag ¢; of bed shear stress T(x) for bed surface y(x), and the
phase lag ¢ of qg(x) for 1(x), as follows:

¢B = ¢ + $Br (32
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Table 1 Stability of wavy bed

8 c &/a | Stability of Wavy Bed
0 ~ n/2 + - decay
a/2 ~ n - - decay
m v (3/2) - + growth,moving upstream
(3/2)s v 2n + + growth,moving downstream

The lag distance dpy is related to ¢ as dg=dpp/k. Prand dpr can be evaluated by using the flow
model over a wavy bed and the sediment transport model, respectively.

Flow Properties over Wavy Bed

. The term ¢y has been investigated by several researchers but has not been clarified sufficiently.
The authors (17) adopt a modified potential flow model, referred to the previous works of Kennedy (12)
and Hayashi (7).

Now, local flow depth and local flow velocity are to be expressed respectively by

h(x,t) = ho[1+rsa-sin[x(x-Upt)-¢s]} (33)

U(x,t) = Upl 1+rya-sin[x(x-Upt)-dy1} (34)
in which ho=undisturbed flow depth; rsahg=amplitude of perturbation of flow depth; ¢ps=phase shift
between free surface and bed surface; Up=undisturbed flow velocity; ry,aUp=amplitude of perturbation of

flow velocity; and ¢y=phase shift between flow velocity and bed form. According to the theory of
potential flow model, ¢ and ¢, are o or 7, and the following relationships can be obtained.

o - F2xhgsechkhg
Rs =15c05¢s oo tanhel (35)
1-F2«hotanhkh
P rucoshy = Py 9
in which F=UyAlghg=Froude number of undisturbed flow.
Eq.35 shows whether the free surface of flow and the
bed surface are in phase or out of phase, and this is a
criterion whether bed forms are dunes and/or ripples, or 3
antidunes if the bed surface perturbation can grow up. The
critical Froude number is given by f F.0
77 .
L7 0“ =
F =_m:hﬂ (37) v
0 s =0 - AA7(RgTaRReRG
On the other hand, by putting F+=0, the following equation A 3
is obtained. ! S
Foorl (38) B
u Re<
khotanhxhg _ \ ) |

By Eqs.37 and 38, the F versus khg plane is divided into ‘ ? «hy
three regions as shown in Fig.11.

Since bed shear stress 1(x) is more significant than Fig.11 Phase lags of flow velocity and
local flow velocity for bed load movement, 7(x) on a wavy free surface for bed form

bed may be related to U(x) as
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) = BpU%(1-a ) (39)

in which P=resistance coefficient; and a=correction factor. In Eq.39, the effect of flow divergence and
convergence is considered. From (0h/0x) and perturbation of flow velocity u(x), the amplitude and the
phase lag of perturbation of bed shear stress can be obtained as

2 = ok(Ra-1)2+(2kF«)2 (40)
rrsind; = ax(Rx-1) ; rcoshy = 2kFx 4n
Lag Distance of Bed Load Transport

When the response of bed load transport rate to bed shear stress is to be regarded as a non-
equilibrium transport process, the bed load transport formula given by Eq.9 can be applied to investigate
the lag distance. Because the lag distance of sediment pick-up rate for bed shear stress can be neglected,
ps(x) is to be expressed by

ps(x) = psol1+rpa-sin[k(x-Upt)-d;l} (42)

in which pso=average sediment pick-up rate along the bed; and rpapso=amplitude of perturbation of pick-
up rate.

Substituting Eq.42 and Eq.4 into Eq.9 where xp— - and comparing with Eq.29, the lag distance
Op+ can be obtained as follows:

. KA 1 B 1
OBt = =i ; == 43)
sinkdpr AR coskdB ‘Il"' R T '\[l )2

Therefore, 0<xdg;<m/2. In Fig.12, the lag distance is shown against kho with a parameter yj=A/hg.
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As above investigated, the phase lag ¢ and ¢; are clarified and thus it is possible to conduct the
instability analysis of erodible bed. The analytical results obtained by the authors (17) are shown in
Fig.13, where y1=A/hg; y250F2; and ya=y)/y).

The presented model can explain the bed instability fairly well without any assumption for the
phase lag and this model may be successful in classification of bed forms. However, it is not
appropriate to apply the results of this analysis to the classification of fully-developed sand waves
because the wave length and the resistance coefficient for fully-developed sand waves are different from
those assumed in the analysis.

SPECTRAL ANALYSIS OF SAND BED INSTABILITY

An incipient bed disturbance is so irregular that a sand bed instability analysis of the Fourier
transformed version is more appropriate to explain the phenomenon. Such a technique was first
introduced by Jain & Kennedy (13), in which the lag of sediment transport was not adequately treated,
and then the authors developed this idea by applying the Eulerian stochastic model for non-equilibrium
bed load transport (18).
be.ob As t(lile Fourier transformation of Eq. 10 into which Eq. 18 is substituted, the following equation can

obtained.

K = Aderppar Fleape N FIRO)-1) (44)
in which Y(x,t)=F[y(x,t)]; and the perturbation of sediment pick-up rate ps’(x) is expressed as follows:
Ps'(x) = rFrpsor(x) (45)

in which rap(x)To=perturbation of bed shear stress; and r, is easily evaluated by Eq.5 as

Opsx

= Bre T (46)

The density function of wave number spectrum of a sand bed is defined as Eq.19. Then, if the
perturbation of bed shear stress can be expressed by Eq.40 and the step length follows an exponential
distribution (Eq.4), the spectral evolution due to instability mechanism is given by the ensemble mean of
the solution of Eq.44 and its complex conjugate, as follows:

S(x,t) = S(x,0)-exp[2B*T*(xho)+psot] CY))
in which B*=A,dry/A; and

T'*(xh) = - ['1%] [ax(Re-1)2+(2KFx)2] (48)

DIMERSIONLESS GROWTH RATE, F*(<h,)

Fig.14 Spectral growth rate for each wave number
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I'*(xhg) is regarded as a dimensionless growth rate of sand wave spectrum, and the calculated result
(y1=1.0 and y,=1.2) is shown in Fig.14. According to this figure, the waves of some wave number
range grow up but the other waves decay. Furthermore, the growth rate of waves at definite wave
number (corresponding to the Airy wave) becomes infinite and this corresponds well to the spectral peak
at an early stage of sand wave development from initially flattened bed. And it is suggested that
considerably regular waves will appear at an early stage.

STOCHASTIC ANALYSIS OF ARMORING PROCESS

Non-equilibrium transport process of sediment mixture accompanied with the subsequent
formation and propagation of armor coat is another example which can be explained by the Eulerian
stochastic model for sediment motion. In general, the river bed is composed of bed materials of widely
distributed size of sand grains, and a probabilistic approach is required for more appropriate description
of the phenomena. In other words, the behavior of sediment mixtures should be regarded as an
ensemble set of that of sediment of each grain size.

Although many studies on the transport of sediment mixtures and on the prediction of armor coat
formation have been conducted up to the present, they are not sufficient to estimate the transport rate
reasonably and to describe the propagation process of armor coat, because non-equilibrium state of
sediment transport has not adequately been considered.

If there is no sediment inflow from the upstream region, for example, the river bed downstream of
the dam reservoir, an appreciable armor coat is formed and it propagates downstream. Nakagawa et al.
(19) applied the stochastic model of bed load transport to such a situation as called "parallel degradation”
by Gessler (6).

For the convenience’ sake, the alluvial
part is divided into some intervals of finite
length, Ax, as shown in Fig.15. This interval
length should be sufficiently longer than the
maximum sand diameter and shorter than the
mean step length of the minimum size of sand
mixtures. Variables used in the following have
two subscripts: one (I<i<N) represents the
class of sediment size; and the other (1<k<K) Fig.15 Definition sketch
represents the interval of the bed.

If the number of particles of the i-th class exposed on bed surface per unit width in the k-th interval
is represented by njk, the number-basis size distribution q;x and the volume-basis size distribution pjx
can be given by

el ..'..-.':..:;'; ;.:. ',-: ERASRLA AN RPN
* Alluvial Bed = "
L {f 1

N
qik(t) = nik(t)/ ):l nji(t) (49)
fo

N
pik(®) = qik(t)d;%/ Zi[(Ijk(‘)de] (50)
P

If the pick-up rate for each grain size, psik, can be evaluated for the hydraulic condition and the bed
constitution, the number of particle dislodgements of the i-th class sand from the k-th interval during the
time interval At, AM;, can be expressed as

AMik(t) = nig(t)psik(t)At (51)

Meanwhile, the number of particle depositions of the i-th class on the k-th interval during At, AQjx, can
be expressed as

k-1
AQi(t) = El[AMis(‘)’Pi,k-s] (52)

in which p; k.s=probability that the step length of the i-th class sand is longer than (k-s)Ax and shorter
than (k-s+13Ax. Thus, p; ks is given by
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(k-s+1)Ax

Miks = I fixi(E)dE (53)

(k-s)Ax

in which f;(E)=probability density function of the step length of the i-th class sand.

As a result of incessant repetition of dislodgement and deposition, the lower layer is newly
exposed in the case of degradation, and it is now assumed that the lower layer has the initial distribution
of bed materials, pjo. Considering this event, the number of particles of the i-th class sand exposed at
the bed surface of the k-th interval at (t+At) can be written by

N .
i+ = i 0-AMa QO+ E {IAMpO-aQuON ) (59
]=

This can be rewritten by the following differential equation after substituting Eqs.51 and 52.
dngx N (d k
- L {lwo 3 V-o5k L [n¥i s P Onid0]} (55)
= s=

in which 8;;=Kronecker’s delta; and p*; x.s=H; k-s for s<k, -1 for s=k, and 0 for s>k. Based on Eq.55,
the temporal and spatial variations of bed constitution can be calculated in succession.

By the way, transport rate should be also treated for each grain size, as already suggested by
Einstein (5), Ashida & Michiue (1) and others. In addition, however, the consideration on non-
equilibrium property is also necessary. And these two important points in transport process can be
reasonably treated by the Eulerian stochastic model, and the following non-equilibrium transport rate
formula for each grain size at just downstream of the K-th interval is derived.

Ay & -
qi(t kAx) === T | psik(nik(0Ax X pis]  (56) 2

tkAx 2 kwl[ s=K-kp ] 2ln - |‘. =T
-é - O 0.10\(‘). 25

e © 0.2540.
When the Eulerian stochastic model is applied, the 5 | Syia.
pick-up rate and the step length should be reasonably & | SoEne
evaluated for each grain size. Although the characteristics 1l ei.isaiso

of behaviors of sediment mixtures are very complicated, the
following simplified model may be available from the
practical view point. I

As for the incipient motion of bed materials, the most /11!
different point between sediment mixtures and uniform H
sand is the critical tractive force, and the pick-up rate for S )
each grain size can be estimated by applying Eq.5 as i
follows, if the critical tractive force can be approximately ji

evaluated for each grain size. i “‘ 11 io
o3 el i L
LT Txci |o"—:-‘”; E.'I:ET"'.T
Ps+i = psiVdi(o/p-1)g = Foni(l--—Tjiﬂ)3 (57) i = -
— i il-s—-s
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in which T«cj=dimensionless critical tractive force for each — | ‘ ,l' i!,’s —*
grain size. In Fig.16, the pick-up rate curve for each grain s 3|00 °:‘——I?
size obtained by Eq.57 are compared with the experimental 107? 10! . 10’
results (19). o
If the idea proposed by Egiazaroff (3) and some Fi . .
. . " R ig.16 Sediment pick-up rates for
modification for finer sand by Ashida & Michiue (1) are non-uniform bed materials

adopted, T«.j can be evaluated as
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0.8 A
T (Ci<0.4)

In(30.1a) 12 .
{ [IT([;OTEJ] (g>04)

in which {;=dy/dy,; dp=mean diameter; Txcm=dimensionless critical tractive force for sand of mean
diameter in sediment mixtures. The representative height of bed particles of each grain size is assumed to
be ad (a=0.5).

Substituting Eq.58 into Eq.57, we can evaluate the pick-up rate for each grain size. Txcm is
identified with the dimensionless critical tractive force of uniform sand with mean diameter, though it is
not necessarily a reasonable assumption (21).

Meanwhile, the mean step length (A;) for each grain size is almost well expressed by Ad;, though A
is slightly smaller than the value of uniform sand.

In Fig.17, the experimental data for armor coat propagation process obtained by Ashida & Michiue
(1) are shown with the theoretical predictions based on the stochastic model, and the agreements between
the both are comparatively well.
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Fig.17 Propagation process of armor coat

DEVELOPMENT OF STOCHASTIC MODEL FOR BED MATERIAL LOAD
Bed Load and Suspended Load

In most of the previous formulas for the transport rate of bed material load, the bed load and the
suspended load were treated separately, though they were not always easy to distinguish from each
other. Considering the situation in which both sediment loads exist simultaneously under a non-
equilibrium condition and a sediment particle moves sometimes as bed load and sometimes in
suspension, the probabilistic behaviors of bed material particles should be considered more minutely in
order to unify understanding for bed load and suspended load. Here, the outline of the authors model
based on the above consideration is explained and for further details the recently published papers ((20),
(25), (26), (27)) may be referred to.

The transport process of bed material load appears to be constituted by the following subsystems
as illustrated in Fig. 18, according to the detailed observation of sediment particles through the video film

analysis in the laboratory:
FLOW suspension
= ‘—-i Transition from
suspension to
l saltation MA‘N\ : bed load motion
AT oo cansonn

+ bed load motion

Incipinet
u\ozi%n Transition from
saltation tosuspension

Fig.18 Illustration of bed material load transport process
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(i) Dislodgement of a bed material particle from bed;

(ii) bed load motion as described by deterministic equation of motion;
(iii) transition from bed load motion to suspension; and

(iv) suspension described as a random motion.

The bed load is defined as the bed material load of which the average trajectory is uniquely
determined in terms of the equation of motion and is characterized by the irregular successive saltation.
On the other hand, the suspended load is defined as the bed material load which follows the stochastic
path due to the effect of turbulence. According to this definition, a clear citerion to distinguish between
these two modes of particle motion can be formulated. The following three subtopics should be clarified
and appropriate models should be obtained respectively: (i) irregular successive saltations; (ii) behavior
of suspended particle as random motion; and (iii) transition mechanism from bed load motion to
suspension or from suspension to bed load.

Concentration Distribution of Bed Material Load

Both the bed load discharge and the suspended load discharge are expressed here as an integration
of the product of the respective concentration distribution and velocity distribution along the flow depth.

h
QB = ([ Ca(y)ug(y)dy (59)

gs= j’ Cs(y)up(y)dy (60)

in which qg, qs=transport rate of bed load and that of suspended load; Cg, Cs=concentration
distributions of bed load and suspended load, respectively; ug, up=speed of bed load particle and
longitudinal speed of suspended particle; and h=flow depth.

When the existence probability density of particles in bed load motion in the vertical direction is
represented by fg(y), the concentration distribution of bed load can be given by

Cg(y) = vad3fp(y) (61)

in which va=vgA3d3=(A3/A2)psTm; vg=dimensionless number density of particles in bed load motion;
Tm=mean duration time of successice saltation (mean moving period during the so-called step length).
The relationship between ps and bed shear stress can be given by Eq.5, while fg(y) and mean moving
period Ty, can be clarified by stochastic analysis of irregular successive saltations.

As for suspended load, a particle which has reached the height y=yp by bed load motion changes
the state of motion into suspension due to turbulence. The existence probability density function of a
particle in random motion, which starts from y=yg, fs(y |y3), may be formulated by probabilistic
modelling. The concentration distribution of suspended load Cs(y IyB) can be expressed by

Cs(v ) = valy)-Caly)-7 L P (62)

in which yg(y)=weighted function in consideration of the difference of the mean duration time as

suspended load due to the difference of the height at which a particle starts suspended motion and

expresses the ratio of the concentration of suspended sediment to that of bed load at y=yg. When f1{yg)

ll;epr?sent; the probability density function that a particle in suspension has started from y=yg, Cs(y) can
e given by

h
Cs(y) = J [Cs(y yg)-fr(ys)ldys (63)

When the probability that a saltating particle turns into suspension at y=yg is written as pr(yg), f1(yp) is
expressed as
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frtye) =R (64)

pr+(yB) = frva) (65)
Z[PT(YB)'fB(YB)]dYB
Substituting Eqs.61 and 64 into Eq.63, we obtain
Cs(y) = vxA3d3 h {pr(yB)vo(y)-[fa(yB)I2-fs«(y lys) }dyB (66)
in which
fs~(y [yp)=fs(y lypVfs(yn yp) (67)

Stochastic Approach to Dynamics of Irregular Successive Saltation

Though bed load motion is constituted by various types of motion (such as rolling, sliding,
saltation and so on), it is significant to be represented by saltation from the view point of unification of
bed load and suspended load. Recent studies on saltation in stochastic aspects (Yalin & Krishnappan
(30), Hayashi & Ozaki (8)) have noticed only the irregular hydrodynamic lift force. In bed load motion,
the successive saltation with irregularity, caused by irregular collisions with a bed, is more noticeable
phenomenon.

The equation to subject a saltation in the vertical direction can be expressed as

Mﬂd‘_:g =1D-W (+ for descending ; - for rising motion) (68)

in which M=virtual mass of a sand particle; D=drag force; W=submerged weight of a sand particle; and
vg=vertical speed of a saltating particle. The temporal variation of the existence height of a particle
during one saltation, which is a solution of Eq.68, can be written as

y=9(t o)+ (69)

in which vg=initial speed of a particle in the vertical direction. The mathematical expression of & has
be;m gi}ren by the authors (25). As shown by Eq.69, individual saltations are determined for respective
value of vo.

The conditional existence probability density functions for given vo, fg(y |vo), is obtained by

toty oy = 1/ [ 92400 | 1] (10)

in which T(vg)=duration time of an individual saltation. Incidentally, vy is statistically distributed due to
the irregularity of repulsive conditions on the bed. If the probability density functions of vo, go(vp), is
clarified, the existence probability of bed load particles can be obtained by

I[Ts(vo)fn(y bo)gotvo)ldvo
£y o) =—— (1)
J J [Ts(vo)fa(y |vo)go(vo)ldvody
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Generally, the initial conditions of repulsion, incidence angle and speed, are determined by the
preceding saltation. The results of the repulsion become the initial conditions of the successive saltation.
Because of such a closed system, go(vo) is difficult to be obtained analytically. Thus, by numerical
simulation model, the characteristics of successive saltations such as the number of successions, moving

period and step length can be clarified as shown in Fig.19.
As for the existence height of a saltating particle, some examples of its probability distribution, the

mean value E[y*], and the variation coefficient o are shown in Figs.20 and 21, respectively, where

CpA: y
v =baseprgn | (109

Cp=drag coefficient; and Cpy=added mass coefficient.
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Probabilistic Model for Particle Suspension

Since suspension is random motion due to turbulence, it is appropriate to be described by a
probabilistic model. Yalin & Krishnappan (29) first proposed such a model on the assumption that the
vertical displacement of the suspended particle, {n}, follows a normal distribution throughout the flow
depth. And he obtained the concentration distribution relative to the so-called reference concentration.

The mean of {n}, E[n], and its standard deviation, 0,(y), may be expressed by

Eln] = -woAt ; on(y) = wo(y)usAt (73)

in which wo=terminal velocity of a particle; us=frictional velocity; At=time interval; and yo=\W"2/us. If
we keep the consistency with the diffusion theory, the following relation should be valid.

& =5k (74)

in which gs=turbulent diffusion coefficient of suspended 1.0 4y

particle which may be approximately identified with eddy n=y/h B — staulation
kinematic viscosity. Since & and yg generally depend on L% -=--: fouse

y, then the dominant parameter in the model, k(=usAt/h), 3

should be a function of y. Moreover, the presence of a free
surface and a bed surface is to restrict the vertical motion of 051 Tme
suspended sediments and consequently the probability * \
density function of particle displacement will be distorted "‘__§>
near the boundaries. These factors make the calculation k
based on the probabilistic model complicated. -

In Fig.22, the relative existence probability density of 0.0 1~ .
suspended particles, calculated by using the modified 0.0 0.5 () 1.0
probabilistic model, is compared with the relative . . . S »
concentration distribution given by Rouse’s equation (22)  Fig.22 Relative existence probability
and the experimental data obtained by Vanoni (28). of a suspended particle

® ° Vanoni

Transition from Saltation to Suspension
If the initial particle speed vg is given, an individual saltation can be perfectly determined, and thus
the speed in the vertical direction at the level y, vg(y lvo), is also determined. If the vertical component of

the fluctuating velocity v’ acts on a particle during the time interval At, the additional displacement of the
particle (the shift from the saltation path), £, can be expressed as

8~ SR8 ] (e orve et ] a9

in which Atx=uxAt/h; w=v/ux; and va=vg/ux. In case of v>vg, Eq.75 can be written as

B = 5 = Kelu2-2vawrva2(1+ [ve [va)] o
K = Epmyromsap | (4 Faw? 7

If the transition is to be defined as E+>E+. and the value of w to bring about the transition is to be
expressed by e, then

o= va { 1£ \[[1/(Kgvx2)]71} (78)
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Thus, the conditional probability that a particle in a saltation turns into suspension at the level y,
rry |vo) is given as the probability that w>w(y). If w follows a normal distribution with zero mean of
which standard deviation is wo(y)us,

pr(yvo =Wl;iexp(~ z%—)df; (79)

wely [vo) 80
CC = m O(y Ux ( )
For example, according to the study on turbulence of open channel flow,

woly) = 1.27 exp(-£) (81)

p1{y) can be obtained after releasing condition as for vg as follows:

Pr(y) = Jpr(y [vo)go(vo)dve (82)

Some examples of video-film analysis as for transition from saltaion to suspension in flume
experiments using polystyrene particles (d=0.128cm, o/p=1.03, I=energy slope=1/500, h=3~5cm) are
shown in Fig.23. The histogram indicates the measured heights of transition from bed load motion to
suspension which must correspond to f1(y). On the other hand, f1(y) calculated by use of fg(y) and
p1(y) for 4.=0.2 is shown by a dotted line, while f1(y) calculated by use of the observed data on the
probability density of saltation height is shown by a solid line. In spite of various phases of transition
included, the transition phenomenon can be well described by this model.
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Fig.23 Probability density of transition height for suspension

CONCLUDING REMARKS

In this paper, various alluvial phenomena have been described on the basis of the concept that the
probabilistic and discrete properties inherent to individual sediment motion play an important role on
appearance of non-equilibrium situation of alluvial process. And thus, the sediment transport process
has been treated as stochastic process and the superiority on the applicability of the Eulerian stochastic
model has been clarified by a reasonable description of sand wave formation and armoring in transport of
sediment mixtures. Furthermore, in order to obtain an unified stochastic model for bed material load
transport, the subsystems of transport process are discussed by combining a stochastic approach with an
approach based on dynamics, though the present model has not been enough to describe completely non-
equilibrium transport process as bed material load.
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On the other hand, there are many alluvial phenomena to which the characteristics of sediment on a
grain size level as considered in the aforementioned model are scarcely contributive. For instance, the
variation of channel boundary such as contraction, expansion or channel bend will also bring about non-
equilibrium state of alluvial bed. When the variation of channel geometry has a predominant scale on the
phenomenon, it will be admissible and rather available only to consider the change of sediment transport
due to change of channel boundaries, as seen in usual analysis of river bed deformation of large scale.
In general, as far as the scale of bed deformation under consideration is larger than that of non-
equilibrium of sediment transport, we can obtain a practically allowable solution by use of the
conventional formula for equilibrium sediment discharge. In word, it depends on the level of "graining”
for a phenomenon whether we treat it as equilibrium or not.
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