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SYNOPSIS

Stability of erodible beds in open channel flows with suspended sediment was
analyzed and the effect of suspended sediment on the formation of sand waves was
investigated. In the derivation of an equation for the bed load sediment in a non-
equilibrium state, the effect of the suspended sediment was considered. The
occurrences of two-dimensional sand waves were discussed as a problem of linear
stability of erodible beds, and the new regime criteria for sand waves were
proposed. The criteria indicate that on the finer sand bed the flat bed will occur
in the lower values of the Froude number. The new regime criteria were compared
with the data from the laboratory flumes and actual rivers. The theoretical
results explain satisfactorily the regions of the occurrence of sand waves in
alluvial streams with suspended sediment.

INTRODUCTION

Theoretical studies on the formation of sand waves in alluvial streams have
been carried out by many researchers during the last twenty years. Most of them
are analyzed as a problem of stability of the erodible bed, which are classified
into two groups. One is the potential £flow model developed by Kennedy (13),
Hayashi (9) and others. The other is the shear flow model. 1In order to obtain the
conditions of occurrence of sand waves, Kennedy (13) analyzed the sand bed
instability in a two-dimensional potential flow by introducing the lag distance, §.
However, there remained a great uncertainty in the physical interpretation and
evaluation of §. Hayashi (9) tried to solve this uncertainty by considering the
effect of the local bed inclination on the sediment transport. Engelund (3)
described the two-dimensional flow by using a vorticity transport equation and a
diffusion equation for the suspended sediment. Fredsge (5) further developed by
taking into account the influence of gravity on bed load transport. Using a one-
dimensional analysis of the flow, Tsubaki and Saito (20) analyzed the two-
dimensional stability of erodible bed. They introduced two factors of the bed
instability; one is the local variation of bed shear stress due to the acceleration
and the deceleration of flow and the other is the non-equilibrium of the transport
process of bed load on the wavy bed. Subsequently, Tsubaki and Watanabe (21)
discussed the formation of alternating bars by extending this theory to the three-
dimensional stability.

Engelund (3) studied the effect of suspended sediment on the formation of sand
waves and described that the stability boundaries shifted to smaller values of the
Froude number for the finer material. Engelund and Fredsge (4) confirmed this by
using the experimental data of Guy, Simmons and Richardson (8).
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The purpose of the present study 1is to clarify the effect of suspended
sediment on the sand wave formation. In this paper, the two-dimensional stability
of an erodible bed in a stream with suspended sediment is investigated by adopting
the one-dimensional analysis of the flow. The local variation of bed shear stress
and the non-equilibrium of the transport process of bed load are introduced as the
instability factors for the bed. Furthermore, a bed load equation in a non-
equilibrium state is developed by considering the suspension of bed load sediment
and the deposition of suspended sediment. A linear analysis is adopted in order to
examine the bed stability, and the effect of suspended sediment on the stability of
a perturbed bed is clarified. Finally, a new diagram of regime criteria for sand
waves is proposed. The theory is verified by the laboratory flume and river data.

BED SHEAR STRESS AND BED LOAD DISCHARGE ON SAND WAVES

The bed shear stress plays an important role to the stability of the erodible
bed, because sand waves are the forms of the bed surface resulting from the local
erosion and deposition produced by the irregularity of sediment transport in the
direction of flow. First, the bed shear stress on the wavy bed is derived accor-
ding to the theory developed by Tsubaki and Saito (20). Subsequently, an equation
for the bed load discharge in a non-equilibrium state is described.

Bed Shear Stress

The flow over sand waves is periodically accelerating and decelerating owing
to the convergence and divergence of the flow. In order to incorporate this flow
pattern in the analysis, a parameter which denotes the acceleration and
deceleration of flow is introduced into an equation for the velocity distribution.

For a uniform flow, an equation for the velocity distribution is obtained by
assuming a constant eddy viscosity as

u u,h u
_— - 2
u, ( 2v )C; + u. ¢
* t %
where u = the velocity at a point; u_ = the velocity at the water surface; u, = the
shear velocity; h = the water depth; ¢, = the dimensionless depth from the water
surface; and v_ = the eddy kinematic viscosity. Denoting the velocity defect at
the bed by 4, Eq. 1 is written as
u = us( 1 - Az (2)

in which & = (u,h/2v )(u,/u_). Then the mean velocity, u,» over the cross section
and the velocity, Uy at the bed are written as

A
uo= us( 1 - = ) =u (_T___K7§_) (3)
From the above equations, the bed shear stress, Tb, is expressed as
by L 1-8/3,. .
5= U = T )y, (4

where p = the mass density of water; and ¢ = u /uf.

The velocity distribution in the non-unifdrm flow over sand waves is assumed
to be still quadratic as Eq. 2. 1In this case, however, the velocity defect, A, is
considered to vary locally with the degree of convergence or divergence of flow,
3h/3x. For simplicity, a linear relationship between A and 3h/3x is assumed as

3h
8 =48, +a—r (5)
where x = the coordinate in the downstream direction; A = the value of A for the

uniform flow; and @ = an empirical parameter. Tsubaki and Saito (20) has estimated
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= 5,0 for ¢, = 0.9, by using the velocity distribution of the flow in the conver-
gent and divergent pipes obtained by Nikuradse.
Assuming that the 1local friction factor in the non-uniform flow is equal to
that in the uniform flow, the bed shear stress on the wavy beds is given by

1-4/3
b 1 o 1 - A
ERiirs A ey ya R ey v (6)

o

where ¢ = the value of ¢ for the uniform flow. By integrating Eq. 1 and using 12
as an average value of u h/\’t for open channel flows as suggested by Tsubaki (19),
Ao is obtained as

L 6/( o, + 2 ) @)

Equation for Bed Load Discharge

The bed material load is divided into the bed load which is the part of the
sediment load transported by the tractive force in continuous contact with the bed
and the suspended load which 1s supported by the turbulence and transported in
suspension in the flow. 1In this paper, the flow section is divided into two parts;
one 1is the bed layer where the sediment is transported as the bed load and the
other is the suspension layer where the sediment as the suspended load.

On the basis of the model proposed by Einstein (2), an equation for bed load
discharge in a non-equilibrium state is developed. In the derivation of this
equation, two kinds of sediment flux at the boundary between bed layer and suspen-
sion layer are considered as shown in Fig. 1. One is an upward flux of sediment
particles which are caught by the upward component of turbulent current. The other
is a downward flux of suspended sediment particles which are settled into the bed
layer.

¢, 9su qid Suspens o
1T L L M Y
a*] qB'J; | Cy \ '1;q3+5§' layer
DRI AL R Y

%ba  bu ’

Fig. 1 Sediment fluxes in the bed layer

Thus the continuity equation for bed load sediment in a non-equilibrium state
is expressed as

at ax - Tbu T bd * Y%d T Ysu

where t = the time; q, = the volumetric bed load discharge per unit time and width;
C_ = the concentration of bed load; a, = the thickness of bed layer; Uy’ = the
erosion rate of sediment and the deposition rate of bed load sediment per ungt time
and unit area of bed surface, respectively; q_., q = the downward flux and the
upward flux of sediment per unit time and unit area of"the boundary surface between
bed layer and suspension layer, respectively.

The fluxes at the bed surface are expressed as

q

B
Y 9
Gpy = As758d°P (10)
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where &£ = the average step length of a sediment particle; P = the probability of a
particle being eroded; d = the diameter of sediment; s = the specific weight of
sediment in the water; g = the gravitational acceleration; and A_ = an empirical
constant. The average step length, %, and the probability, P, are® determined by
the properties of sediment and the local conditions of flow. According to the
Einstein's model,

A.d

d
¥ =13 (11)
and
ALl
* Be
P = c———— (12)
1 + A*¢B
where /sgd® = the bed load function in the equilibrium state correspon-

/
ding to the Biocal dimensionless tractive force, ¥ = u2/sgd; A = dimensionless
measure for a single step length of a particle; and A, = 1?(% A ). Substitution of
Eq. 12 into Eqs. 10 and 11 yields

@BEJSgd’
P, = ;
bu 2gdC 1+ A0, )

8= adC 1+ A0, ) (13)

Combining above two equations, a similar equation to Eq. 9 is obtained as

q
Be
Yu = 2 (14)
where 9p, = the bed load discharge in the equilibrium state. The dimensionless

tractive gorce, ¥, is obtained by rewriting Eq. 6 as

1- A°/3 u ?

_ 2 m_ 1-4 2
A ey e ey A e v 2 (15)

With respect to the fluxes, q_ and q_,, the model of Hirano (10) for the
reference concentration of suspended sediment is adopted. Assuming that the
probability density function for the vertical turbulence velocity 1is distributed
following the normal error function, ., and q 4 2are expressed as

]
— _ 1 [ -
qSU = CB-{ (Vl WO)f(V )dV CBWO{Q(U) F(U)} (16)
Wo
agy = Cuf (V' wIE(VIAV! = C,wg{0(0)+1-F(a)} (17)
“w,
where v' = the vertical turbulence velocity; £(v') = the probability density
function of v'; w, = the fall velocity of the sediment particle; and C, = the

reference concentration of suspended sediment. The functions, ¢(o) and F(o), stand
for

1 g?
¢(0) = 73;;—exp(- —E‘) (18)
F(0) = |7 pbrexp(- S0t (19)

where o = w,/VVT%; and /¥72 = 0.93u, (17).

The upward flux is given by the local concentration of bed load. On the other
hand, the downward flux does not directly correspond to the local flow conditions.
Since the sediment lifted into the flow in the upstream region settles scatteringly
in the bed layer, the downward flux is assumed to be approximated by averaging
along one wave length. In other words, the averaged downward flux is equal to the
averaged upward flux. Thus,
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Cgwo (6(0)-F(0)}
cBwo{o(o)—F(o)}

(20)

Aeq ~ 9y = CBwoN‘(U)-F(O)}[I -

where C_w,10(0)-F(0)} = the value of q__ averaged along one wave length. C_ is
. B su B
defined as

q
Cy = o (21)
B
where u_ = the average velocity of the bed load sediment, which is given by Ashida
and Michiue (1) as
u
- Yc
up = ku (1 - ™ ) (22)

where k = 8.5 if one adopts the logarithmic law for the velocity distribution in

the flow over the flat bed.
Thus, an equation for the bed load discharge in a non-equilibrium state is

expressed as

3(CBa*) g,

it " ax
X CB{¢(0)—F(0))
e - — e —
2(de qB) + CBw°{¢1ai F(o)I[1 E;T?TFSZ?TETT ] (23)

STABILITY ANALYSIS
Continuity Equation for Sediment

In this analysis, the suspended load takes part not directly in the bed
variation but in the transport rate of bed load in the non-equilibrium state. The
change of the bed elevation is induced by the difference between the erosion rate,
q, , and the deposition rate, Upg? of sediment on the bed surface. Using Eqs. 9
and 14, the continuity equation gor the sediment is expressed by

3z 1 1
E + _1 — E(de - qB) =0 (24)
where 2z = the elevation of the bed taken from the average bed surface with the

slope S, = tanf; and € = the porosity of sediment.

Fig. 2 Definition sketch of the perturbed flow

Equations for Flow
The continuity and momentum equations for the flow are expressed by

h . a(umh)
at Ix

=0 (25)
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where A = the Jaeger coefficient.
Stability Equation

In order to analyze the bed stability, we consider a small deformation imposed
on the initial flat surface of the bed. The depth, the velocity and the transport
rate of sediment are divided into undisturbed values and deviations as

h = ho(l + M) ; U, = umo(l +u') ; oy = QBo(l + ¢') (27)

where the subscript, o, denotes quantities for the wundisturbed flow. By con-
sidering small deviations and small steepness, substitution of Eq. 27 into Egs. 23,
24, 25 and 26 yields the linearized equations for deviations. 1In the derivation of
these equations, the following equation is used for the bed load function in the
equilibrium state as

m

L KB(w - wc) (28)
where ¥ = u*’/sgd * 0.05 in which u, = the critical shear velocity; and = a
constanf. The exponent, m, generalfy takes 3/2 for the bed load. Since the tur-
bulence intensity over wavy beds does not directly correspond to the local shear
stress, it is assumed to be given by using the mean shear stress herein, thus

o = 00 = WG/(0.93U*°) (29)

Let

T = z/ho s X = x/h0 3 T = t'@Bolsgd’/{(l-e)h;}

then we obtain the following equations.

UM L M '~ gadly _ e - '
ko¢ Exgr + Egy = M(2u q“ax) ¢ EWo (30a)
3T ' Z qadDy _ g =
Egr + M(2u qazz) - ¢' =0 (30b)
an u' an
3T + % + X - 0 (30c)
2,0u'  du! 4 227
F aT * F X+ 2S,u’' + ax * MF X
an 3’n
- Soen + (1 - S°qu)3§ + A,Fzsij =0 (304)
in which
F = Ymo h
a /gﬁocose
‘- 0Bov’sgd3 B 1 g,
Q- e)umoho (1 - ¢) umoh°
Add
E = 'F:(l + A00 )
. . [ 6D
W =2 (4(a) - F(o)} ; Kk, = 1 £, = —
s T T k(- uy Ju, ) P % T b
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q = 4/3
(1-a8 )(1-8 _/3)

Parameters A, and A, represent the centrifugal effects of curvilinearity of bed
surface and water surface, respectively, which are given by Iwasa and Kennedy (12).
Sinusoidal perturbations are considered as

[ - 2eYT+in; n = ﬁeYT+le; o' = aeYT+iBX; o = $eyT+iBX (32)
where %, #, U, & = the amplitudes at T = 0; v = v, + iy, = the dimensionless

complex propagation velocity; and B = the dimensionless wave number. Substitution
of Eq. 32 into Eq. 30 yields

(ko6 XYE + 1 + EW + iBE)$ - M(2U - iBqafi) = 0 (33a)
YEZ + M(20 - iBqaR) - $ =0 (33b)
iBU + (Xy + iB)A =0 (33¢)

(F2xY + 25, + 1BF2)4 + 1B(1 - A,B?F2)2
+ {-S, + iB(1 -~ S,qa - A,B%F2)}A = O (33d)

Elimination of the amplitudes from the above four equations reduces to the
stability criterion for the bed as

iB%,Fz(ko¢°E)’x“Y°

[ -2F*(e0 E)® + 1e§z(k,¢oz)(vz(1+EW) + Siko0 E} Ix'y*

+ [ Mk )*E(1-1,B2F?)X - koo E{4F*(1+EW) + 35,k,¢ _E}

+ 18 %,F*{B=E=+(1+Ew)‘} + %zS,k,¢oE(1+Ew) x2y®
] + (k,¢oE)2{1—S,qu—(1+Asz)F’}]

+« [ Mk°¢o(1—A,BZF‘){E(ZW-k,¢°Ban) + 2(1+EW)}x

- 2F?{B®E”+(14EW)*} - 6S,k,0 E(1+EW)

+ 1B8[ 2M(ko0 )2E(1-1,B2F?)x xy?

L

+ %,so{ezaz+(1+zw)=} + 2k°¢°E(1+EW){1—S°qa-(1+x282)Fz} ]J

+ [ M(1-x,32F2){e*(zs-k,¢oaquw) + (1+EW)(2W—k°¢°B’qa)}x - 3S,{B2E2+(1+EW) 2}
+ i8[ -M(l-AIB’Fz){E(ZW—ko¢°qua) + k,@oE(quu-ZW) - 2(k°¢°+1)(1+EW)}x Y

+ {B2E2+(1+EW)2}{1-8,qa~-(1+r,B2)F2} ]

B2M(1-1,B2F2?)[ B2[{E+(1+EW)/B2%}qa + 2/B%]+ iB{qu-2E-2(1+EW)W/B?}]

=0 (34)
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Verification of Stability Equation

The stability equation (Eq. 34) is so complicated that it 1is difficult to
discuss the physical meanings. The authors try to simplify the equation by es-
timating the order of each term. Since the value of x is on the order of 107 at
the highest, we can neglect the terms containing ¥ compared with other terms in the
order of unity keeping a sufficient accuracy. This means that the flow can be
assumed quasi-uniform. Thus, Y can be simply expressed as

B2M(1-1,B*F?){B*(E,qa+2/B%) + iB(qo-2E,)}
Y = TBZEZ+(1+EW) 21 [-35 4+ 1B{1-5,qo-(1+A,B2)F2}]

(35)

in which
E, = E + (1+EW)W/B? (36)
From Eq. 35, the real part, y,, and the imaginary part, y,, of y are derived as
Yy = A(1-1,B2F2)[{1-5,qa-(1+1,82)F?}(qa~2E,) - 35,(E,qa+2/8%)] (37)
—T2 = A(1-0,B7F?) [{1-84q0- (141,87 F?}(E,qa+2/82) + 35,(qo-2E,)/82] (38)

in which

82M
A = {BTET(T+EW) 71 [{1-5 ,qo-(1+1,B2)F?1 73952/57]

(39)

The sign of y, identifies stable and unstable conditions. Since the propagation
velocity of the perturbation is expressed by -y,/B, the waves migrate downstream
when this value is positive, and upstream when it is negative.

This theory is characterized by three parameters a, E and W. The parameter a
represents the deformation of velocity distribution and the asymmetric distribution
of the bed shear stress due to the acceleration and deceleration of flow over wavy
beds. The parameter E denotes the non-equilibrium of the transport of bed load.
The parameter W represents the effect of the suspension of sediment which decreases
rapidly against wo/u, .

Ifa =0, E=0, A\, =0 and A, = O according to the method by Iwagaki (11) in
the analysis of the bed stability, then Eqs. 37 and 38 yield

Y, = A" {(1-F?)¥W + 35,} (40)
-Y2/B = A'{(1-F*) - 35,W/8?} (41)
in which
2M
L.
A = TFDT + 95176T “2)
When W = 0, -v,/8 >0 for F <1 and -y,/8 < O for F > 1. These roughly coincide

the actual directions of movement of dunes and antidunes, respectively. However,
the sign of y, is always negative, that is, the bed is stable and sand waves do not
occur. This means that when the flow near the bed is determined by the averaged
conditions as the case of the disturbance with a long wave length (8 + 0), the bed
is stable as is evident from Eq. 37. When W # O, the bed can become unstable for
the supper-critical flow.

Meanwhile, according to the Yalin's simple expression (23), the wave length L
is given as

(43)
L

L = Sh° for dunes }

1000d for ripples
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Therefore the value of B lies in the order of unity for the disturbance with a
short wave length such as sand waves. Moreover, considering that the value of §,
rarely exceed 1072, we can neglect the terms containing S, in Eqs. 37 and 38. From
the above discussion, it is clarified that a, E and W are important parameters for
the bed stability.

From Eq. 37, the following three curves for the neutral are obtained:

1 - 3,B%F%2 =0 or F2 = Fe? = —— (44a)
X, B8
1 - (1 + 2BH)F? =0 or F2 = Fa? = ;——1—-—5 (44b)
+ 2,8
and
qa - 2E - —%7(1+EW)W =0 (44c)

Since Fa 1is less than Fc for the range of 8 < 2.45 which value is obtained
from Eqs. &44a and 44b by using the values of A; = 1/2 and A, = 1/3 (Iwasa and
Kennedy (12)), the following conditions can be deduced:

When F < Fa:

if qa > 2E + —%7(1 + EW)W, then v, > 0 (unstable);

if qu < 2E + —%7(1 + EW)W, then v, < 0 (stable);
and
~Y,/8 > 0 (downstream).
When Fa < F < Fe:

1f q¢ > 2E + —%7(1 + EW)W, then v, < 0 (stable);

if qu < 2E + —%7(1 + EW)W, then v, > 0 (unstable);
and
-Y,/B <0 (upstream).

These indicate that dunes formation is possible for F < Fa and antidunes formation
for Fa < F < Fc. Therefore, Eqs. 44a and 44b yield the region of the occurrence of
antidunes and Eq. 44c gives a criterion to distinguish dunes regime from flat bed
regime.

By using the relations of ¥ = hOS,/sd and °oz = F2/S,, E is rewritten as

potan LA
T s ¢2 [
[+ o

(45)

©

Therefore, in a stream with a moderately low Froude number (F << Fa), the bed is
unstable owing to the role of the parameter a, and ripples and/or dunes will occur.
As the value of F increases, the parameter E acts as a stabilizing factor, and flat
bed may occur. When F > Fa, 2E is mostly larger than qa. Therefore, the bed
becomes unstable and antidunes will occur. Further increase of F beyond Fc results
in a stable flat bed. By introducing the centrifugal effect, an upper limit for
the region of occurrence of antidunes is obtained.

Since the parameter W plays a similar role to E, the smaller the value of
wo/u, , the lower the Froude number at which the transition from dunes to flat bed
occurs.
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REGIONS OF OCCURRENCE OF SAND WAVES

Since E in Eq. &44c 1is a function of ?0 and F from Eq. 45, we can show the
regions of occurrence of sand waves in the (¥ , F) plane as shown by Garde and
Albertson (6). First, we discuss the transition from dunes to flat bed. The
values for various parameters contained in Eq. 44c are determined as follows.
Since A 1is a function of ¢ from Eq. 7, q defined by Eq. 31 is also determined by
$,+ For the value of o, we take 5.0 as previously mentioned. With respect to the
values of A, and A,, Einstein (2) gave 100 and 43.5, respectively. Shinohara and
Tsubaki (16), however, reported from their tracer experiments that the rate of
increase of the erosion probability of a sediment particle with the tractive force,
¥, was overestimated in the Einstein's bed load formula, that is, the A, value was
smaller than that given by Einstein. On the other hand, they concluded that the A
value was about 100. Herein A, = 100 and A, = 10 are adopted as proposed by
Tsubaki and Saito (20). Except the extremely small value of B, there is little
effect of B on the stability. Hence, B = 1 is adopted by referring to Eq. 43.
Considering the sand grain for the bed material, s = 1.65. Five percent of the
flow depth is often wused as the bed layer thickness, that is, E, = 0.05.
Consequently, the boundary between dunes regime and flat bed regime is expressed as
a function of ¥ and F with parameters ¢ and wolu, .

Here, we have rewritten Eq. 44c by using the relation of Eq. 45, as

2

F2_1s _ ‘o S T (46)
bgae T 2R T AL, L

In the case that W = O (no suspended sediment, or, w,/u, = =), the right-hand side
of this equation is a function of ¥_ only, and thus the boundary curve between
dunes and flat bed can be expressed as a single curve in the (?0, F/(@ofqa)) plane.

3.0
5.0
| 2 0.3 . R
5&ﬁ%w~ = 0.5 i
&
1.0 MA r
[ s Yo _
¥, 5 a g u, ® k)
0.5 : ‘AA 5 ) no susl;.)ended 1.0 L :
Y sediment) a
C o o
S - Yo _
0.5 u, i
K T w
A & -2 =
a -,
0.1 | ° L
C A8 4 e
- A
- &
.05 111yl !l ) 0.1 Lo ooyt I} ' [
0.002 0.01 0.03 0.002 0.01 0.05
F/(¢ /q5) F/(¢ /)
Fig. 3 Comparison between theory and Fig. 4 Comparison between theory and
experiments (ripples(a),dunes(0)) experiments (flat bed)
8,w;/u,<0.3; &,0,0.3<w,/u,<0.5; 0,0.1<wy/u,<0.5; ®,0.5<w,/u,<1.0;

4,0, wo/u,>0.5 0,wy/u,>1.0
* *
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The effect of q (or ¢ _) on the value of right-hand side of this equation is
negligibly small. Thus, the parameters which determine the value of the right-hand
side of Eq. 46 reduce to w,/u* only. This means that the neutral curve in this
plane moves with the value of w,/u* .

In Figs. 3 and 4, the theoretical results are compared with the experimental
data for fully developed sand waves presented by Laursen (14), Simons and
Richardson (15), Garde and Raju (7), Guy, Simons and Richardson (8) and Willis,
Coleman and Ellis (22), and those collected by the Committee on Hydraulics and
Hydraulic Engineering of JSCE (18). The data are grouped by the value of w,/u,,
and the computed curves are illustrated with solid lines for each value of w,/u,
corresponding to each group. A constant value ¢ = 18 is used in these diagrams,
since they are less sensitive to the change of + In order to estimate the value
of ¢° from the data, the Manning-Strickler's formula was used. It is clearly seen

5.0 5.0
N 0.3 I
. A R
8, 22 0.5
a &A
a A
1.0 _-AA} Yo oo 1.0
" u, L
% [ & % 4 (no suSpended % 0.5k
0.51 AAA sediment) L
a
a

0.1 0.1fF

0.05 NP BN | ] 0.05L SIS BT PR

0.001 0.01 0.05 0.001 0.01 0.05
F/ (¢ /q8) F/ (¢ vqs)
Fig. 5 Comparison between theory and Fig. 6 Comparison between theory and
river data (ripples) river data (flat bed)
& ,w,/u,<0.3; &,0.3<w,/u,<0.5; 0,0.05<w,/u,<0.1; @,0.1<u, fu,<0.3;
8 4wy /u,>0.5 0, we/u,>0. 3

in these figures that the smaller the value of w,/u*o, the smaller the value of
F/(¢ vYqa) at which the transition from dunes to flat bed occurs. This means that
for che finer sediment the boundary curve between the lower and upper regimes moves
to the lower values of the Froude number, as previously mentioned. The predicted
regime criteria from Eq. 46 seem to agree well with the actual behavior of occur-
rence of ripples, dunes and flat bed for each value of w,/u,.

Figures 5 and 6 show the comparisons between the theoretical results and the
river data collected by Garde and Albertson (6). Ripples and flat bed are both
formed in the regions predicted by this theory.

Conversely, the unstable region in upper flow regime is bounded by two curves;
F = Fa, Eq. 44a and F = Fc, Eq. 44b. It can be determined by F and 8 independently
of wy/u,, as shown by the solid lines in Fig. 7, which is similar to the results
predicted from the potential theory of Hayashi (9) shown by the two dotted lines.
In this figure the experimental data corresponding to antidunes are plotted and
also classified by the values of w,/u,. Almost all of antidunes are formed in the
predicted region. No effect of wo/u* on the region for antidunes is seen in this
figure, though suspended sediment is dominant there.
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2.0 o
——, Eqs.44a, 44b
1.8 +
8 \ ———- Potential theory
8 \ by Hayashi (9)

Fig. 7 Comparison between theory and experiments (antidunes)
O,wo/u,<0.3; ©,0.3<w,/u,<0.5; ®,0.5<w,/u,<1.0; ®,w,/u,>1.0

CONCLUSIONS

The instability of erodible beds was studied by considering the effect of
suspended sediment. In order to analyze the bed stability, two factors for
instability were introduced; one is the asymmetry of the distribution for bed shear
stress and the other is the non-equilibrium of bed load transport on sand waves.
The results obtained herein are summarized as follows:

1, In a flow with a moderately low Froude number, the bed is unstable owing to
the asymmetric distribution of the bed shear stress. As the value of Froude number
increases, the value of stability factor increases as a result of the non-
equilibrium of bed 1load transport leading to the stable flat bed. The boundary
between the lower and upper regimes for sand waves is shown very well in the (¥ ,

o
F/(¢ /qa)) plane.

2. Suspended sediment contributes to the non-equilibrium of bed load
transport. It is clarified that w,/u, is an important parameter for the transition
from the lower regime to the upper regime. That is, for a smaller value of wg/u,,
the region for flat bed extends to a smaller value of F/(¢ vqa).

3. No effect of w,/u, on the region of occurrence of dntidunes is seen.

This theory explains satisfactorily the regime criteria for sand waves such as
ripples, dunes, and antidunes.
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APPENDIX -~ NOTATION

The following symbols are used in this paper:

a, = thickness of bed layer;

A, = constant in the equation of bed load function by Einstein;
CB = concentration of bed load;

C,. = reference concentration of suspended sediment;

d = diameter of sediment particle;
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parameter denoting the non-equilibrium of bed load tranmsport;

= probability density function of v'j;

Froude number, defined by F = umo//§5253§§;

function of o, defined by Eq. 19;

gravitational acceleration;

water depth;

constant

coefficient in the equation for bed load function in equilibrium state;
average step length of sediment particle;

wave length;

exponent in the equation for bed load function in equilibrium state;
m?ol(Vo—?c);

probability of a particle being eroded;
4/3/{(1-a )(1-8 /3)};

deposition rate of bed load sediment on the bed;

erosion rate of sediment on the bed;

deposition rate of suspended sediment to the bed layer;
pick up rate of bed load sediment into the suspension layer;
bed load discharge in non-equilibrium state;

bed load discharge in equilibrium state;

specific weight of sediment in the water;

slope of the undisturbed bed;

time;

dimensionless time, defined by T = t'oBo/Egaj/{(l—e)h;};
velocity at a point;

dimensionless deviation from LI

amplitude of u';

velocity at the bed;

mean velocity over the cross section;

velocity at the water surface;

average velocity of the bed load sediment;

shear velocity;

critical shear velocity;

vertical turbulence velocity;

fall velocity of sediment particle;

parameter denoting the effect of suspension of sediment;
coordinate in the downstream direction;

x/ho;

elevation of the bed taken from the average bed;

parameter denoting the asymmetric distribution of bed shear stress;
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dimensionless wave number;

dimensionless complex propagation velocity;

real part of v;

imaginary part of ¥;

velocity defect at the bed, defined by A = (u*h/ZVt)(u*/us);
porosity of sediment;

z/ho;

amplitude of g3

dimensionless depth from the water surface;

dimensionless deviation from ho;

amplitude of n;

slope angle of the undisturbed bed;

Jaeger coefficient;

parameters denoting the centrifugal effects of curvilinearity of bed
surface, and water surface, respectively;

constant relating to a single step length of a particle;
eddy kinematic viscosity;

dimensionless thickness of the bed layer , defined by §, = a*/ho H
mass density of the water;

wo /T

bed shear stress;

um/u*;

dimensionless deviation from oBo;

amplitude of ¢';

function of 0, defined by Eq. 18;

bed load function, defined by OB = qB//EEHS;

concentration of bed load in the flow section, defined by

X = qBo/(l-e)/(umoho) in Eq. 31;

dimensionless tractive force, defined by ¥ = u;/sgd; and

dimensionless critical tractive force, defined by Yc = u*é/sgd.

represents the value corresponding to the undisturbed flow.



